
remote sensing  

Article

Synergistic Effect of Multi-Sensor Data
on the Detection of Margalefidinium polykrikoides
in the South Sea of Korea

Jisun Shin 1,2, Keunyong Kim 1, Young Baek Son 3 and Joo-Hyung Ryu 1,2,*
1 Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology (KIOST), 385 Haeyang-ro,

Yeongdo-gu, Busan 49111, Korea; sjs1008@kiost.ac.kr (J.S.); keunyong@kiost.ac.kr (K.K.)
2 Ocean Science and Technology School, KIOST-Korea Maritime and Ocean University (KMOU),

727 Taejong-ro, Yeongdo-gu, Busan 49112, Korea
3 Jeju Marine Research Section, Korea Institute of Ocean Science and Technology (KIOST), 2670 Gujwa-eup,

Jeju-shi 63349, Korea; sonyb@kiost.ac.kr
* Correspondence: jhryu@kiost.ac.kr; Tel.: +82-51-664-3160

Received: 31 October 2018; Accepted: 21 December 2018; Published: 26 December 2018
����������
�������

Abstract: Since 1995, Margalefidinium polykrikoides blooms have occurred frequently in the waters
around the Korean peninsula. In the South Sea of Korea (SSK), large-scale M. polykrikoides blooms form
offshore and are often transported to the coast, where they gradually accumulate. The objective of
this study was to investigate the synergistic effect of multi-sensor data for identifying M. polykrikoides
blooms in the SSK from July 2018 to August 2018. We found that the Spectral Shape values
calculated from in situ spectra and M. polykrikoides cell abundances in the SSK were highly correlated.
Comparing red tide spectra from near-coincident multi-sensor data, remote-sensing reflectance
(Rrs) spectra were similar to the spectra of in situ measurements from blue to green wavelengths.
Rrs true-color composite images and Spectral Shape images of each sensor showed a clear pattern
of M. polykrikoides patches, although there were some limitations for detecting red tide patches in
coastal areas. We confirmed the complementarity of red tide data extracted from each sensor using
an integrated red tide map. Statistical assessment showed that the sensitivity of red tide detection
increased when multi-sensor data were used rather than single-sensor data. These results provide
useful information for the application of multi-sensor for red tide detection.

Keywords: harmful algal blooms; Margalefidinium polykrikoides; the South Sea of Korea; multi-sensor;
Geostationary Ocean Color Imager; Sentinel; Landsat

1. Introduction

Harmful algal blooms (HABs), wherein accumulation of plankton causes discoloration of water,
are increasing worldwide. They often cause high mortality of fish and shellfish, and by extension
great economic losses in the aquaculture and tourism industries [1,2]. HABs in coastal regions cause
major damage to aquaculture farms and have harmful effects on human health [3,4]. In Korean waters,
Margalefidinium (previous called as Cochlodinium) polykrikoides [5] blooms have gradually become larger,
wider, and more frequent since 1995. This species first bloomed in the South Sea of Korea (SSK) and
has expanded to the West Sea (Yellow Sea) and East Sea (Sea of Japan) [6]. In the SSK, large-scale
M. polykrikoides blooms that form offshore are often transported to coastal waters and gradually
accumulate there [7]. This movement is caused by physical factors such as tidal currents, typhoons,
wind, and the biological characteristics of red tide species. Thus, accurate and timely surveillance of
M. polykrikoides blooms in the SSK, including both coastal and offshore waters, is needed to minimize
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the damage caused by such blooms. It is also necessary to establish an early warning system for
M. polykrikoides blooms.

Red tide monitoring in Korean coastal waters has been conducted by the National Institute of
Fisheries Science (NIFS) since 1972. Such monitoring has been carried out regularly at monitoring
stations by national institutes such as NIFS, local governments, and the national maritime police
agency since 1996 [6]. NIFS provides all types of available data, including biological, hydrological,
meteorological, and remote sensing data, in published daily red tide reports [8]. Daily red tide reports
include the causative organisms, cell abundance, and affected and warning areas. These reports also
include predictions for the development and spread of on-going red tides. NIFS has adopted a red
tide warning system for fishermen and aquaculturists consisting of three levels: red tide emergence
attention, red tide attention, and red tide alert. The new red tide emergence attention notice was
introduced in 2015, and is issued when the cell density of M. polykrikoides exceeds 10 cells mL−1.
In addition, attention and alert notices are issued when the cell density exceeds 100 and 1000 cells
mL−1, respectively [9]. However, because this information is obtained mainly through field sampling
at discrete locations using in situ observations, the red tide areas across broader geographic scales
are becoming more difficult to manage. In addition, there are limitations to monitoring in terms of
manpower, cost, and time [10]. For this reason, limited information is available on the presence or
absence of red tide patches and the spatial distribution of cell concentrations. M. polykrikoides blooms
occur not only in nearshore areas, but also in offshore waters Thus, it is necessary to monitor all waters
of the SSK. Remote sensing data are capable of wide area detection and thus may be effectively applied
for quick and accurate monitoring when a red tide occurs.

Satellite-based algorithms have been developed for identifying and monitoring HABs [10–13].
Red tide detection from satellite data began with the use of chlorophyll concentration (CHL) data
gathered by several ocean color sensors, including the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) and MODerate resolution Imaging Spectroradiometer (MODIS) [3,14,15]. However,
this method has several limitations, such as uncertainties in atmospheric correction, interference
from various colored compounds, and the presence of other types of phytoplankton. When CHL
of non-red tide species is very similar to that of red tide species, it is difficult to distinguish the
red tide species. In addition, some red tide species have weak chlorophyll signals. Moreover,
seawater signal in coastal areas is complex due to various constituents such as suspended particulate
matter (SPM) and colored dissolved organic matter (CDOM) that cause the scattering and absorption.
These spectral characteristics cause large overestimation of CHL in the SSK [16,17]. The fluorescence
line height (nFLH) data and enhanced Red-Green-Blue (ERGB) images derived from MODIS or
Medium Resolution Imaging Spectrometer (MERIS) have been used in place of CHL data for red tide
detection [18–20]. However, distinguishing between red tide species and non-red tide species with
similar CHL remains difficult. In particular, estimates of CHL may be inaccurate due to interactions
between chlorophyll and the abundant SPM present in the SSK.

To overcome the limitation of red tide detection using CHL data, the optical properties of seawater
have been used to detect red tides [12,13,21–25]. Dierssen et al. [21] and Sasaki et al. [22] found
that the peak of remote-sensing reflectance (Rrs) in visible regions was shifted to long wavelengths
(570–590 nm) region during red tide blooms. Cannizzaro et al. [23] reported that K. brevis blooms exhibit
high CHL but low backscattering values. Wynne et al. [24] and Tomlinson et al. [12] suggested that the
low backscattering observed in K. brevis blooms and low detrital absorption may affect the spectral
reflectance curve in the blue portion of the visible region. Lou and Hu [25] developed a modified
red tide index (MRI) based on the spectral characteristics of Prorocentrum donghaiense, which is low in
the blue region but high in the green region. Other methods include the use of SPM and sea-surface
temperature data collected during red tide blooms [11,26] and schematic processes of red tide and
non-red tides through spectral classification techniques [16,27,28].

Most methods for red tide detection have been developed based on SeaWiFS, MODIS,
and Geostationary Ocean Color Imager (GOCI), because ocean color sensors have higher spectral
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resolution and signal-to-noise ratio (SNR) than terrestrial sensors such as Landsat Enhanced Thematic
Mapper Plus (ETM+), Operational Land Imager (OLI), and Sentinel-2 MultiSpectral Instrument (MSI).
These characteristics lead to a high detection rate for red tide patches mixed with seawater and provide
an excellent estimate of red tide abundance. Despite the many advantages of ocean color sensors,
red tide information often cannot be acquired in coastal areas due to low spatial resolution and coastal
masking caused by the uncertainty of atmospheric correction in coastal areas where turbidity is high.
As an alternative to ocean color sensors, the use of terrestrial sensors is recommended. Compared with
ocean color sensors, the spectral resolution of terrestrial sensors is low. On the other hand, they have
excellent spatial resolution. Therefore, terrestrial sensors can provide useful information for red tide
detection in coastal areas. In addition, because the terrestrial sensor has a band in the wavelength
range used in the red tide detection algorithm, it can be employed with the existing algorithms.

A comprehensive approach based on the characteristics of each sensor is useful for accurate
red tide detection over a wide range of conditions, including coastal and offshore areas. There are
several issues caused by using multi-sensor data in red tide detection. Various factors such as spatial
resolution, spectral resolution, SNR, the modulation transfer function (MTF), the difference in image
acquisition time, atmospheric correction, and geo-referencing errors can affect the results of red tide
detection. Due to these differences, even when the same red tide detection algorithm is applied to each
sensor, the red tide distribution extracted may differ among the sensors. Because it is very difficult
to consider all characteristics of various sensors, a red tide detection technique using multi-sensors
requires further research. To date, few studies have employed multi-sensors for red tide detection.
According to Wang et al. [29], the spatial resolution of HJ-CCD is better than that of MODIS. Thus,
its extraction result is better than that of MODIS. Oh et al. [30] qualitatively compared red tide areas
extracted from MODIS and GOCI. Tao et al. [13] noted that when an MRI [25] is applied to MODIS
imagery (802 at 488 nm), high values are obtained for near-shore areas due to their low SNR compared
to GOCI (1316 at 490 nm) in the blue band. Shin et al. [31] performed the red tide detection through
image fusion of GOCI and Landsat OLI. Red tide detection in the coastal area is carried out using
Landsat OLI, while GOCI was used in offshore waters with severe noise caused by sea current and
ship trajectories. Using multi-sensor detection rather than a single-sensor, it is possible to extract red
tide areas that are more similar to the true value due to improved accuracy of red tide detection.

The objective of this study was to identify a possible synergistic effect of multi-sensor data on
the detection of M. polykrikoides blooms. For this purpose, we (1) investigated the specifications
of various sensors to determine the pros and cons of each sensor’s data; (2) analyzed the spectral
characteristics of waters containing M. polykrikoides obtained from in situ measurement; (3) compared
Rrs true-color composite and Spectral Shape images created using multi-sensor data for visual
inspection and comparison of red tide patches; (4) generated an integrated red tide map using all
possible images; and (5) presented the results of statistical evaluation to identify the synergistic effect
of multi-sensor data.

2. Materials and Methods

2.1. Study Area

The study area covers the SSK including Goheung, Yeosu, Namhae, and Tongyeong, which is
bordered by a complex rias coastline structure (Figure 1). Three study areas were used. The dates
of image acquisition were 29 July 2018, 30 July 2018, and 1 August 2018. The SSK contains many
large and small islands. Most red tide patches that occurred near the coast were difficult to detect.
The characteristics of seawater were very different between the coastal and offshore areas. Offshore
waters has clear characteristic (Case-1 waters) due to the Kuroshio Current, but exhibits complex water
characteristic in that the contents of SPM and CDOM increase toward coastal areas [16]. The depth
range was 8–25 m in coastal areas and 27–54 m in offshore areas [7]. M. polykrikoides blooms occurred
quite frequently in the study area. On July 24, 2018, attention notices were issued from Goheung to



Remote Sens. 2019, 11, 36 4 of 21

Namhae [8]. This notice was extended to Geoje on July 31 and ended on August 19, representing
a small-scale bloom compared to previous years. The maximum abundance of M. polykrikoides was
4500 cells mL−1 at Bodolbada, located between Goheung and Yeosu.
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Figure 1. The study area used for identification of synergistic effects of multi-sensor data. Red dots
indicate in situ sampling locations where chlorophyll concentration (CHL), the spectrum of surface waters,
and cell abundance were measured. Images from various sensors were obtained on (a) 29 July 2018,
(b) 30 July 2018, and (c) 1 August 2018.

2.2. In Situ Measurements

In situ observations of M. polykrikoides bloom were conducted on August 7 and August 8, 2018 in
the coastal area in Yeosu and Namhae (Figure 1). Water samples were collected at 14 sampling locations
in Yeosu and Namhae for measurement of CHL, the spectrum of surface waters, and cell abundance.
Then, 25-mm Whatman GF/F glass fiber filters were used to collect samples under low vacuum
pressure for CHL estimation. Samples were stored frozen in liquid nitrogen until laboratory analysis.
Pigments were extracted from filters with 90% acetone and refrigerated at 4 ◦C for 24 h. CHL was
estimated using the trichromatic equations reported by Jeffrey and Humphrey [32] after measuring
pigment absorbance with a Perkin-Elmer Lambda 19 UV/VIS/NIR dual-beam spectrophotometer.

The spectra of surface water were measured at the sampling sites using a hyperspectral free-falling
optical profiler (Profiler II; Satlantic Inc.) with a spectral range of 349–808 nm and a spectroradiometer
(FieldSpec3; Analytical Spectral Devices) with a spectral range of 350–2500 nm. In three sampling
locations (st. R02, Y01, and Y02), up-welling radiance, as well as up-welling and down-welling
irradiance in water column were measured using Profiler II. Three measurements were performed
at 1 m intervals considering the depth of each sample location. It was converted to mean value
and measured values at sea surface were used in this study. Data processing was performed
using ProSoft Software (Satlantic Inc.; Canada) with default constants, and finally Rrs is calculated.
The spectra were measured using ASD at all sampling locations except for three sampling locations
above. Total water-leaving radiance, sky radiance, and down-welling irradiance were measured by
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Spectroradiometer. All spectra were measured three times and averaged. Sky radiance caused by
the air-sea interface was obtained by multiplying sky radiance by a constant of 0.025. Water-leaving
radiance is the result of subtracting sky radiance from total water-leaving radiance. Finally, Rrs was
calculated by dividing water-leaving radiance by down-welling irradiance.

Phytoplankton abundance was analyzed through droplet digital PCR (ddPCR), an advanced
method to quantify the absolute copy number per M. polykrikoides cell [33]. This tool is known to
improve the accuracy and sensitivity of monitoring M. polykrikoides abundance. Seawater collected
from the various locations was filtered through cellulose acetate (CA) filters under relatively low
vacuum and then subjected to DNA extraction. Then, the copy number of M. polykrikoides in seawater
was analyzed using a species-specific marker (ITS primer) for M. polykrikoides. The cell abundance was
estimated by conversion using the copy number per M. polykrikoides cell.

2.3. Image Processing

To determine the synergistic effect of multi-sensor data, ocean color and terrestrial sensor
data were processed. Ocean color sensors included GOCI, as well as Sentinel-3 Ocean and Land
Colour Instrument (OLCI). GOCI level 1B data were obtained from the Korea Ocean Satellite Center
(KOSC) [34]. We converted level 1B data to level 2 using GOCI data processing software (GDPS, version
2.0) with the default parameters and standard atmospheric correction [35] and Rrs was used in this
study. GOCI images were obtained at eight time points per day at hourly intervals from 00:15 GMT to
07:45 GMT. In this study, GOCI images acquired at 01:00 GMT were used. It is a geostationary satellite
with an observation area covering Korea, Japan, the eastern coast of China, and parts of the northern
coast of Taiwan. OLCI sensor onboard Sentinel-3 is a continuation of the ENVISAT MERIS sensor [36].
OLCI level-2 water full resolution (WFR) product was downloaded from the Copernicus Online Data
Access Hub provided by the European Organisation for Meteorological Satellites (EUMETSAT) [37].
Oa* reflectance (Rrs) was coordinate-transformed using the Sentinel Application Platform (SNAP,
version 6.0) developed by ESA. OLCI images of the area around the Korean peninsula were obtained
at about 01:00 GMT every one to three days.

Landsat ETM+ and OLI images were downloaded from the U. S. Geological Survey [38].
The revisit periods of both sensors are 16 days. Data from the same region can be acquired every eight
days. Landsat OLI has an increased bit depth of 12 compared to the Landsat Thematic Mapper (TM)
and ETM+, which has 8-bit data [39]. The Sentinel-2 mission provides continuity for services relying
on global multi-spectral high-spatial-resolution optical observations over terrestrial surfaces [40] and
comprises a constellation of two polar-orbiting satellites placed in the same orbit, phased 180◦ from
each other. It has a fast revisit time of five days for the two satellites under cloud-free conditions and
2–3 days at mid-latitudes. Sentinel-2 MSI L1C data were downloaded from the Copernicus Open
Access Hub [41]. Landsat ETM+, OLI, and Sentinel-2 images around the Korean peninsula were
obtained at about 2:00 GMT. Atmospheric correction of Landsat OLI and Sentinel-2 MSI imagery
was performed using the Case 2 Regional CoastColour (C2RCC) processor in SNAP. The C2RCC
processor relies on a large database of radiative transfer simulations inverted by neural networks as its
underlying technology [42]. It has been validated for OLCI, MODIS, and Sentinel-2 MSI, showing good
results for Case 2 waters. Rrs values produced by the C2RCC processor were used in this study. Because
no atmospheric correction tool for Landsat ETM+ was provided in C2RCC, it was atmospherically
corrected using FLAASH in ENVI software.

Table 1 present the specifications of the satellite data used in this study. Ocean color sensors such
as GOCI and Sentinel-3 OLCI are generally characterized by low spatial resolution and wide swath.
Terrestrial sensors such as Landsat OLI and Sentinel-2 MSI have narrow swaths with high spatial
resolutions. Thus, they are suitable for detection in coastal waters such as the complex rias coastline of
the SSK. The revisit period of terrestrial sensors is generally longer than that of ocean color sensors.
However, Sentinel-2 MSI has a shorter revisit period due to its use of two satellites. The spectral ranges
of all sensors include the visible regions used for red tide detection. However, the sensors differ in
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terms of the central wavelengths of their bands, spectral resolution, and SNR. Table 2 shows the sensor
characteristics for two blue bands and one green band that are commonly used in red tide detection
algorithms. Although the central wavelengths of the five sensors were not significantly different,
the spectral resolution and SNR of ocean color sensors were superior to those of terrestrial sensors.
Sentinel-3 OLCI has higher spectral resolution, spatial resolution, and SNR than GOCI, whereas GOCI
has higher temporal resolution, which is advantageous for detection of hourly variations in red tide
patches. Landsat OLI has better spectral resolution and SNR than other terrestrial sensors, while
Sentinel-2 MSI has higher spatial resolution and a shorter revisit period. The Landsat ETM+ sensor
has substantially lower SNR than Sentinel-2 MSI and Landsat OLI. In addition, the scan-line corrector
(SLC) of the Landsat ETM+ sensor failed in 2003, resulting in about 22% of pixels per scene not being
scanned [43].

Table 1. Specifications of satellite data used in this study, including data collected with GOCI, Sentinel-3
OLCI, Sentinel-2 MSI and Landsat OLI.

Sensor Spatial Resolution Swath Revisit Period Spectral Range

GOCI 500 m 2500 km 8 times/day 412–865 nm
Sentinel-3 OLCI 300 m 1270 km 1–3 days 400–1020 nm
Sentinel-2 MSI 10 m/20 m/ 60 m 290 km 3–5 days 443–2190 nm
Landsat ETM+ 30 m 185 km 16 days 483–2350 nm

Landsat OLI 30 m 180 km 16 days 443–2290 nm

Table 2. Comparison of wavelength, spectral resolution, and SNR among sensors.

GOCI/Sentinel-3 OLCI Sentinel-2 MSI/Landsat OLI/ETM+

Wavelength
(nm)

Spectral
Resolution

(nm)
SNR Wavelength

(nm)

Spectral
Resolution

(nm)
SNR

Blue1 443/443 20/10 1090/1811 443/443/- 20/15/- 129/237/-
Blue2 490/490 20/10 1170/1541 490/482/483 65/60/60 154/367/39
Green 555/560 20/10 1070/1280 560/561/561 35/57/80 168/304/37

Table 3 lists satellite images of the SSK available during the red tide bloom event in 2018
(from 24 July to 9 August). GOCI images were acquired eight times per day. Sentinel-3 OLCI
images were not obtained on a regular schedule, and were instead acquired at intervals of 1–3 days.
Sentinel-2 MSI images were obtained at fixed 5-day intervals, while images of the Yeosu area were
acquired at intervals of 2–3 days. Landsat ETM+ and OLI images were obtained of the Yeosu
(path 115/row 036) and Tongyeong areas (path 114/row 036). In this study, image pairs collected on
July 29, July 30, and August 1 were used. These dates were cloud-free and data from two or more
sensors were available.

Table 3. List of available satellite images of the South Sea of Korea (SSK) during the red tide bloom
event in 2018.

July 2018 August 2018
day 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9

GOCI
S3A

S2-YS
S2-TY
L-YS
L-TY

1 S3A: Sentinel-3 OLCI, S2-YS: Sentinel-2 MSI at Yeosu, S2-TY: Sentinel-2 MSI at Tongyeong, L-YS: Landsat at Yeosu,
L-TY: Landsat at Tongyeong.
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2.4. Definition of Indices

Spectral Shape algorithm developed by Tomlinson et al. [12] was used to identify the synergistic
effects of multi- sensor use. This method employs the spectral shape around 490 nm, which is useful
for detecting M. polykrikoides and K. brevis [15,16,27,31]. It utilizes SeaWiFS data at wavelengths of 443,
490 and 510 nm. Spectral Shape is defined as:

Spectral Shape (490) = nLw (490) − nLw (443) − (nLw (510) − nLw (443)) × ((490 − 443)/(510 − 443))

where nLw is normalized water-leaving radiance. This algorithm is applicable to four sensors (GOCI,
Sentinel-2, Sentinel-3, and Landsat OLI), excluding Landsat ETM+, which has no 443 nm band,
as shown in Table 2. A pixel was originally flagged as red tide blooms when Spectral Shape value
was < 0. However, because it is the standard when using SeaWiFS image, applying the same standard
when using other images cannot obtain proper results. Therefore, the threshold value is determined by
visual analysis based on Spectral Shape images for each image then the red tide areas are extracted.

Some red tide detection algorithms use products such as water-leaving radiance (Lw) and
top-of-atmosphere (ToA) radiance. Carvalho et al. [44] recommended the use of Lw at 551 nm,
while Ryan et al. [45] observed expansion of red tide blooms through the Medium Resolution Imaging
Spectrometer (MERIS) Maximum Chlorophyll Index (MCI) computed from ToA radiance (Level-1 data).
However, Lw is not normalized for solar or viewing geometry. Lw also varies with season, latitude, and
scan/orbit configuration [46], and ToA radiance can be affected by the atmosphere. Rrs and nLw are
more suitable for red tide detection than Lw and ToA radiance, as they are corrected for atmospheric
effects and solar/viewing geometry. Rrs is a primary ocean color product routinely produced by several
space agencies. It is defined as Rrs = nLw / Fo, where Fo is ToA solar irradiance. Rrs is normalized
to a single sun-viewing geometry (sun at zenith and nadir viewing), taking bidirectional effects into
account. For this reason, Rrs is used with Spectral Shape algorithm.

2.5. Methods

The spectral characteristics of waters containing M. polykrikoides were analyzed using multi-sensor
data. Images collected by each sensor were co-registered for cross-sensor comparison. Before extracting
the red tide areas, data collected at similar times (within 60 min) by the different sensors were visualized
to qualitatively assess how various specifications, such as the spatial resolution, spectral resolution,
and SNR might affect M. polykrikoides detection. These features were identified visually from Rrs

true-color images and Spectral Shape images. Finally, an integrated red tide map was generated by
combining the red tide areas extracted from each sensor.

To identify the synergistic effect of using multi-sensor data, a pixel-based comparison was carried
out using a confusion matrix [47]. The input was in-situ data, identified as M. polykrikoides red tide
(mr) or non-M. polykrikoides red tide (nmr) pixels, while the output from detection by various sensors
was M. polykrikoides red tide (MR) or non-M. polykrikoides red tide (nMR). This comparison consists of
four categories: (1) mr. classified as MR (mr-MR, success), (2) mr. classified as nMR (mr-nMR, false
negative), (3) nmr classified as CR (nmr-MR, false positive), and (4) nmr classified as nMR (nmr-nMR,
success). These categories were used to evaluate the performance in terms of sensitivity ((1)/[(1) + (2)])
and specificity ((4)/[(3) + (4)]), indices of the technique’s accuracy for identifying red and non-red tide
pixels, respectively. F-measure (FM) was used to describe the overall accuracy [44], calculated as the
harmonic mean of the sensitivity and precision ((1)/[(1)+(3)]) using the following equation:

FM = [(2 × Precision × Sensitivity)/(Precision + Sensitivity) (1)

Overall accuracy = [(1) + (4)]/[(1) + (2) + (3) + (4)] (2)

Red tide information for the pixel-based comparison was provided by NIFS. On 29 July 2018,
a red tide attention notice was issued to Goheung, Yeosu, and Namhae. Red tide patches appeared
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sporadically in Bodolbada waters. The maximum abundance in these red tide patches was 2500 cells
mL−1. On 30 July and 1 August 2018, red tide patches were found surrounding Namhae coastline.
For the pixel-based comparison, an in situ red tide map was generated based on the image with the
highest spatial resolution among those to be combined.

3. Results

3.1. Chlorophyll Concentration and Cell Abundance

CHL, cell abundance measurements, and the spectra of surface waters taken at 14 sampling
locations during the M. polykrikoides bloom period on 7 and 8 August 2018 are shown in Table 4.
CHL ranged from 1.5 to 36.8 mg m−3. At two stations (R09 and R10), CHL was very high.
The maximum M. polykrikoides cell abundance was 4647 cells mL−1, observed at station R06 in Yeosu.
The minimum cell abundance occurred at station Y02 in Namhae, where no M. polykrikoides bloom
occurred. For the five other stations (R05, R06, R08, R09, and Y03), M. polykrikoides cell abundances
were greater than 1000 cells mL−1. All of these stations are located along Bangjukpo Beach in Yeosu. In
situ Rrs patterns at several sampling locations were measured during this field survey. The spectrum
displayed peaks near 570 nm and 710 nm, as shown in Figure 2. These patterns indicated the
fluorescence properties of phytoplankton. The spectra when CHL was 10 mg m−3 or greater showed a
distinct reverse triangle pattern in the green and red wavelengths. When CHL was very high and cell
abundance was >2000 cells mL−1, as observed at station R09 (14:00 on 8 August, CHL at 35.8 mg m−3,
cell abundance at 2152 cell mL−1), Rrs spectra exhibited patterns typical of M. polykrikoides patches,
with lower reflectance at short wavelengths and increased reflectance at green wavelengths. As shown
in Figure 3, M. polykrikoides cell abundances had a low correlation (R2 = 0.18) with CHL but a high
correlation (R2 = 0.62) with Spectral Shape value estimated from the spectra at 443, 490, and 570 nm
for each sampling location.

Table 4. In situ measurements of CHL and Margalefidinium cell abundance at each sampling location in
the study area (Spectral Shape value was estimated from the spectra at 443, 490, and 570 nm for each
sampling location).

St. ID Time Chlorophyll (mg m−3)
Cell Abundance

(cells mL−1)
Spectral

Shape Value

R01 7 August 2018 12:11 6.1 - 0.8
R02 7 August 2018 14:25 8.2 - −1.7
R03 7 August 2018 15:15 4.1 - 4.2
R04 8 August 2018 11:37 1.5 526 3.6
R05 8 August 2018 12:54 16.9 1836 −11.1
R06 8 August 2018 12:59 15.9 4647 −13.5
R07 8 August 2018 13:12 4.58 678 −4.2
R08 8 August 2018 13:18 12.7 2152 −14.2
R09 8 August 2018 14:00 36.8 2115 −10.4
R10 8 August 2018 14:24 25.9 663 −7.7
Y01 8 August 2018 11:29 1.5 0.1 18.1
Y02 8 August 2018 13:35 7.4 237 −0.5
Y03 8 August 2018 14:20 9.1 2005 −15
Y04 8 August 2018 15:28 5.4 5 −0.8
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3.2. Spectral Analysis of M. polykrikoides Using Multi-Sensor Data

Figure 4 shows M. polykrikoides spectra based on various sensor data. On 29 July 2018, red tide
patches of M. polykrikoides were observed near Goheung (Figure 5). Areas with high-density red tides
were used for spectral analysis of M. polykrikoides. Rrs spectra collected by five sensors from similar
locations at nearly the same time (within 60 min) on the same day showed similar patterns. Rrs spectra
showed lower reflectance at short wavelengths and increased reflectance at green wavelengths, similar
to the in situ spectrum. These properties appeared in Case-2 waters, which had high levels of SPM and
CDOM, and also represent the typical spectrum of M. polykrikoides patches. Spectral Shape algorithm
was based on these spectral properties, and can detect M. polykrikoides from the slope changes in the
443–490 nm and 490–555 nm regions. As shown in Figure 4, except for Landsat ETM+, the other four
sensors have all the bands used in Spectral Shape algorithm. Morever, the blue bands of GOCI and
Sentinel-3 OLCI are composed of multiple subdivisions, while terrestrial sensors have a simple blue
band. Comparing the red tide spectra detected by five sensors, ocean color sensor data were more
sensitive than terrestrial sensor data. In particular, Sentinel-3 OLCI showed a steep slope in Rrs value
for bands used in Spectral Shape algorithm due to its high SNR and spectral resolution.
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Figure 4. M. polykrikoides spectra based on data from various sensors such as (a) GOCI (b) Sentinel-2
MultiSpectral Instrument (MSI) (c) Sentinel-3 Ocean and Land Colour Instrument (OLCI) (d) Landsat
ETM+ (e) Landsat OLI, and (f) five sensors. On 29 July 2018, red tide patches of M. polykrikoides
were observed near Goheung. Areas with high-density red tides were sampled for spectral analysis.
Comparing the red tide spectra detected by five sensors, ocean color sensors are more sensitive than
terrestrial sensors.
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Visual inspection was performed to confirm the red tide patches detected by each sensor. Red 
tide patches caused by M. polykrikoides usually appear reddish or brown in Rrs true-color composite 
images. Hence, we could detect red tide areas from Rrs true-color composite images collected with 
various sensors through simple visual inspection. In Spectral Shape image, a negative value is 
suspected to indicate red tide areas. Threshold values for Spectral Shape images were determined 
based on visual identification. 

Figure 5 shows Rrs true-color composite and Spectral Shape images based on multi-sensor data 
collected on 29 July 2018 at Yeosu and Goheung. On the same day, a red tide attention notice for M. 
polykrikoides was issued from Goheung to Yeosu. In addition, red tide patches appeared 
sporadically in Bodolbada, while high-density red tide strips appeared in coastal areas of Goheung 

Figure 5. Rrs true-color composite and Spectral Shape images from various sensors on 29 July 2018 at
Bodolbada. (a) Sentinel-3 OLCI Rrs true-color composite image (R: 681.25 nm; G: 560 nm; B: 442.5 nm),
(b) Sentinel-3 OLCI Spectral Shape image, (c) GOCI Rrs true-color composite image (R: 680 nm;
G: 555 nm; B: 490 nm), (d) GOCI Spectral Shape image, (e) Sentinel-2 MSI Rrs true-color composite
image (R: 680 nm; G: 560 nm; B: 490 nm), (f) Sentinel-2 MSI Spectral Shape image.

3.3. Visual Inspection and Comparison

Visual inspection was performed to confirm the red tide patches detected by each sensor. Red tide
patches caused by M. polykrikoides usually appear reddish or brown in Rrs true-color composite images.
Hence, we could detect red tide areas from Rrs true-color composite images collected with various
sensors through simple visual inspection. In Spectral Shape image, a negative value is suspected
to indicate red tide areas. Threshold values for Spectral Shape images were determined based on
visual identification.
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Figure 5 shows Rrs true-color composite and Spectral Shape images based on multi-sensor data
collected on 29 July 2018 at Yeosu and Goheung. On the same day, a red tide attention notice for
M. polykrikoides was issued from Goheung to Yeosu. In addition, red tide patches appeared sporadically
in Bodolbada, while high-density red tide strips appeared in coastal areas of Goheung (2500 cell mL−1).
In the Rrs true-color composite and Spectral Shape images of each sensor, red tide patches were
observed in similar positions. Moreover, red tide patches that were not detected in the red tide report
by NIFS were observed. We calculated red tide coverage by identifying and quantifying red tide
patches according to differences in spatial resolution. The red tide coverage estimated from GOCI was
181 pixels × 500 m × 500 m = 45.25 km2. In comparison, the coverage estimated from Sentinel-3 OLCI
was 348 pixels × 300 m × 300 m = 31.32 km2, and that estimated from Sentinel-2 MSI was 42,136 pixels
× 20 m × 20 m = 16.85 km2. Thus, the ratios of these estimates were GOCI/Sentinel-3 OLCI = 144%
and GOCI/Sentinel-2 MSI = 269%, suggesting that GOCI overestimated the red tide coverage by 44%
and 169%, respectively, compared with Sentinel-3 OLCI and Sentinel-2 MSI due to its larger pixels.

Figure 6 shows Rrs true-color composite and Spectral Shape images from multi-sensor data
collected on 30 July 2018 at Namhae. On the same day, a red tide attention for M. polykrikoides was
issued from Goheung to Namhae, and the maximum cell abundance was 700 cell mL−1 along coastal
areas of Namhae. Using Sentinel-3 OLCI and Landsat OLI imagery, data can be acquired for the coast
of Namhae, as the coast was not masked. However, GOCI was unable to observe this area due to its
coarse spatial resolution. Nonetheless, no red tide patches were detected in the Landsat OLI data,
perhaps due to the spectral resolution and sensitivity to SNR of the terrestrial sensor being lower than
those of ocean color sensor. In addition, we found that GOCI could detect red tide patches, despite
having a lower SNR than Sentinel-3 OLCI.

Figure 7 shows another comparison of Sentinel-2 MSI and GOCI imagery for red tide detection.
On 1 August 2018, a red tide attention notice for M. polykrikoides was issued from Goheung to Geoje.
The maximum cell abundance was 940 cell mL−1 in coastal areas of Yeosu (Figure 8c). Sentinel-2 MSI
imagery could be used to detect coastal areas. In contrast, GOCI image was masked in most coastal
areas, especially around small islands, due to its low spatial resolution. In addition to the distribution
of red tide patches covered by the red tide report, many other red tide patches were detected.
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Figure 6. Rrs true-color composite and Spectral Shape images collected by various sensors on 30 July
2018 at Namhae. (a) Sentinel-3 OLCI Rrs true-color composite image (R: 681.25 nm; G: 560 nm; B: 442.5
nm), (b) Sentinel-3 OLCI Spectral Shape image, (c) GOCI Rrs true-color composite image (R: 680 nm;
G: 555 nm; B: 490 nm), (d) GOCI Spectral Shape image, (e) Landsat OLI Rrs true-color composite image
(R: 680 nm; G: 561 nm; B: 483 nm), (f) Landsat OLI Spectral Shape image.
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Figure 7. Rrs true-color composite and Spectral Shape images collected with various sensors on
1 August 2018. (a) GOCI Rrs true-color composite image (R: 680 nm; G: 555 nm; B: 490 nm),
(b) GOCI Spectral Shape image, (c) Landsat OLI Rrs true-color composite image (R: 680 nm; G: 561 nm;
B: 483 nm), (d) Landsat OLI Spectral Shape image.
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Figure 8. Results of the integrated red tide map. (a) Red tide report from National Fisheries Research
and Development Institute (NFRDI) on 29 July 2018, (b) integrated red tide map of Bodolbada on
29 July 2018, (c) Red tide report from NFRDI on 1 August 2018, (d) integrated red tide map of Yeosu on
1 August 2018.
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3.4. Integrated Red Tide Map

Figure 8 shows the distribution of red tide patches detected in situ (left) and the integrated red
tide map (right) generated from multi-sensor data. The red tide report from NIFS was mainly focused
on the coast. Therefore, it contained limited information on red tides occurring outside of the in-situ
survey locations. Unlike the red tide report, integrated red tide maps could be used to detect red tide
patches near the coast and in the outer sea. On 29 July 2018, the red tide distribution was restricted
to coastal areas according to the red tide report. However, the integrated red tide map indicated
red tide patches across Bodolbada (Figure 8a,b). Red tide patches were found between islands on
1 August 2018. However, as shown in Figure 7a, detection of red tide patches using GOCI image was
difficult (Figure 8c,d) because the coast was masked.

Table 5 lists the red tide areas extracted from multi-sensor data. First, we expected that red tide
areas extracted from terrestrial sensor data with high spatial resolution would be larger because most
red tides that occurred in the study area were concentrated along the coast. However, when red tide
areas extracted from Sentinel-2 MSI and GOCI images were compared, they were overestimated by
169–272% by GOCI compared to Sentinel-2 MSI. This overestimation problem was due to the low
spatial resolution of ocean color sensor. In addition, due to the high spectral resolution and SNR,
red tide areas that were not detected by the terrestrial sensor might have been detected. Red tide areas
estimated from Sentinel-3 OLCI were largest, while those estimated from Landsat OLI were smallest.

Table 5. Red tide areas extracted from multi-sensor data.

Date Region Sensor Area
(km2) Per. (%) Date Region Sensor Area

(km2) Per. (%)

29 July 2018
Yeosu

Goheung

S2 7.2 20.8

30 July 2018 Namhae

S3 7.8 83.3
G 12.2 35.3 G 2.5 26.5
S3 16.6 47.9 LC8 0.7 7.9

S2+G+S3 34.7 100 S3+G+LC8 9.3 100

1 August 2018 Namhae
S2 4.4 39.3

1 August 2018 Yeosu
S2 2.5 27

G 7.2 64.1 G 6.8 73.6
G+S2 11.2 100 G+S2 9.3 100

1 S2: Sentinel- MSI, S3: Sentinel-3 OLCI, G: GOCI, LC8: Landsat OLI.

3.5. Statistical Assessment

Multi-sensor data collected during the red tide period in 2018 were used for statistical assessment.
Confusion matrices and statistical results are summarized in Table 6. Red tide pixels were identified
correctly between 0 and 32% of the time. The average FM was 0.15, ranging from 0 to 0.35. The average
sensitivity and specificity were 0.14 and 0.89, respectively.

Among single-sensor data, Sentinel-3 OLCI had the highest sensitivity (0.28) and the highest
FM (0.35) on 30 July 2018. Sentinel-2 MSI had the highest specificity (0.99). Among multi-sensor
data, the highest sensitivity (0.32) was obtained when Sentinel-2 MSI, Sentinel-3 OLCI, and GOCI
were combined. On the other hand, the highest FM (0.33) was obtained when Sentinel-2 MSI,
GOCI, and Landsat OLI were combined. On 1 August 2018, no red tide pixels were detected at
Namhae in GOCI imagery due to coastal area masking, while red tide pixels were detected only with
Sentinel-2 MSI. However, a large number of red tide pixels were detected in GOCI image of Yeosu
on 1 August 2018, despite being in a coastal area. When Sentinel-2 MSI and GOCI were combined,
sensitivity and FM were 183% and 150% higher, respectively, compared to those of GOCI single-sensor
data. In four cases, the sensitivity estimated from multi-sensor data was higher than that estimated
from a single sensor. FM decreased slightly, except on 1 August 2018, when red tide areas that were
not detected in the in-situ survey were much larger than those estimated from sensors.
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Table 6. Performance evaluation of each sensor for Yeosu, Goheung, and Namhae.

Date Region Sensor mr-MR mr-nMR nmr-MR nmr-nMR FM Sens. Spec.

29 July 2018 Yeosu/Goheung

S2 4754 19,041 13,242 1,195,932 0.23 0.20 0.99
G 268 23,527 30,307 1,178,867 0.01 0.01 0.97
S3 3197 20,598 38,365 1,170,809 0.10 0.13 0.97

S2+G+S3 7562 16,233 79,125 1,130,049 0.14 0.32 0.93

30 July 2018 Namhae

S3 8877 22,354 10,580 56,701 0.35 0.28 0.84
G 280 30,951 5906 61,375 0.01 0.01 0.91

LC8 167 31,064 1673 65,608 0.01 0.01 0.98
S3+G+LC8 8947 22,284 14,404 52,877 0.33 0.29 0.79

1 August 2018 Namhae
S2 5179 15,377 5179 15,377 0.34 0.25 0.75
G 0 20,556 17,925 67,174 0.00 0.00 0.79

G+S2 5179 15,377 22,781 62,318 0.21 0.25 0.73

1 August 2018 Yeosu
S2 2311 50923 3933 250,410 0.08 0.04 0.98
G 3347 49887 13,691 240,652 0.10 0.06 0.95

G+S2 5619 47615 17,521 236,822 0.15 0.11 0.93
1 S2: Sentinel-MSI; S3: Sentinel-3 OLCI; G: GOCI; LC8: Landsat OLI; Sens.: Sensitivity; Spec.: Specificity.

4. Discussion

Previous studies have reported a relationship between CHL and cell abundance.
Tester et al. [14] found that a chlorophyll anomaly of 1 µg L−1 would represent an increase of
105 cells L−1 of K. brevis, and that remote sensing data can detect K. brevis along the Florida coast at
concentrations above 50,000 cells L−1. Choi et al. [48] reported that cell abundance and CHL of M.
polykrikoides in the East Sea of Korea (ESK) are highly correlated (R2 = 0.99), suggesting that changes in
CHL could be determined by changes in M. polykrikoides cell abundance. From calculations based on
their observations, one M. polykrikoides cell contained ~73 pg chlorophyll during this bloom period.
However, Shin et al. [27] found that estimation of cell abundance from CHL has limitations, as CHL
in seawater is determined based on internal chlorophyll content from a mixture of red tide species.
Ahn et al. [49] calculated the amount of chlorophyll per cell for red tide species to determine the
internal chlorophyll content of each red tide species. M. polykrikoides and Akashiwo sanguinea are red tide
species with relatively high internal CHL, while the heterotrophic species Noctiluca scintillans does not
have or contains less internal chlorophyll. If red tide species with different internal chlorophyll contents
are mixed in the water, it is very difficult to estimate cell abundance from CHL. This relationship is
particularly complicated for M. polykrikoides because it coexists with other red tide species in the SSK.
In addition, estimation of CHL is a great challenge in waters with complex optical properties [17].
Studies have shown that CHL algorithms that do not consider the influence of SPM can exhibit large
errors in turbid waters [50,51]. The waters around the Korean peninsula have diverse optical properties,
ranging from relatively clear waters in the East/Japan Sea to extremely turbid waters in coastal regions.
Because the ESK has clear water prevailing in chlorophyll, it is possible to estimate cell abundance in
that area from CHL, as reported by Choi et al. [48]. In contrast, estimating cell abundance from CHL in
the present study area of the SKK was difficult because SPM and CDOM could affect CHL estimation.
In fact, the correlation between CHL and cell abundance in this study was low.

Table 6 shows how many false positive (nmr-MR) were obtained. Because the field survey has the
limitations of observation areas, it is difficult to find all red tide areas. False positive means the part
that was detected from the satellite but not detected from the field survey. In other words, the areas of
false positive may be red tide areas that has been detected as false or has not yet been detected in the
field survey. It may be used as a complement to the field survey, but it needs to be considered as the
red tide suspicious areas. Several factors can reduce the accuracy of statistical assessment for red tide
detection using multi-sensor data. Obtaining multi-sensor data collected at the same time is difficult.
In this study, we confirmed that the red tide patches moved slightly, despite using images obtained
within a maximum of 1 h. Red tide areas extracted from near-coincident multi-sensor data might
also differ from the red tide report provided by NIFS. The red tide report is created by summarizing
fishermen’s reports and results of a daily field survey for red tide detection [6]. Hence, red tide areas
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extracted in this study might not represent the red tide distribution for the whole day, as the images
used herein were acquired at about 02:00 GMT. Another factor that should be considered in red tide
detection is vertical migration of red tide species. Some red tide species migrate vertically according
to changes in light, temperature, and nutrients in the water [52]. M. polykrikoides is a relatively slow
growing red tide organism. Therefore, it may not be able to outgrow red tide diatoms, flagellates,
and other dinoflagellates under the same environmental conditions [7]. However, M. polykrikoides has
the ability to swim fast and can theoretically reach 50 m in depth. Thus, it may outgrow other red tide
species under conditions of low nutrients and high solar insolation. Some studies have investigated the
vertical migration of red tide species using satellite data. Choi et al. [48] found that M. polykrikoides cell
abundance was highest at 05:25 GMT by investigating hourly variations in GOCI-derived chlorophyll
images. On the other hand, low cell abundances were observed in the early morning and late afternoon.
Lou and Hu [25] noted that a P. donghaiense bloom increased from early morning to early afternoon.
The bloom size was calculated from MRI using GOCI-derived Rrs. Indeed, GOCI is an optimal sensor
for observing vertical migration of red tide species due to its excellent temporal resolution. However,
due to its limitation of spatial resolution, it is poor at detecting red tides near the coast. The images
used in this study except for GOCI were acquired at about 02:00 GMT, because all sensors are on
polar-orbiting satellites with sun-synchronous orbits. Therefore, creating an integrated red tide map
representing the entire day from satellite images alone is a great challenge.

SNR and spectral resolution are important factors that determine the red tide detection ability
of any sensor. SNR and image quality are highly correlated, and are related to image metrics such
as pixel size and edge sharpness [53]. SNR is not constant within an image, but is a function of the
scene radiance level [54]. Its performance may drive tradeoffs in terms of the design and cost of the
satellite sensor. In general, improved SNR comes at the cost of poorer spatial resolution, lower spectral
resolution, less coverage, larger optics, and higher data rate. Ocean color sensors have high SNR
and spectral resolution but low spatial resolution compared to terrestrial sensors. On August 1, 2018,
a red tide occurred along the coast of Namhae. It was not detected at all by GOCI (Table 6). On the
other hand, on 30 July 2018, as shown in Figure 6f, almost no red tide was detected in Landsat OLI,
even though the coast was not masked. In other words, when red tide detection is performed using
only a single sensor, estimating the overall red tide occurrence area is difficult. SNR is also related
to the minimum cell abundance that can be detected in a satellite image. When low cell abundances
can be detected by various sensors, it may be possible to improve the red tide warning system by
complementing these data with the existing field survey.

5. Conclusions

Damage caused by occurrence of M. polykrikoides in the SSK is particularly great when it is
concentrated along the coast. We investigated the synergistic effect of using multi-sensor data to
identify M. polykrikoides blooms. The conclusions of this study are as follows.

(1) In the in situ survey, the spectra of samples with 10 mg m−3 or greater CHL showed a distinct
reverse triangle pattern in the green and red wavelengths. In situ cell abundance and CHL
of M. polykrikoides in the SSK showed low correlations, while Spectral Shape value and cell
abundance were highly correlated. This finding implies that the SSK has characteristics of complex
waters. Comparing the red tide spectra from near-coincident multi-sensor data, Rrs spectra
showed lower reflectance at short wavelength and increased reflectance at green wavelengths,
similar to the in situ spectra. Ocean color sensor data were more sensitive than terrestrial sensor
data. Specifically, Sentinel-3 OLCI was the most sensitive of the sensors tested.

(2) An integrated red tide map was generated using multi-sensor data. We confirmed the
complementary data of red tide patches extracted from each sensor, as well as observations
of coastal and offshore areas from the integrated red tide map. The red tide areas estimated
from Sentinel-3 OLCI were the most extensive, while those from Landsat OLI were the smallest.
This result could be attributed to differences in sensitivity characteristics, such as the spatial
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resolution, spectral resolution, and SNR of each sensor. A statistical evaluation was conducted to
quantitatively assess the synergistic effect of multi-sensor data on the detection of M. polykrikoides.
Sensitivity estimated from multi-sensor data was higher than that estimated using a single-sensor,
while FM decreased slightly with the use of multi-sensors.

GOCI has superior temporal and spectral resolutions. However, it has limited spatial resolution,
complicating detection of M. polykrikoides in coastal areas with complex coastlines. To overcome this
limitation, Landsat can be used, which has fine spatial resolution. Unfortunately, its temporal and
spectral resolutions are low due to the limitations of the terrestrial sensor. Recently, Sentinel-2 MSI and
Sentinel-3 OLCI have been developed, combining the strengths of various resolutions. In particular,
Sentinel-3 OLCI has high SNR, high spectral resolution, and wide coverage. It is also suitable for
red tide detection due to its spatial resolution of 300 m, which is sufficient to avoid coastal masking.
GOCI-2 is scheduled to launch in 2019 with a spatial resolution of 250 m, and could further improve
the detection accuracy of red tide areas. The results of this study have enabled us to recognize the
synergistic effect on red tide detection of multi-sensor data. Such data can be used to improve the
accuracy of red tide detection. Accurate forecasting in conjunction with high-frequency (HF) radar and
numerical models may allow for precise estimation of red tide areas and cell abundances. Accurately
estimating red tide areas requires observing them with consideration of vertical migration. Therefore,
a comprehensive multi-platform approach combining methods such as manned aircraft and unmanned
aerial vehicle (UAV) with in situ survey data and satellite data is needed for effective integrated red
tide detection.
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