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Abstract: The highly accurate multiresolution leaf area index (LAI) is an important parameter for
carbon cycle simulation for bamboo forests at different scales. However, current LAI products
have discontinuous resolution with 1 km mostly, that makes it difficult to accurately quantify the
spatiotemporal evolution of carbon cycle at different resolutions. Thus, this study used MODIS LAI
product (MOD15A2) and MODIS reflectance data (MOD09Q1) of Moso bamboo forest (MBF) from
2015, and it adopted a hierarchical Bayesian network (HBN) algorithm coupled with a dynamic
LAI model and the PROSAIL model to obtain high-precision LAI data at multiresolution (i.e., 1000,
500, and 250 m). The results showed the LAIs assimilated using the HBN at the three resolutions
corresponded with the actual growth trend of the MBF and correlated significantly with the observed
LAI with a determination coefficient (R2) value of >0.80. The highest-precision assimilated LAI
was obtained at 1000-m resolution with R2 values of 0.91. The LAI assimilated using the HBN
algorithm achieved better accuracy than the MODIS LAI with increases in the R2 value of 2.7 times
and decreases in the root mean square error of 87.8%. Therefore, the HBN algorithm applied in this
study can effectively obtain highly accurate multiresolution LAI time series data for bamboo forest.

Keywords: Moso bamboo forest; LAI; data assimilation; hierarchical Bayesian network;
multiresolution

1. Introduction

The leaf area index (LAI) is defined as one-half of the total green leaf area per unit horizontal
ground area [1], and is a requirement in a variety of ecological applications [2]. The spatially and
temporally distributed LAI data is of crucial importance for researches on carbon and water cycling
and on the energy exchange of terrestrial vegetation [3,4]. In addition, variations in LAI time series
data always considered one of the physiological parameters and indicators to reflect the status of
vegetation growth [5,6]; it is therefore a significant land surface parameter for quantitative analysis of
many physical and biological processes related to vegetation dynamics [7].
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Remote sensing technology is one of methods feasible for obtaining LAI data with large
spatial coverage [8]. Currently, there are many LAI time series products available, e.g., MODIS [9],
CYCLOPES [10], GLOBCARBON [11], and ECOCLIMAP [12]. However, because of the effects of
cloud cover, snow cover, aerosols, sensor failure, and limitations of the inversion methods [13], many
satellite-based LAI products are characterized by low accuracy, high noise, and large errors in their
spatiotemporal distributions, which constrained their widespread application [14,15]. The development
of data assimilation methods, which can incorporate heterogeneous and spatiotemporally discontinuous
data [16,17], has led to a series of advances in obtaining accurate spatiotemporal continuous LAI data.
The adoption of data assimilation techniques such as the ensemble Kalman filter [18,19], dual ensemble
Kalman filter [7], and particle filter [20,21] produced LAI time series data with improved precision,
which enhanced the simulation accuracy of the carbon cycle of vegetation [22,23].

All of the above studies show the ability to improve the accuracy of individual LAI products,
but they merely work at given single resolution because they are based on the LAI product itself,
or they change multisource data with different spatial resolutions into a dataset with uniform
resolution via resampling. However, the current LAI products suffer from coarse resolution, and
products with multiresolution are scarce. Except for a few LAI products with resolution of 500 m
(MOD15A2H/MYD15A2H), the resolutions of most products are ≥1 km with large interval and little
diversity between them, such as 3, 5, 8, 10 km [24,25]. The discontinuous spatial resolutions make a
limitation of using LAI products to accurately describe the carbon cycle at relatively continuous spatial
resolution, which make it difficult to comprehensively understand the spatiotemporal evolution and
control mechanism of carbon cycle [26,27]. Consequently, continuous multiresolution LAI data is
highly desirable.

To receive high accuracy multiresolution LAI data, Xiao et al. [28] obtained multiscale LAI data
using a multiscale Kalman filter with integrated MODIS and Landsat LAI products; Wang et al. [29]
utilized a multiresolution tree combined with a Kalman filter to obtain multiscale LAI data by fusing
MISR LAI products with different resolutions; and Jiang et al. [30] developed an ensemble multiscale
filter to retrieve multiscale LAI data from satellite observations with different spatial resolutions.
Compared with the above methods, a hierarchical Bayesian network (HBN) algorithm also has
considerable potential in multiresolution data assimilation with the advantage of not being restricted
by linear and Gaussian error distribution hypothesis [16,31]. It divide a complex data assimilation
model into several relatively simpler models using conditional independence theory, transforming
the complex posterior probability into a series of relatively simpler conditional probabilities [32–34].
Thus, conditional but not complete independence is required in HBN which is more in line with the
natural situation. Several studies had promoted the idea and support for the application of HBN in the
assimilation of multiresolution data [35,36], and it had been used widely in atmospheric [32,37–40],
environmental [41–44], and hydrological research [45,46].

Bamboo forest is a special type of forest in subtropical regions of China, which has the
characteristics of rapid growth and high yield [47]. Many studies on the carbon cycle of bamboo
forest ecosystems, undertaken by domestic and international researchers, have shown that bamboo
forests have substantial carbon sequestration capability and play an important role in maintaining the
regional ecological environment and carbon balance [48–51]. As one of the most important parameters
in simulation of the carbon cycle, multiresolution LAI data plays a big part in quantifying and clarifying
the evolution of carbon cycle at different scales. This study used MODIS LAI data (MOD15A2) and
MODIS reflectance data (MOD09Q1) of Moso bamboo forest (MBF) in Anji County (Zhejiang Province,
China) from 2015, and adopted an HBN algorithm coupled with a LAI dynamic model and the
PROSAIL model to assimilate highly accurate LAI time series data with multiresolution (i.e., 1000, 500,
and 250 m). The assimilated LAI time series data could be used as spatiotemporal data to enhance the
accuracy of carbon cycle multiscale simulation of bamboo forest.
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2. Study Area and Datasets

2.1. Study Area

In this study, the MBF flux measurement site and the area around it within the range of 1 km were
used as the study area and the sampling area of observed LAI, respectively. The location of the MBF
flux measurement site and observed area in Shanchuan town, Anji County are shown in Figure 1.
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Figure 1. (a) Anji county in northwest Zhejiang province and land use types; (b) Shanchuan town in
southeast Anji county and Moso bamboo forest distribution; (c) MODIS LAI product for the Shanchuan
town at DOY 225 in 2015 and spatial location of MBF flux measurement site and observed area.

The MBF flux measurement site is located in Anji County in Zhejiang Province (30.46◦ N,
119.66◦ E). This area has a subtropical monsoon climate with distinct seasons and abundant rainfall.
The MBF is distributed widely across Anji County covering an area of 55,367 ha, which accounts for
approximately 45% of the total forested area. The area (1 × 1 km) around the flux tower consists of
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MBF. The average diameter of the bamboo at breast height is 9.3 cm and the canopy height is 12–18 m
with a sparse understory of shrubs and herbs [20].

2.2. Datasets and Processing

2.2.1. Processing of Satellite Data

The MODIS 8-day 1000-m LAI product (MOD15A2) and the 8-day 250-m reflectance product
(MOD09Q1) for Zhejiang Province in 2015 were downloaded from NASA’s website (https://ladsweb.
nascom.nasa.gov). The MOD15A2 and MOD09A1 datasets were reprojected to the WGS84 coordinate
system using MODIS Reprojection Tools software. ENVI v5.3 software was used to determine those
pixels corresponding to the locations of the flux measurement site and to extract the pixel values in
the range of 1 km; thus, 1 MOD15A1 pixel value and 16 MOD09Q1 pixel values were extracted in
each phase.

The locally adjusted cubic-spline capping (LACC) method was applied to remove noise in the
MOD15A2 product, following which the smoothed data were used as initial values for the LAI dynamic
model. The LACC method has been described in detail in the literature [52]. The smoothed LAI time
series will be shown in Section 4.1 and used as a comparison for the results.

The MOD09Q1 product includes seven bands; however, this study used only the red band (RED)
and the near infrared band (NIR). To reduce the effect of atmospheric factors on reflectance, the
Savitzky-Golay smooth and the method based on normalized difference vegetation index (NDVI)
developed by Xiao et al. [53], were used to eliminate outliers. This method has been described
previously in the literature [18]. Take the first pixel as an example, the NDVI time series envelope
and the outliers from the MODIS reflectance data are shown in Figure 2. It is seen from the figure
that outliers at DOY 49, 73, 249, 361 and others have been eliminated and fluctuations of original
NDVI time series data is obviously decreased. Therefore, the quality of RED and NIR reflectance data
was improved.
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Figure 2. NDVI time series envelope and outliers.

2.2.2. Processing of Observed Data

Ground-observed LAI data were collected in study area for each month. There were 11 periods of
observation of LAI data in 2015. Observation in February was missing. The LAI was calculated using
the LAI (2000G)-LogCI algorithm in the WinSCANOPY v2009a program (Regent Instruments Inc.,
Québec, QC, Canada), based on canopy images taken in the field using a digital camera with a fisheye
lens (Figure 3) [54]. The plot design of the observed LAI is shown in Figure 4 [20]. Taking the flux
measurement site as the center, 5 observation centers (stars in Figure 4) and 20 observation points (dots
in Figure 4) were set across the 1 × 1 km area. Based on the coordinates of the observation centers

https://ladsweb.nascom.nasa.gov
https://ladsweb.nascom.nasa.gov
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and observation points, the pixels to which they belonged were determined at 1000-, 500-, and 250-m
resolution, and the average value was taken as the actual observed LAI for the pixels. The order of
pixels at 1000-, 500-, and 250-m resolution is shown in flow chart in Figure 5 and the value of observed
LAI of corresponding pixels is shown in Table 1. For example, LAI_500_1 indicates the observed LAI
corresponding to the first pixel at 500-m resolution.
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The leaf bidirectional reflectance (LBR) and canopy bidirectional reflectance (CBR) were measured
at a sample culm beside each flux measurement site using a FieldSpec Pro spectroradiometer
(Analytical Spectral Devices Inc., Boulder, CO, USA); details concerning the measurement method are
available in the literature [18,55]. The leaves were transported to the laboratory to measure biochemical
parameters for use as inputs to the PROSAIL model. The chlorophyll content (Cab, µg cm−2) of the
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leaves was measured using a spectrophotometer (UV-2102C/PC/PCS, Unico (Shanghai) Instrument
Co., Ltd., Shanghai, China) [56]. The leaf area (m2) was measured using an AM300 (ADC Bioscientific
Ltd., Hertfordshire, UK). The fresh weight and dry matter (after drying for 48 h at 75 ◦C) were measured
using an FA2104 (Shanghai Liangping Instrument Co., Ltd., Shanghai, China). The difference between
the fresh weight and dry matter was calculated as the water content.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 21 

 
Figure 5. Flow chart of process for estimation of LAI using the hierarchical Bayesian network (HBN) 
algorithm with multiresolution data (LACC respects locally adjusted cubic-spline capping for 
processing of MODIS LAI; SG respects Savitzky-Golay smooth for processing of MODIS reflectance; 
MCMC means Markov Chain Monte Carlo sampling method; HBN_LAI_1000, HBN_LAI_500, and 
HBN_LAI_250 indicate the assimilated LAI by using HBN algorithm at 1000 m, 500m, and 250 m 
resolution, respectively; and Field_LAI_1000, Field_LAI_500, and Field_LAI_250 indicate observed 
LAI at 1000 m, 500 m, and 250 m resolution, respectively.). 

3.1. LAI Dynamic Model 

In this study, the semiempirical model developed by Dickinson et al. [57] was used as a dynamic 
model to obtain the simulated LAI. The model and the parameters suited for MBF have been 
described previously in the literature [18,20,23]. The model can be expressed as in the following: = + − ∙ , (1)

Figure 5. Flow chart of process for estimation of LAI using the hierarchical Bayesian network
(HBN) algorithm with multiresolution data (LACC respects locally adjusted cubic-spline capping
for processing of MODIS LAI; SG respects Savitzky-Golay smooth for processing of MODIS reflectance;
MCMC means Markov Chain Monte Carlo sampling method; HBN_LAI_1000, HBN_LAI_500, and
HBN_LAI_250 indicate the assimilated LAI by using HBN algorithm at 1000 m, 500 m, and 250 m
resolution, respectively; and Field_LAI_1000, Field_LAI_500, and Field_LAI_250 indicate observed
LAI at 1000 m, 500 m, and 250 m resolution, respectively).
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Table 1. Observed LAI of MBF in 2015.

LAI
DOY

23 70 103 142 181 195 217 263 290 330 363

LAI_1000 3.51 3.33 3.43 3.76 4.08 4.35 5.22 3.67 3.31 2.94 2.72
LAI_500_1 3.74 3.39 3.61 3.79 4.13 4.47 4.99 3.94 3.81 2.96 2.76
LAI_500_2 3.71 3.53 3.98 3.71 3.90 4.45 5.29 3.82 3.48 3.38 2.70
LAI_500_3 3.72 3.55 3.67 3.82 4.09 4.34 5.16 3.98 3.49 3.15 2.79
LAI_500_4 3.97 3.48 3.84 3.45 3.92 4.19 5.30 3.70 3.58 3.00 2.77
LAI_250_4 3.74 3.39 3.61 3.79 4.13 4.47 4.99 3.94 3.81 2.96 2.76
LAI_250_6 3.86 4.00 4.14 3.85 4.54 4.92 5.37 4.33 3.87 3.73 2.82
LAI_250_7 3.85 3.78 3.98 3.72 4.44 4.58 5.21 4.54 4.33 3.85 2.89
LAI_250_8 3.97 3.53 4.05 3.57 3.90 4.21 5.09 3.82 3.48 2.91 2.38
LAI_250_9 3.68 3.52 3.89 4.07 4.16 4.62 5.05 4.12 3.42 3.28 2.89

LAI_250_10 3.75 3.66 3.60 3.61 4.06 4.33 5.01 3.92 3.52 3.08 2.86
LAI_250_11 3.59 3.42 3.91 4.05 4.08 4.96 5.25 4.44 3.55 3.29 2.09
LAI_250_14 3.97 3.48 3.84 3.45 3.92 4.19 5.30 3.70 3.58 3.00 2.77

3. Study Methodology

This study used an HBN algorithm to assimilate multiresolution LAI data. A flow chart of the
assimilation process is shown in Figure 5. The steps are as follows:

1. The 1000-m-resolution MODIS LAI and the 250-m-resolution MODIS reflectance data were
processed, which had been carried out in Section 2.2. Smoothed MODIS LAI data were input into
the LAI dynamic model to obtain the simulated LAI.

2. Based on the 250-m-resolution MODIS reflectance data, resolution-specific likelihood inference
(RESL) or resolution-specific restricted-likelihood inference (RESREL) method was used to
estimate the parameters in the data assimilation.

3. The LAI data and simulated reflectance data at each scale were obtained using the simulated
LAI, parameters in the process model of the HBN, and the PROSAIL model. Combined with
MODIS reflectance data, the structure of the HBN at three resolutions (1000, 500, and 250 m)
was initialized.

4. An inference of HBN was used to update node (pixel) states by integrating observations with
different spatial resolutions. The probability distributions of node states were updated by upward
filtering from observations from the finer scale (250 m) to the coarser scale (1000 m). Then, the
downward smoothing started from the coarser scale (1000 m) and ended at the finer scale
(250 m) to update the posterior probability distributions of all node states according to all of
the observations.

5. The Markov chain Monte Carlo (MCMC) sampling method was used to sample the probability
distribution. The LAI corresponding to the maximum posterior probability was the assimilation
result of the three scales.

6. Because of uncertainty and error in the parameter estimation of the HBN, the above process was
repeated 100 times and the average value was used as the final assimilation LAI. The assimilated
LAI time series data were compared with the observed LAI. The methodology of this HBN
algorithm was implemented within MATLAB.

3.1. LAI Dynamic Model

In this study, the semiempirical model developed by Dickinson et al. [57] was used as a dynamic
model to obtain the simulated LAI. The model and the parameters suited for MBF have been described
previously in the literature [18,20,23]. The model can be expressed as in the following:

LAIt+1 = LAIt +
∫ t+1

t

dL
dt

dt− Lt·LAIt, (1)
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dL
dt

= λ0·R(x)·L0·(1− exp(−c·LAIt)), (2)

dL
dt

= λ0·R(x)·L0·(1− exp(−c·LAIt)), (3)

x = (LAI− LAImin)/(LAImax − LAImin), (4)

where LAIt+1 and LAIt represent the LAI at the previous time step (t + 1) and current time step (t),
respectively; R(x) is a smoothing function; x is the normalization of the LAI; LAImax and LAImin are
the maximum and minimum of the LAI in a year, respectively; L0 represents the max LAI; Lt represents
the rate of leaf litter; and L0, Lt, λ0, and c are parameters determined based on experience. In this study,
the value of c was set as 0.5 and the initial values of the other parameters were obtained according to
observed LAI fitting.

3.2. PROSAIL Model

Forest CBR is particularly sensitive to LAI [58]. Therefore, the LAI simulated by the dynamic
model was used as the input for the PROSAIL model to achieve simulation of bamboo CBR. The
PROSAIL model, which is a combination of the PROSPECT5 and 4SAIL models, is an advanced model
for simulation of CBR spectra. The PROSPECT5 model simulates LBR [59], and the 4SAIL model
simulates CBR [60]. The parameters of PROSAIL model were optimized using the measured LBR
and CBR, and biochemical parameters of the observed area. The optimized parameters are shown in
Table 2. The reader is referred to the literature for specific details of PROSAIL model and optimization
methods [54,59–61].

Table 2. The parameters of PROSAIL model for MBF.

Model Parameter (Unit) Value

PROSPECT5

Leaf mesophyll structure N 1.04
Chlorophyll content Cab

(
µg/cm2) 28–55

Carotenoids content Car
(
µg/cm2) 10

Water content Cw
(
g/cm2) 0.0035

Dry matter Cm
(
g/cm2) 0.003

4SAIL

Leaf area index LAI
(
m2/m2) 0.0–7.0

Average leaf angle ALA (◦) 20.20
Hot-spot parameter H 0.0003

View zenith angle θv (◦) 0–90
Solar zenith angle θs (◦) 0–90

Relative azimuth angle θz (◦) 0–180

3.3. Hierarchical Bayesian Network Algorithm

In this study, the HBN algorithm was used to obtain LAI time series data with different resolutions
for MBF. The algorithm mainly includes the steps of construction of the HBN, inference of the HBN,
and MCMC sampling. To simplify the model construction, a transition scale using given data with
500-m resolution was constructed between the MODIS LAI data with 1000-m resolution and MODIS
reflectance data with 250-m resolution. This represents a dual relationship between the two datasets
on adjacent scales, i.e., one parent node corresponds to four child nodes, as shown in Figure 5.

3.3.1. Construction of the HBN

The HBN include a data model, process model, and parameter model [43,44]. The data, processes,
and parameters are defined as three random variables and establish conditional probability distribution
models, such that the data assimilation problem is transformed into updating the posterior probability
distribution of the processes and parameters under the condition of the existing data [31,45].
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1. Data model

The data model defines the conditional probability distribution model between the observed
data and real processes, related parameters [46]. In this study, data with three resolutions gradually
increasing from top to bottom were included. The first scale considered LAI data with 1000-m
resolution, the second scale had no data, and the third scale comprised reflectance data with 250-m
resolution. The data model for each scale was defined based on Equations (5)–(7):

First scale Zch(i,r) = 1Ych(i,r) + vch(i,r), (5)

Second scaleNo data, No model, (6)

Third scale Zch(i,r) = Fch(i,r)Ych(i,r) + vch(i,r), (7)

where Zch(i,r) and Ych(i,r) represent the observed data and real process, respectively, for all

child nodes of parent node (i, r), i.e., Zch(i,r) =
(

Zch1(i,r), Zch2(i,r) · · · Zchmr (i,r)

)′
and Ych(i,r) =(

Ych1(i,r), Ych2(i,r) · · ·Ychmr (i,r)

)′
; mr is the number of child nodes at scale r; and vch(i,r) represents the

error of the observed data that obeys a Gaussian distribution vch(i,r) ∼ N
(

0, σ2Vch(i,r)

)
. In this study,

at the first scale, Y represents the simulated LAI from the MODIS LAI (MOD15A2) and LAI dynamic
model, and Z represents the 1000-m-resolution LAI data with error perturbation. At the third scale,
Y represents the LAI with 250-m resolution transmitted from the first scale; the LAI and reflectance
data are linked by the PROSAIL model represented by Fch(i,r), and the simulated reflectance data Z
combined with the 250-m-resolution MODIS reflectance data (MOD09Q1) participate in the HBN.

2. Process model

The process model describes the spatiotemporal distribution and variation of parameters, and it
defines the conditional dependency between real processes at different scales [46,62]. In this study, the
joint posterior probability inference of the real process was transformed into a certain-scale posterior
probability inference by defining the conditional dependency between different scales [63]. The process
model is defined by Equation (8):

Ych(i,r) = 1Y(i,r) + wch(i,r), (8)

where Ych(i,r) represents the real process of node ch(i, r), which obeys the Gaussian distribution

Ych(i,r) ∼ N
(

µch(i,r), Σch(i,r)

)
; Y(i,r) is the real process of node (i, r); and wch(i,r) represents the error of

the process model that obeys the Gaussian distribution wch(i,r) ∼ N
(

0, σ2Wch(i,r)

)
.

The process model in Equation (8) does not have one-to-one correspondence between Ych(i,r)

and
{

Y(i,r), wch(i,r)

}
. Here, Ych(i,r) is a vector of length mr, whereas

{
Y(i,r), wch(i,r)

}
has a total of

mr + 1 elements. However, by placing a single linear constraint on the error term wch(i,r), a one-to-one
correspondence is achieved [64]:

q′(i,r)wch(i,r) = 0. (9)

To satisfy Equation (9), we let Q(i,r) be any mr × (mr − 1) orthonormal matrix with columns that
span the space orthogonal to q(i,r) (q′(i,r)Q(i,r) = 0 and Q′(i,r)Q(i,r) = I). The matrix Q(i,r) can be taken as
the Helmert matrix orthogonal to qch(i,r) [65]. Given a Q(i,r) matrix, any wch(i,r) that satisfies Equation
(9) can be written as follows:

wch(i,r) = Q(i,r)w
∗
(i,r), (10)

and then Equation (8) can be written as follows:

Ych(i,r) = 1Y(i,r) + wch(i,r) = 1Y(i,r) + Q(i,r)w
∗
(i,r), (11)
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where w∗(i,r) obeys the Gaussian distribution w∗(i,r) ∼ N
(

0, σ2W∗(i,r)
)

, and Wch(i,r) = Q(i,r)W∗(i,r)Q
′
(i,r).

By defining q(i,r) = ach(i,r) =
(

ach1(i,r), ach2(i,r), · · · , achmr (i,r)

)
′, achj(i,r) represents the area of the j-th

child of node (i, r).

3. Parameter model

The parameter model defines the prior distribution of all parameters [32,62]. In this study, the
parameters in the data model and the process model included σ, Vch(i,r), and W∗(i,r). σ was a constant,
while Vch(i,r) and W∗(i,r) were parameters for Gaussian distribution of vch(i,r) in Equations (5), (7) and

w∗(i,r) in Equation (10). The value of σ was set as 10−2; the values of Vch(i,r) in Equations (5) and (7) were
calculated by covariance of MODIS LAI and reflectance data, respectively. W∗(i,r) was estimated based
on Q(i,r) in Equation (10) using RESL [36] and RESREL [66]; the reader is referred to the literature for
specific details [63,64].

3.3.2. Inference of the HBN

The inference of the HBN includes two steps: upward filtering and downward smoothing [67].
For upward filtering, observations information is transmitted from the finer-resolution with 250 m
(the bottom scale) to the coarser-resolution with 1000 m (the top scale) to predict and update the
probability distribution of nodes using finer-scale observations. Conversely, downward smoothing
transmits information from the coarser scale (1000 m) to the finer scale (250 m) to update the posterior
probability distributions of all node states according to all of the satellite observations [64,68]. After the
above two steps, each node integrates multiple observations with different spatial resolutions, and
the final posterior probability distribution is obtained; the reader is referred to the literature for
specific details [63].

1. Upward filtering

The initial probability distribution of the data at the top scale is defined as Y(i,0) ∼ N(µ0, Σ0).
Assuming that σ, Vch(i,r), and W∗(i,r) are known, the probability distribution of all nodes is Y(i,r) ∼

N
(

µ(i,r), Σ(i,r)

)
, where the mean µ(i,r) is the same for all nodes and the variance is Σ(i,r) =

W ′(i,r)Σpa(i,r)W(i,r). The steps of upward filtering are as follows [63]:
Step 1: Calculate the probability distribution of the data at the bottom scale
If there are no observed data at the bottom scale (at the R-1 scale):

Y(i,R−1)|Z(i,R−1) ∼ N
(

µ(i,R−1), Σ(i,R−1)

)
. (12)

If there are observed data at the bottom scale (at the R-1 scale):

Y(i,R−1)|Z(i,R−1) ∼ N
(

m(i,R−1), C(i,R−1)

)
, (13)

where Y and Z have different meanings at different resolutions and the specific contents are detailed
in the data model (as is the same below).

Step 2: Calculate the posterior probability distribution of all nodes

Y(i,r)|Z(i,r) ∼ N
(

m(i,r), C(i,r)

)
. (14)

Step 3: Predict probability distribution for parent node pa(i, r) whose child node is (i, r)

Ypa(i,r)|Z∗pa(i,r) ∼ N
(

apa(i,r), Rpa(i,r)

)
, (15)
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where Z∗pa(i,r) represents the observation data of the child nodes that do not contain observation data
of parent node pa(i, r).

Step 4: Predict probability distribution of observation of parent node pa(i, r) whose child node
is (i, r)

Zpa(i,r)|Z∗pa(i,r) ∼ N
(

fpa(i,r), Qpa(i,r)

)
, (16)

fpa(i,r) = Fpa(i,r)apa(i,r), (17)

Qpa(i,r) = Fpa(i,r)Rpa(i,r)F
′
pa(i,r), (18)

where Fpa(i,r) represents the PROSAIL model and the specific contents are detailed in the data model.
Step 5: Calculate the posterior probability distribution by correcting the prior probability of the

observation of parent node pa(i, r).
Supposing Ypa(i,r)|Zpa(i,r) ∼ N

(
mpa(i,r), Cpa(i,r)

)
, then:

If there are no observed data at node pa(i, r):

mpa(i,r) = fpa(i,r), (19)

Cpa(i,r) = Qpa(i,r). (20)

If there are observed data at node pa(i, r):

mpa(i,r) = apa(i,r) + Apa(i,r)epa(i,r), (21)

Cpa(i,r) = Rpa(i,r) − Apa(i,r)Qpa(i,r)A′pa(i,r), (22)

Apa(i,r) = zpa(i,r) − fpa(i,r), (23)

epa(i,r) = Rpa(i,r)F
′
pa(i,r)Q

−1
pa(i,r). (24)

Step 6: Repeat the above steps until at the top scale.

2. Downward smoothing

The posterior probability distribution at the top scale obtained from upward filtering is used as
the initial probability distribution for downward smoothing. The steps of downward smoothing are as
follows [63]:

Step 1: Obtain the probability distribution of the data at the top scale from upward filtering

Y(i,0)|Z(i,0) ∼ N
(

s(i,0), S(i,0)
)

, (25)

where Y and Z have different meanings at different resolutions and the specific contents are detailed
in the data model (as is the same below).

Step 2: Calculate the probability distribution of all nodes

Y(i,r)|Z(i,0) ∼ N
(

s(i,r), S(i,r)
)

. (26)

Step 3: Calculate the prior probability distribution of any node at any scale

Y(i,r)|Ypa(i,r),Z(i,r) ∼ N(k(i,r), K(i,r), (27)

k(i,r) = K(i,r)(C
−1
(i,r)m(i,r) + W−1

(i,r)1Ypa(i,r), − Σ−1
(i,r)µ(i,r)), (28)

K(i,r) = (C−1
(i,r) + W−1

(i,r) − Σ−1
(i,r)). (29)
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Step 4: Calculate the posterior probability distribution of node (i, r)

Y(i,r)|Z(i,0) ∼ N
(

s(i,r), S(i,r)
)

, (30)

s(i,r) = K(i,r)

[
C−1
(i,r)m(i,r) + W−1

(i,r)1spa(i,r)

]
, (31)

S(i,r) = K(i,r) + K(i,r)W
−1
(i,r)Spa(i,r)1

′W−1
(i,r)K(i,r). (32)

Step 5: Repeat the above steps until at the bottom scale.

3.3.3. MCMC Sampling

After obtaining the posterior probability distribution using the HBN algorithm, a sampling
method was used to obtain the LAI value according to the probability distribution [37,41]. Currently,
Markov Chain Monte Carlo (MCMC) sampling methods are widely used for such purposes [69,70]
and these methods include the Metropolis–Hastings, Gibbs, and Slice sampling [44,71]. In this study,
the Metropolis–Hastings method was used to sample the LAI time series data at different scales; the
reader is referred to the literature for specific details [72–74].

3.4. Accuracy Assessment

The determination coefficient (R2), root mean square error (RMSE), and absolute bias (aBIAS) were
used to evaluate the accuracy of the assimilated LAI. Generally, higher values of R2 and lower values
of both RMSE and aBIAS indicate better accuracy. The RMSE and aBIAS were calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1
|yi − y0|2i , (33)

aBIAS =
1
N

N

∑
i=1
|yi − y0|i, (34)

where N indicates the number of samples and it is 11 in this study because of 11 available observed
LAI; y0 indicate the values of observed LAI; and yi represent the values of assimilated LAI.

4. Results and Analysis

4.1. Validation of LAI Assimilation at 1000-m Resolution

The different LAI time series data of MBF at 1000-m resolution are shown in Figure 6. These LAI
data include the observed LAI (Field_LAI), original MODIS LAI (MODIS_LAI), smoothed MODIS LAI
by LACC (LACC_LAI), and assimilated LAI using the HBN (HBN_LAI_1000) in 2015.

The MODIS_LAI fluctuated considerably (0–6) during the growing season with frequent outliers
with low value and errors. Although the LACC_LAI was smoother than MODIS_LAI and the outliers
and fluctuations were obviously decreased, it was significantly different from the Field_LAI. The MBF
HBN_LAI_1000 showed a trend of slow growth from 3.3 to 4.3 in spring (March–May) before reaching
its annual maximum value of 5.6 in summer (June–August). It then decreased gradually from 4.3 to
3.2 in autumn (September–November) with the annual minimum value of 2.3 occurring in winter
(December–February). This trend corresponded with the actual trend of MBF LAI. The HBN_LAI_1000
was correlated significantly with the Field_LAI with an R2 value of 0.91 and RMSE value of 0.27.
However, it was slightly higher than the Field_LAI at DOY 200–320 with a range of overestimation
of 0.2–0.4. Analysis of the relationships of both the MODIS_LAI and the HBN_LAI_1000 with the
Field_LAI revealed the R2 of the HBN_LAI_1000 and Field_LAI was 2.7 times higher and the RMSE
was 87.8% lower compared with the MODIS_LAI and Field_LAI. This indicates the assimilated LAI
obtained by the HBN algorithm greatly improves the accuracy and reduces the error of the MODIS_LAI,
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producing better correspondence with the actual LAI data. Thus, the HBN_LAI_1000 can reflect the
dynamic changes of MBF LAI over a long time series.
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of samples (N) is 11).

4.2. Validation of LAI Assimilation at 500-m Resolution

The time series data of observed LAI (Field_LAI) and assimilated LAI (HBN_LAI_500) of MBF at
500-m resolution in 2015 are shown in Figure 7. Traces 1–4 are the LAI assimilation results of the four
pixels with 500-m resolution that correspond to one pixel at 1000-m resolution.

The HBN_LAI_500 of the four pixels showed a trend of growth in spring (3.3–4.1, 3.5–4.0, 3.4–4.2,
3.3–4.2) before reaching maximum values in summer (6.1, 6.3, 6.3, 6.1), decreasing in autumn (4.9–3.2,
4.5–3.2, 4.6–3.2, 4.5–3.2), and reaching minimum values in winter (2.4, 2.5, 2.4, 2.4). This trend,
which corresponded with the actual trend of LAI, was consistent with the HBN_LAI_1000 in MBF;
however, compared with the HBN_LAI_1000, more fluctuations were evident in the HBN_LAI_500.
The HBN_LAI_500 of the four pixels correlated significantly with the Field_LAI; the R2 values for
pixels 1–4 were 0.89, 0.90, 0.93, and 0.87, respectively with RMSE values of < 0.50 and aBIAS values of
< 0.40. However, the HBN_LAI_500 was obviously overestimated in comparison with the Field_LAI
during the growing period (DOY 200–250) with overestimations of 1.2, 1.0, 1.1, and 0.8 for pixels 1–4,
respectively, similar to the HBN_LAI_1000. Although the accuracy of the MBF HBN_LAI_500 is shown
slightly lower than the HBN_LAI_1000, it still has reasonably high accuracy and it corresponds with
the actual LAI data.

4.3. Validation of LAI Assimilation at 250-m Resolution

The time series data of observed LAI (Field_LAI) and assimilated LAI (HBN_LAI_250) of MBF at
250-m resolution in 2015, and the correlations between them, are shown in Figures 8 and 9. Traces 1–16
are the LAI assimilation results of the 16 pixels with 250-m resolution that correspond to one pixel at
1000-m resolution.

The HBN_LAI_250 of the 16 pixels was consistent with the actual trend of LAI, although
considerable fluctuation was evident, especially at DOY 0–200. During the growing period in
summer (DOY 200–250), the HBN_LAI_250 of eight pixels (4, 6, 7, 8, 9, 10, 11, and 14) were obviously
overestimated in comparison with the Field_LAI with a range of overestimation of 0.4–1.0. For the
HBN_LAI_250 and Field_LAI (Figure 9), the R2 values were >0.80 (the R2 value for the fourth pixel was
0.92), RMSE values were <0.50, and aBIAS values were <0.40. This indicates that the HBN_LAI_250
for MBF has high accuracy and it is an effective assimilation result of multiresolution LAI using
HBN algorithm.
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Figure 7. Time series of Field_LAI and HBN_LAI_500 for four pixels of MBF at 500-m resolution in
2015; and comparison between Field_LAI and HBN_LAI_500 of four pixels (N = 11).
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Figure 9. Comparison between the Field_LAI and HBN_LAI_250 of eight pixels (N = 11).
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5. Discussion and Conclusions

Several researches had achieved the acquisition of multiresolution LAI using multiresolution tree
combined with a Kalman filter [28,29], and had validated the precision comparing with high-resolution
LAI [30]. This study developed an HBN algorithm coupled with a LAI dynamic model and the
PROSAIL model to assimilate LAI data with different resolutions (1000, 500, and 250 m) of MBF. The
results showed that the multiresolution HBN_LAI corresponded with the actual trend of growth of
the MBF and that it was correlated significantly with the Field_LAI (R2 values reached >0.80). The
R2 value between the HBN_LAI and Field_LAI at 1000-m resolution was 0.91 and the RMSE value
was 0.27; at 500-m resolution, the averages of the R2 values and the RMSE values were 0.90 and 0.42;
and at 250-m resolution, the averages of the R2 values and the RMSE values were 0.86 and 0.35. The
HBN_LAI at the coarsest scale (1000-m resolution) provided better accuracy, which was consistent
with the finding in literature [30]. Compared with the MODIS_LAI, the R2 value of the HBN_LAI_1000
increased by 2.7 times, while the RMSE value decreased by 87.8%. Compared with other researches
on improving the precision of MODIS LAI products [7,18,23], this study had achieved better results.
Therefore, the HBN algorithm significantly improved the accuracy and reduced the error of the MODIS
LAI products, and accurate LAI at different scales could be obtained.

Analysis of the results revealed that the HBN_LAI_1000, HBN_LAI_500, and HBN_LAI_250
obviously overestimated with 7.5%, 20.0%, and 11.3%, respectively, at DOY 217. This overestimation
can be explained in terms of the following three aspects.

First, differences between MODIS reflectance and the reflectance simulated by the PROSAIL
model will affect the assimilation results [18,22]. As there are no MODIS reflectance data available
at 1000- and 500-m resolution, the reflectance at 1000- and 500-m resolution is transmitted from the
MODIS reflectance at the bottom scale of 250-m resolution, which is different from the simulated
reflectance. This will have an impact on the HBN_LAI_1000 and HBN_LAI_500 and overestimation
will occur. At 250-m resolution, the difference between MODIS reflectance and simulated reflectance
transmitted by the process model has an influence on the HBN_LAI_250. Figure 10 shows the RED
and NIR bands of MODIS reflectance and simulated reflectance of 16 pixels at 250-m resolution. The
MODIS reflectance data of the 16 pixels has considerable fluctuation and some outliers (hollow circles
in Figure 10), while the reflectance simulated by the PROSAIL model is more concentrated and has
less fluctuation than MODIS reflectance. In the RED band, the mean value of MODIS reflectance is
higher than the simulated reflectance. The maximum MODIS reflectance is up to 1.7 times that of
the simulated reflectance. In contrast, in the NIR band, the mean value of simulated reflectance is
higher than MODIS reflectance. The minimum MODIS reflectance is 67% of the simulated reflectance.
In the hierarchical Bayesian inference, the LAI with 500- and 250-m resolution is inferred from the
1000-m-resolution LAI and the parameter wch(i,r) in process model, causing an overestimation of LAI
at the 500- and 250-m scale. Furthermore, there is considerable difference between the simulated
reflectance and MODIS reflectance, and the HBN_LAI_250 is overestimated. Yang et al. [75], Li et
al. [18] and Li et al. [22] have all highlighted that error between the simulated reflectance and MODIS
reflectance is one of the primary reasons for inaccuracy in LAI estimations.

Second, the uncertainty of the estimated parameter wch(i,r) in the process model will also cause
errors in the assimilation results. In the HBN algorithm, RESL and RESREL used to estimate parameter
W∗(i,r) by using MODIS reflectance data, and then parameter wch(i,r) was obtained using Equation
(6). In the hierarchical Bayesian inference, the LAI with 500- and 250-m resolution is inferred
from the 1000-m-resolution LAI and parameter wch(i,r) in the process model, uncertainty in the
estimated parameter wch(i,r) causes errors of LAI at 500- and 250-m resolution, which in turn affects
the assimilation results. In this study, 100 iterations of the HBN were performed to reduce the errors.
Figure 11 shows the mean value and standard deviation (SD) of parameter wch(i,r) for MBF at the
1000–500-m and 500–250-m scales, respectively. The mean value of wch(i,r) is maintained between
−0.10 and 0.10 at the 1000–500-m scale, except for some nodes with outliers. However, at DOY 230–290,
wch(i,r) is slightly larger than that at other periods, and the SD of wch(i,r) is very large, indicating that
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the uncertainty is substantial during this period. The SD for the first, second, and third child node
is 6, 5, and 10 times greater, respectively, than the mean value. At the 500–250-m scale, considerable
fluctuations are evident in both wch(i,r) and its SD and the mean value of wch(i,r) is maintained between
−0.20 and 0.20. Similar to the 1000–500-m scale, wch(i,r) at DOY 230–290 is larger than that at other
periods with greater uncertainty, which could be related to the overestimation of the HBN_LAI for
MBF at DOY 217.
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Finally, the overestimation of the HBN_LAI_500 for MBF is most serious because of the lack of
original observation data at 500-m resolution. The inference of the HBN and update of the LAI posterior
probability at 500-m scale rely on MODIS LAI products with 1000-m resolution and MODIS reflectance
data with 250-m resolution, in which the bidirectional accumulation of errors is unavoidable. Therefore,
overestimation is more serious in the HBN_LAI_500. To avoid this phenomenon, the application of
multisource remote sensing data, e.g., Landsat data, could be considered to provide multiresolution
data for the HBN assimilation. Moreover, the complex structure could be taken into account to flexibly
adjust the relationship between parent–child nodes in the HBN and to describe irregular shapes of
geographical regions [30].
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In this study, the HBN algorithm was developed to obtain high precision LAI time series data
from MODIS data at different spatial resolutions (1000, 500, and 250 m). The results demonstrated that
the assimilated LAI values at each spatial resolution were in good agreement with the actual trend of
MBF LAI and the assimilated LAI at the coarsest scale (1000 m) provided best accuracy. The accuracy
of assimilated LAI was significantly improved compared with MODIS LAI products. Therefore, the
HBN algorithm applied in this study can effectively obtain highly accurate multiresolution LAI time
series data for bamboo forest. This study achieved multiresolution LAI time series data using HBN
algorithm at MBF flux measurement site. In the near future, we will extend the methodology to obtain
multiscale LAI data on the regional scale.

Author Contributions: Conception, L.X., X.L., H.D. and G.Z.; Methodology, L.X. and X.L.; Software, L.X., X.L.
and F.M.; Validation, L.X.; Formal Analysis, F.M., N.H., X.X. and W.F.; Investigation, L.X., T.L. and D.Z.; Data
Curation, L.X., J.Z., L.D. and M.Z.; Writing-Original Draft Preparation, L.X.; Writing-Review & Editing, L.X., X.L.,
H.D. and G.Z.; Administration, H.D. and G.Z.; Funding Acquisition, H.D. and G.Z.

Funding: This study was undertaken with the support of the National Natural Science Foundation (No. 31670644,
U1809208), the State Key Laboratory of Subtropical Silviculture Foundation (No. zy20180201), the Joint Research
fund of Department of Forestry of Zhejiang Province and Chinese Academy of Forestry (2017SY04), Zhejiang
Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization (No. S2017011).

Acknowledgments: The authors would like to thank the National Aeronautics and Space Administration (NASA)
for providing open-access data. Additionally, the authors would like to thank anonymous reviewers for their
helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, J.; Black, T.A. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429.
[CrossRef]

2. Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.;
Mooney, H.A.; Nobre, C.A. Modeling the Exchanges of Energy, Water, and Carbon between Continents and
the Atmosphere. Science 1997, 275, 502–509. [CrossRef] [PubMed]

3. Pasolli, L.; Asam, S.; Castelli, M.; Bruzzone, L.; Wohlfahrt, G.; Zebisch, M.; Notarnicola, C. Retrieval of Leaf
Area Index in mountain grasslands in the Alps from MODIS satellite imagery. Remote Sens. Environ. 2015,
165, 159–174. [CrossRef]

4. Kauwe, M.G.D.; Disney, M.I.; Quaife, T.; Lewis, P.; Williams, M. An assessment of the MODIS collection 5
leaf area index product for a region of mixed coniferous forest. Remote Sens. Environ. 2011, 115, 767–780.
[CrossRef]

5. Jonckheere, I.; Fleck, S.; Nackaerts, K.; Muys, B.; Coppin, P.; Weiss, M.; Baret, F. Review of methods for in situ
leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol.
2004, 121, 19–35. [CrossRef]

6. Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter
wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J.
Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [CrossRef]

7. Li, X.; Xiao, Z.; Wang, J.; Ying, Q.U.; Jin, H. Dual Ensemble Kalman Filter assimilation method for estimating
time series LAI. J. Remote Sens. 2014, 18, 27–44. [CrossRef]

8. Gray, J.; Song, C. Mapping leaf area index using spatial, spectral, and temporal information from multiple
sensors. Remote Sens. Environ. 2012, 119, 173–183. [CrossRef]

9. Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.;
Smith, G.R. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data.
Remote Sens. Environ. 2002, 83, 214–231. [CrossRef]

10. Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.
LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the
algorithm. Remote Sens. Environ. 2007, 110, 275–286. [CrossRef]

11. Deng, F.; Chen, J.M.; Plummer, S.; Chen, M.; Pisek, J. Algorithm for global leaf area index retrieval using
satellite imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2219–2229. [CrossRef]

http://dx.doi.org/10.1111/j.1365-3040.1992.tb00992.x
http://dx.doi.org/10.1126/science.275.5299.502
http://www.ncbi.nlm.nih.gov/pubmed/8999789
http://dx.doi.org/10.1016/j.rse.2015.04.027
http://dx.doi.org/10.1016/j.rse.2010.11.004
http://dx.doi.org/10.1016/j.agrformet.2003.08.027
http://dx.doi.org/10.1016/j.jag.2016.02.001
http://dx.doi.org/10.11834/jrs.20133036
http://dx.doi.org/10.1016/j.rse.2011.12.016
http://dx.doi.org/10.1016/S0034-4257(02)00074-3
http://dx.doi.org/10.1016/j.rse.2007.02.018
http://dx.doi.org/10.1109/TGRS.2006.872100


Remote Sens. 2019, 11, 56 19 of 21

12. Masson, V.; Champeaux, J.L.; Chauvin, F.; Meriguet, C.; Lacaze, R. A Global Database of Land Surface
Parameters at 1-km Resolution in Meteorological and Climate Models. J. Clim. 2003, 16, 1231–1281. [CrossRef]

13. Gao, F.; Morisette, J.T.; Wolfe, R.E.; Ederer, G.; Pedelty, J.; Masuoka, E.; Myneni, R.; Tan, B.; Nightingale, J. An
Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series. IEEE Geosci. Remote
Sens. Lett. 2008, 5, 60–64. [CrossRef]

14. Fang, H.; Liang, S.; Townshend, J.R.; Dickinson, R.E. Spatially and temporally continuous LAI data sets
based on an integrated filtering method: Examples from North America. Remote Sens. Environ. 2013, 112,
75–93. [CrossRef]

15. Borak, J.S.; Jasinski, M.F. Effective interpolation of incomplete satellite-derived leaf-area index time series for
the continental United States. Agric. For. Meteorol. 2008, 149, 320–332. [CrossRef]

16. Ma, J.; Qin, S. Recent Advances and Development of Data Assimilation Algorithms. Adv. Earth Sci. 2012, 27,
747–757. [CrossRef]

17. Mclaughlin, D.; Miller, C.T.; Parlange, M.B.; Hassanizadeh, S.M. An integrated approach to hydrologic data
assimilation: Interpolation, smoothing, and filtering. Adv. Water Resour. 2002, 25, 1275–1286. [CrossRef]

18. Li, X.; Mao, F.; Du, H.; Zhou, G.; Xu, X.; Han, N.; Sun, S.; Gao, G.; Chen, L. Assimilating leaf area index
of three typical types of subtropical forest in China from MODIS time series data based on the integrated
ensemble Kalman filter and PROSAIL model. ISPRS J. Photogramm. Remote Sens. 2017, 126, 68–78. [CrossRef]

19. Zhao, Y.; Chen, S.; Shen, S. Assimilating remote sensing information with crop model using Ensemble
Kalman Filter for improving LAI monitoring and yield estimation. Ecol. Model. 2013, 270, 30–42. [CrossRef]

20. Mao, F.; Li, X.; Du, H.; Zhou, G.; Han, N.; Xu, X.; Liu, Y.; Chen, L.; Cui, L. Comparison of Two Data
Assimilation Methods for Improving MODIS LAI Time Series for Bamboo Forests. Remote Sens. 2017, 9, 401.
[CrossRef]

21. Li, H.; Chen, Z.; Wu, W.; Jiang, Z.; Liu, B.; Hasi, T. Crop model data assimilation with particle filter for yield
prediction using leaf area index of different temporal scales. In Proceedings of the Fourth International
Conference on Agro-Geoinformatics, Istanbul, Turkey, 20–24 July 2015; pp. 401–406.

22. Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L. Estimating bamboo
forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning
algorithms. Agric. For. Meteorol. 2018, 256–257, 445–457. [CrossRef]

23. Li, X.; Mao, F.; Du, H.; Zhou, G.; Xu, X.; Li, P.; Liu, Y.; Cui, L. Simulating of carbon fluxes in bamboo forest
ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter. Chin. J.
Appl. Ecol. 2016. [CrossRef]

24. Li, X.; Lu, H.; Yu, L.; Yang, K. Comparison of the Spatial Characteristics of Four Remotely Sensed Leaf
Area Index Products over China: Direct Validation and Relative Uncertainties. Remote Sens. 2018, 10, 148.
[CrossRef]

25. Yuan, H.; Dai, Y.; Xiao, Z.; Ji, D.; Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land
surface and climate modelling. Remote Sens. Environ. 2011, 115, 1171–1187. [CrossRef]

26. Jinsheng, H. Carbon cycling of Chinese forests: From carbon storage, dynamics to models. Sci. China Life Sci.
2012, 55, 188–190. [CrossRef]

27. Cao, M.; Yu, G.; Liu, J.; Li, K. Multi-scale observation and cross-scale mechanistic modeling on terrestrial
ecosystem carbon cycle. Sci. China 2005, 48, 17–32. [CrossRef]

28. Xiao, Z.; Wang, J.; Wan, H. Multiscale approach for fusing leaf area index estimates from multiple sensors.
Proc. SPIE 2007, 6790, 679013. [CrossRef]

29. Wang, D.; Liang, S. Using multiresolution tree to integrate MODIS and MISR-L3 LAI products. In Proceedings
of the IEEE International Geoscience & Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010;
Volume 38, pp. 1027–1030. [CrossRef]

30. Jiang, J.; Xiao, Z.; Wang, J.; Song, J. Multiscale Estimation of Leaf Area Index from Satellite Observations
Based on an Ensemble Multiscale Filter. Remote Sens. 2016, 8, 229. [CrossRef]

31. Smith, A.F.M.; Berliner, L.M.; Royle, J.A.; Wikle, C.K.; Milliff, R.F. Bayesian Methods in the Atmospheric Sciences;
Oxford University Press: Oxford, UK, 1998.

32. Wikle, C.K.; Anderson, C.J. Climatological analysis of tornado report counts using a hierarchical Bayesian
spatiotemporal model. J. Geophys. Res. Atmos. 2003, 108. [CrossRef]

33. Wikle, C.K.; Berliner, L.M.; Cressie, N. Hierarchical Bayesian space-time models. Environ. Ecol. Stat. 1998, 5,
117–154. [CrossRef]

http://dx.doi.org/10.1175/1520-0442-16.9.1261
http://dx.doi.org/10.1109/LGRS.2007.907971
http://dx.doi.org/10.1016/j.rse.2006.07.026
http://dx.doi.org/10.1016/j.agrformet.2008.08.017
http://dx.doi.org/10.1007/s11783-011-0280-z
http://dx.doi.org/10.1016/S0309-1708(02)00055-6
http://dx.doi.org/10.1016/j.isprsjprs.2017.02.002
http://dx.doi.org/10.1016/j.ecolmodel.2013.08.016
http://dx.doi.org/10.3390/rs9050401
http://dx.doi.org/10.1016/j.agrformet.2018.04.002
http://dx.doi.org/10.13287/j.1001-9332.201612.005
http://dx.doi.org/10.3390/rs10010148
http://dx.doi.org/10.1016/j.rse.2011.01.001
http://dx.doi.org/10.1007/s11427-012-4285-z
http://dx.doi.org/10.1360/05zd0002
http://dx.doi.org/10.1117/12.748313
http://dx.doi.org/10.1109/IGARSS.2010.5650491
http://dx.doi.org/10.3390/rs8030229
http://dx.doi.org/10.1029/2002JD002806
http://dx.doi.org/10.1023/A:1009662704779


Remote Sens. 2019, 11, 56 20 of 21

34. Berliner, L.M. Hierarchical Bayesian Time Series Models; Springer: Dordrecht, The Netherlands, 1996; pp. 15–22.
35. Wikle, C.K.; Berliner, M.L. Combining Information Across Spatial Scales. Technometrics 2005, 47, 80–91.

[CrossRef]
36. Kolaczyk, E.D.; Huang, H. Multiscale Statistical Models for Hierarchical Spatial Aggregation. Geogr. Anal.

2010, 33, 95–118. [CrossRef]
37. Berrocal, V.J.; Gelfand, A.E.; Holland, D.M. A Spatio-Temporal Downscaler for Output From Numerical

Models. J. Agric. Biol. Environ. Stat. 2010, 15, 176–197. [CrossRef] [PubMed]
38. Sahu, S.K.; Yip, S.; Holland, D.M. Improved space–time forecasting of next day ozone concentrations in the

eastern US. Atmos. Environ. 2009, 43, 494–501. [CrossRef]
39. Sahu, S.K.; Gelfand, A.E.; Holland, D.M. High Resolution Space-Time Ozone Modeling for Assessing Trends.

J. Am. Stat. Assoc. 2007, 102, 1221. [CrossRef] [PubMed]
40. Berliner, L.M.; Milliff, R.F.; Wikle, C.K. Bayesian hierarchical modeling of air-sea interaction. J. Geophys. Res.

Oceans 2003, 108, 303–307. [CrossRef]
41. Mcmillan, N.J.; Holland, D.M.; Morara, M.; Feng, J. Combining numerical model output and particulate data

using Bayesian space-time modeling. Environmetrics 2010, 21, 48–65. [CrossRef]
42. Fuentes, M.; Raftery, A.E. Model evaluation and spatial interpolation by Bayesian combination of

observations with outputs from numerical models. Biometrics 2005, 61, 36. [CrossRef]
43. Cocchi, D.; Greco, F.; Trivisano, C. Hierarchical space-time modelling of PM pollution. Atmos. Environ. 2007,

41, 532–542. [CrossRef]
44. Gelfand, A.E.; Sahu, S.K. Combining monitoring data and computer model output in assessing environmental

exposure. In Oxford Handbook of Applied Bayesian Analysis; Oxford University Press: Oxford, UK, 2010;
pp. 482–510.

45. Qin, S.; Ma, J.; Wang, X. Construction and Experiment of Hierarchical Bayesian Network in Data Assimilation.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1036–1047. [CrossRef]

46. Qin, S.; Ma, J.; Wang, X. Development of a hierarchical Bayesian network algorithm for land surface data
assimilation. Int. J. Remote Sens. 2013, 34, 1905–1927. [CrossRef]

47. Du, H.; Zhou, G.; Xu, X. Quantitative Methods Using Remote Sensing in Estimating Biomass and Carbon Storage
Bamboo Forest; Science Press: Beijing, China, 2012.

48. Zhou, G.; Jiang, P.; Du, H.; Shi, Y. Technology for the Measurement and Enhancement Carbon Sinks in Bamboo
Forest Ecosystems; Science Press: Beijing, China, 2017.

49. Han, N.; Du, H.; Zhou, G.; Xu, X.; Cui, R.; Gu, C. Spatiotemporal heterogeneity of Moso bamboo aboveground
carbon storage with Landsat Thematic Mapper images: A case study from Anji County, China. Int. J. Remote
Sens. 2013, 34, 4917–4932. [CrossRef]

50. Du, H.; Zhou, G.; Ge, H.; Fan, W.; Xu, X.; Fan, W.; Shi, Y. Satellite-based carbon stock estimation for bamboo
forest with a non-linear partial least square regression technique. Int. J. Remote Sens. 2012, 33, 1917–1933.
[CrossRef]

51. Zhou, G.; Xu, X.; Du, H.; Ge, H.; Shi, Y.; Zhou, Y. Estimating Aboveground Carbon of Moso Bamboo Forests
Using the k Nearest Neighbors Technique and Satellite Imagery. Photogramm. Eng. Remote Sens. 2011, 77,
1123–1131. [CrossRef]

52. Chen, J.M.; Deng, F.; Chen, M. Locally adjusted cubic-spline capping for reconstructing seasonal trajectories
of a satellite-derived surface parameter. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2230–2238. [CrossRef]

53. Xiao, Z.; Liang, S.; Wang, J.; Jiang, B.; Li, X. Real-time retrieval of Leaf Area Index from MODIS time series
data. Remote Sens. Environ. 2011, 115, 97–106. [CrossRef]

54. Li, X. Assimilation of MODIS LAI Time Series in Bamboo Forest and Its Application in Carbon Flux Simulation;
Zhejiang A&F University: Hangzhou, China, 2017.

55. Sun, S.; Du, H.; Li, P.; Zhou, G.; Xu, X.; Gao, G.; Li, X. Retrieval of leaf net photosynthetic rate of moso
bamboo forests using hyperspectral remote sen-sing based on wavelet transform. Chin. J. Appl. Ecol. 2016,
27, 49–58. [CrossRef]

56. Lu, G.; Du, H.; Zhou, G.; Lv, Y.; Gu, C.; Shang, Z. Dynamic change of Phyllostachys edulis forest canopy
parameters and their relationships with photosynthetic active radiation in the bamboo shooting growth
phase. J. Zhejiang A F Univ. 2012, 29, 844–850. [CrossRef]

57. Dickinson, R.E.; Tian, Y.; Liu, Q.; Zhou, L. Dynamics of leaf area for climate and weather models. J. Geophys.
Res. Atmos. 2008, 113. [CrossRef]

http://dx.doi.org/10.1198/004017004000000572
http://dx.doi.org/10.1111/j.1538-4632.2001.tb00439.x
http://dx.doi.org/10.1007/s13253-009-0004-z
http://www.ncbi.nlm.nih.gov/pubmed/21113385
http://dx.doi.org/10.1016/j.atmosenv.2008.10.028
http://dx.doi.org/10.1198/016214507000000031
http://www.ncbi.nlm.nih.gov/pubmed/19759840
http://dx.doi.org/10.1029/2002JC001413
http://dx.doi.org/10.1002/env.984
http://dx.doi.org/10.1111/j.0006-341X.2005.030821.x
http://dx.doi.org/10.1016/j.atmosenv.2006.08.032
http://dx.doi.org/10.1109/JSTARS.2012.2217316
http://dx.doi.org/10.1080/01431161.2012.727495
http://dx.doi.org/10.1080/01431161.2013.782115
http://dx.doi.org/10.1080/01431161.2011.603379
http://dx.doi.org/10.14358/PERS.77.11.1123
http://dx.doi.org/10.1109/TGRS.2006.872089
http://dx.doi.org/10.1016/j.rse.2010.08.009
http://dx.doi.org/10.13287/j.1001-9332.201601.020
http://dx.doi.org/10.1007/s11783-011-0280-z
http://dx.doi.org/10.1029/2007JD008934


Remote Sens. 2019, 11, 56 21 of 21

58. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarcotejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L.;
Ustin, S.L.; Schaepman, M.E. PROSPECT+SAIL models: A review of use for vegetation characterization.
Remote Sens. Environ. 2009, 113, S56–S66. [CrossRef]

59. Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; Maire, G.L.;
Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic
pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [CrossRef]

60. Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate
hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109,
166–182. [CrossRef]

61. Gu, C.; Du, H.; Zhou, G.; Han, N.; Xu, X.; Zhao, X.; Sun, X. Retrieval of leaf area index of moso bamboo
forest with Landsat Thematic Mapper image based on PROSAIL canopy radiative transfer model. Chin. J.
Appl. Ecol. 2013, 24, 2248–2256. [CrossRef]

62. Wikle, C.K.; Berliner, L.M. A Bayesian tutorial for data assimilation. Phys. D Nonlinear Phenom. 2007, 230,
1–16. [CrossRef]

63. Ma, J. Data Assimilation Algorithm Development and Experiment; Science Press: Beijing, China, 2013.
64. Gybels, J.; Martin, P. Multi-Resolution Statistical Modeling in Space and Time with Application to Remote Sensing

of the Environment; Ohio State University: Columbus, OH, USA, 2003.
65. Harville, D.A. Matrix Algebra From a Statistician’s Perspective; Springer: New York, NY, USA, 1997.
66. Mcculloch, C.E.; Searle, S.R. Generalized, Linear, and Mixed Models; Wiley: Hoboken, NJ, USA, 2008.
67. Ferreira, M.A.R.; Lee, H.K.H. Multiscale Modeling: A Bayesian Perspective; Springer: Berlin/Heidelberg,

Germany, 2007.
68. Huang, H.C.; Cressie, N.; Gabrosek, J. Fast, Resolution-Consistent Spatial Prediction of Global Processes

From Satellite Data. J. Comput. Graph. Stat. 2002. [CrossRef]
69. Geweke, J. Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica 1989, 57,

1317–1339. [CrossRef]
70. Hastings, W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika

1970, 57, 97–109. [CrossRef]
71. Smith, A.F.M.; Roberts, G.O. Bayesian Computation Via the Gibbs Sampler and Related Markov Chain

Monte Carlo Methods. J. R. Stat. Soc. 1993, 55, 3–23. [CrossRef]
72. Flötteröd, G.; Bierlaire, M. Metropolis–Hastings sampling of paths. Transp. Res. Part B 2013, 48, 53–66.

[CrossRef]
73. Geweke, J.; Tanizaki, H. Bayesian estimation of state-space models using the Metropolis–Hastings algorithm

within Gibbs sampling. Comput. Stat. Data Anal. 2001, 37, 151–170. [CrossRef]
74. Chib, S.; Greenberg, E. Understanding the Metropolis-Hastings Algorithm. Am. Stat. 1995, 49, 327–335.

[CrossRef]
75. Yang, W.; Tan, B.; Huang, D.; Rautiainen, M.; Shabanov, N.V.; Wang, Y.; Privette, J.L.; Huemmrich, K.F.;

Fensholt, R.; Sandholt, I. MODIS leaf area index products: From validation to algorithm improvement.
IEEE Trans. Geosci. Remote Sens. 2006, 44, 1885–1898. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.rse.2008.01.026
http://dx.doi.org/10.1016/j.rse.2008.02.012
http://dx.doi.org/10.1016/j.rse.2006.12.013
http://dx.doi.org/10.13287/j.1001-9332.2013.0383
http://dx.doi.org/10.1016/j.physd.2006.09.017
http://dx.doi.org/10.1198/106186002317375622
http://dx.doi.org/10.2307/1913710
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1111/j.2517-6161.1993.tb01466.x
http://dx.doi.org/10.1016/j.trb.2012.11.002
http://dx.doi.org/10.1016/S0167-9473(01)00009-3
http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1109/TGRS.2006.871215
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Datasets 
	Study Area 
	Datasets and Processing 
	Processing of Satellite Data 
	Processing of Observed Data 


	Study Methodology 
	LAI Dynamic Model 
	PROSAIL Model 
	Hierarchical Bayesian Network Algorithm 
	Construction of the HBN 
	Inference of the HBN 
	MCMC Sampling 

	Accuracy Assessment 

	Results and Analysis 
	Validation of LAI Assimilation at 1000-m Resolution 
	Validation of LAI Assimilation at 500-m Resolution 
	Validation of LAI Assimilation at 250-m Resolution 

	Discussion and Conclusions 
	References

