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Abstract: Monitoring phenological changes of crops through remote sensing methods is becoming a
new perspective in assessing heavy metal contamination in agricultural farmlands. This paper
proposes a method that combines the normalized difference vegetation index (NDVI) and the
normalized difference water index (NDWI) to detect heavy metal stress-induced variations in
satellite-derived rice phenology. First, we applied the enhanced spatial and temporal adaptive
reflectance fusion model to obtain the NDVI and NDWI time series for the NDVI–NDWI phase–space
construction. Then, six specific rice phenometrics were derived from the NDVI and the phase–space,
respectively. Last, we introduced a relative phenophase index (RPI), which characterizes the relative
change of the phenometrics to identify the rice paddies under heavy metal stress. The results
indicated that satellite-derived rice phenometrics are generally influenced by human and natural
factors (e.g., transplanting date, air temperature, and solar radiation), while the RPI showed weak
correlations with all of these variables. In the determination of heavy metal stress, the NDVI- and
phase–space-based RPIs of unstressed rice both show significantly (p < 0.001) higher values than
those of stressed rice, while the phase–space-based RPI shows more apparent statistical difference
between the stressed and unstressed rice compared to the NDVI-based one. Our work proved the
capability of the phase–space-based method as well as the RPI in the discrimination of regional heavy
metal pollution in rice fields.
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1. Introduction

Heavy metal contamination in agricultural soil is one of the most severe problems affecting
food security and public health at global and local levels [1]. Generally, pollution is caused against
a backdrop of urban industrialization and is commonly characterized as relatively stable in spatial
and temporal distribution [2,3]. A number of agronomy studies have exhibited the variations in
spectral properties, pigment content, dry matter, photosynthesis, and transpiration of plants under
heavy metal stress [4–6]. Based on these symptoms, researchers have made attempts to (1) extract
the characteristics of multispectral and hyperspectral signatures [7–9]; (2) retrieve physiological and
biochemical parameters [10,11]; and (3) integrate remote sensing data and crop growth models [12–15]
to detect heavy metal contamination in agricultural soils.

Since satellite remote sensing has enabled the continuous monitoring of crop growth, it provides
a new insight to indicate environmental interactions in agricultural systems through variations in crop
phenology [16–19]. Heavy metals affect crop development mainly by interfering with physiological
activity, and it has been observed that the onset of heading is delayed when rice is exposed to
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cadmium [4,6]. Basically, the change of the growth stages will certainly impact the vegetation index
(VI) time series, thereby reflecting in the satellite-derived phenometrics. However, the detection of
heavy metal stress-induced variations in rice phenology through the remote sensing approach is still
problematic. One reason is the temporal mismatch between the satellite-derived rice phenometrics
and the actual phenological events. Typically, a satellite-based phenometric is the certain date of
a feature point on the VI curve, while an actual phenological event refers to a certain stage in rice
development. Moreover, for rice agroecosystems, the absolute dates do not mean much in identifying
the stress-induced change in the growth state, because they are mainly decided by the timing of
transplanting. Liu et al. [20] analyzed the differences in the lengths of phenophases, which are defined
as the period between two specific rice phenometrics, across a heavy metal stress gradient. However,
the length of a phenophase may also be influenced by meteorological factors (e.g., air temperature and
solar radiation), soil conditions, and management practices [21–23]. Therefore, more effort is needed
to explore the relationships between the delaying of the actual heading stage and the variations of
satellite-derived phenometrics under heavy metal stress.

Optical observations of crop phenology have mostly used greenness VIs, such as the normalized
difference vegetation index (NDVI) and the enhanced vegetation index (EVI) [24–27]. However, they
may not identify the greenness-independent features, such as canopy water content, which could also
be sensitive to the phenophase transition. The normalized difference water index (NDWI) has also
been used to characterize the phenological cycle of vegetation—however, mostly for reducing the effect
of snow in boreal natural ecosystems [28–30]. In addition to a single-purpose VI, Gonsamo et al. [31]
combined the advantages of NDVI and NDWI to detect vegetation phenology with the small effect
of soil and snow. Likewise, Thompson et al. [32] derived phenometrics in a seasonally snow-covered
landscape using a phase–space diagram, which was constructed by the NDVI–NDWI time series over
an entire phenological year. The observed pixels in the phase–space were segmented into snow-covered
and snow-free phases by K-means clustering, which made the phenological descriptors (e.g., start
of the growing season) free of the influence of the onset/offset of snow. Moreover, Ding et al. [33]
explored the EVI- and NDWI-based autumn phenology in semi-arid grasslands and proved that the
phenometrics derived from NDWI, which represents the metabolic activity of vegetation, was generally
later than that from EVI, which stands for the photosynthetic activity. Since stress and disturbance
could impact not only photosynthesis but also the whole physiological function of the plant, the
greenness–wetness synergetic strategy possessed an advantage in comprehensively characterizing the
subtle variation of canopy components in vegetation growth [34–36].

The main objectives of this paper are to (1) create an NDVI–NDWI phase–space for the rice
growth season using fused Landsat and MODIS image times series; (2) derive six specific satellite-based
phenometrics: Active tillering date (Dtil), middle heading date (Dhead), maturity date (Dmat), growth season
length (Lseason), vegetative phase length (Lveg), and reproductive phase length (Lrep) based on NDVI
time series and phase–space, respectively; and (3) perform a relative phenophase index (RPI) to
discriminate rice fields under heavy metal stress from unstressed ones.

2. Materials and Methods

2.1. Study Area

The study area is situated in Zhuzhou City, Hunan Province (Figure 1). This area is a region of
a subtropical monsoon climate characterized by hot and wet summers with sufficient sunlight for
rice growth. The mean annual temperature ranges from 16 to 18 ◦C. The mean annual precipitation is
over 1400 mm. The predominant soil type is orthic acrisol according to the world reference base (WRB)
for soil resources [37]. Zhuzhou is a commodity grain production base of China. The main crop type
in Zhuzhou is paddy rice, and the predominant variety is Boyou9083, usually transplanted in early
June and harvested in late September. Meanwhile, Zhuzhou is also an important industrial city with
significant heavy metal pollution. Industrial waste is discharged into the Xiangjiang River, the most



Remote Sens. 2019, 11, 13 3 of 17

polluted river in China, and has large contaminated areas of land along the river. The rice in this region
is cultivated in an intensive pattern as follows: The planted rice in the experimental sites is supplied
with abundant irrigation water and the right amount of fertilizers and farm chemicals to prevent
unwanted stress, including diseases, pests, and water and nutrition deficiency. Thus, heavy metals
become the dominant stressors interfering with the growth of rice.

Figure 1. Location of the experimental sites in Zhuzhou, Hunan Province, China, and the spatial
distribution of sample plots.

Four experimental sites, labeled A, B, C and D, were selected to account for differences in the
severity of heavy metal stress (Figure 1b). Each of them had a size of 1.5 km × 1.5 km. The concentrations
of cadmium (Cd), mercury (Hg), lead (Pb), and arsenic (As), which are the main pollutants in
Hunan Province, were measured in the soil of all experimental sites (Table 1). In Sites B, C, and D,
the concentrations of Cd, Hg, and Pb were all higher than background values and the concentration of
Cd was significantly greater than the upper limit value of the National Secondary Standard in the
Environment Quality Standard for Soils (GB15618-1995). According to the concentration of Cd, which
was considered the main pollutant in the study area, Site A is categorized as “nonstress”, Site B is
categorized as “moderate stress”, and Sites C and D are categorized as “severe stress”.
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Table 1. The average condition of heavy metal contamination in the soil of the experimental sites.

Experimental Geographic Cd Hg Pb As Stress
Site Coordinates Level

A 27◦47′ N 113◦10′ E 0.84 0.35 78.33 10.23 Nonstress
B 27◦40′ N 113◦10′ E 2.31 0.24 91.05 17.34 Moderate stress
C 27◦50′ N 113◦2′ E 3.28 0.51 120.75 18.15 Severe stress
D 27◦58′ N 113◦2′ E 3.57 0.50 130 14.7 Severe stress

Background value 1.43 0.20 82.78 19.11

National secondary 0.3∼1.0 0.3∼1.0 250∼350 20∼30standard

Note: Heavy metal concentrations are given in mg · kg−1. The background data were acquired from the
Hunan Institute of Geophysical and Geochemical Exploration, China. The heavy metals content was measured
by the Analysis and Test Center, Institute of Environment and Sustainable Development in Agriculture,
Chinese Academy of Agricultural Sciences (CAAS).

2.2. Data Collection

2.2.1. Field Measurements

Field experiments were performed from July to September, 2014. A total of 20 sample plots (five at
each site) were set, of which each plot was 30 m × 30 m in size. All sample plots were georeferenced by
a global positioning system instrument. Samples of soil were collected consistently in every sample plot
and preserved in plastic bags. The sampling position was at the rooting zone and the sampling depth
was 20 cm. The soil samples from the same sites were grouped together, dried at room temperature,
ground, and then sent to the laboratory for physicochemical characteristics analysis. The measured
values of each sample plot are presented in Table 1. Information on the critical growth periods of
rice, including transplanting and harvesting date and tillering, heading, and maturity stage was
collected for the 10 plots in Sites A and B by interviewing rice farmers. The plot-based rice growth
stages were recorded as reference data and the NDVI- and phase–space-based phenometrics for the
10 corresponding pixels on the image were extracted.

2.2.2. Remote Sensing Images

We acquired the MODIS MOD09A1 product to obtain 8-day composite surface reflectance data
with a spatial resolution of 500 m and the Landsat Level-2 product to acquire surface reflectance at 30-m
spatial resolution. All available data for the study area between day of year (DOY) 137 (early May)
and DOY 305 (late October) from 2013 to 2017 were collected (Figure 2). Remote images with the
experimental sites fully covered by the cloud were excluded from analysis. The MOD09A1 product
provides bands 1–7, of which band 3, band 4, band 1, band 2, and band 6 were selected as blue,
green, red, NIR, and SWIR bands, respectively, while the Operational Land Imager (OLI) on Landsat 8
provides nine spectral bands, of which band 2, band 3, band 4, band 5, and band 6 were selected as
blue, green, red, near infrared (NIR), and shortwave infrared (SWIR) bands, respectively (Table 2).
Basic processing, including radiometric correction and geometric correction, was implemented in both
products mentioned above to provide application-ready datasets. The Landsat 8 image on DOY 205 in
2016 was used to obtain the spatial distribution of rice using a supervised classification.
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Figure 2. Scene acquisition dates by year for the Landsat, MODIS, and enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM)-predicted images.

Table 2. Brief characteristics of LANDSAT 8- and MODIS-selected bands.

Band Name Landsat 8 MOD09A1

Band No. Wavelength (µm) Resolution (m) Band No. Wavelength (µm) Resolution (m)

Blue band Band 2 0.450–0.510 30 Band 3 0.459–0.479 500
Green band Band 3 0.530–0.590 30 Band 4 0.545–0.565 500
Red band Band 4 0.640–0.670 30 Band 1 0.620–0.670 500
NIR band Band 5 0.850–0.880 30 Band 2 0.841–0.876 500

SWIR band Band 6 1.570–1.650 30 Band 6 1.628–1.652 500

2.2.3. Auxiliary Data

Meteorological data, including the daily actual duration of sunshine and daily average air
temperature from 2013 to 2017, were downloaded from the China Meteorological Data Sharing
Service System (http://www.cma.gov.cn/). The solar radiation was calculated using the following
equation [38]:

Rs =
(

a + b
n
N

)
Ra, (1)

where Rs is the total daily solar radiation (J · m−2), a and b are empirical constants of 0.25 and 0.5,
n represents the daily actual duration of sunshine, N represents the daily potential duration of sunshine,
and Ra represents the extraterrestrial solar radiation (W · m−2), which was calculated according to the
method of Liu [39].

2.3. NDVI–NDWI Phase–Space Construction

High spatiotemporal resolution remote sensing data are essential in order to detect the slight
changes in rice development caused by heavy metal stress. We used the enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) [40] to obtain a time series of the 8-day surface reflectance
product (30 m) by blending the selected bands of Landsat 8 and MODIS data. ESTARFM focuses on
improving data fusion for the mixed pixels and has made significant improvements in the accuracy of
predictions for heterogeneous landscapes, which exist widely in our study area [41]. The ESTARFM
algorithm uses two pairs of Landsat-MODIS images (i.e., dates t1 and t3) and one MODIS image (date t2)
to predict a Landsat-like image at date t2. In this study, a total of 79 fine-resolution images (including 46
predicted images and the 33 original Landsat images) were obtained (Figure 2). We applied cloud and

http://www.cma.gov.cn/
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cloud shadow masks generated from the pixel quality assurance in the Landsat product to all synthetic
images and removed them from the overall analysis.

NDVI, which is correlated with the absorption of photosynthetically active radiation, was calculated
as follows [42]:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, (2)

where ρNIR, ρRed and ρBlue are the reflectances of the NIR band, red band, and blue band, respectively.
NDWI, which is correlated with the canopy water content, was calculated as follows [43]:

NDWI =
ρNIR − ρSWIR
ρNIR + ρSWIR

, (3)

where ρSWIR is the reflectance of the SWIR band.
The application of satellite-derived VI time series is inevitably hindered by noise arising

from clouds, ozone, dust, and other aerosols. Though the cloud-polluted pixels were masked out,
radiance disturbance still existed in the VI time series. To solve this problem, the VI time series were
fitted using a double-logistic curve as follows [44]:

v (t) = a + b
(

1
1 + ect+d +

1
1 + eet+ f

)
, (4)

where v(t) represents the value at time t (d), and a, b, . . . , f are the fitting parameters. The daily NDVI
and NDWI time series that covered the rice growth season (from DOY 120 to DOY 305) were then
generated by the fitting function (Equation (4)). We gave an example of phase–space established by the
greenness and wetness VI, of which the greenness VI takes the NDVI as an example and the wetness
VI refers to the NDWI (Figure 3). In the NDVI–NDWI phase–space, the temporal trajectory of a rice
pixel throughout the whole growth period first drifts towards the top right areas and then towards the
bottom left areas with the progression. The dynamic of the pixel was described as dist, the distance
from the pixel to the origin in the phase–space, by the following equation:

dist =
√

NDVI2 + NDWI2. (5)
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Figure 3. Schematics showing (a) the normalized difference vegetation index (NDVI) and normalized
difference water index (NDWI) time series in date-VI form and (b) the calculation of dist (the distance
from the pixel to the origin in the phase–space) in the corresponding NDVI–NDWI phase–space for an
example rice pixel.
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2.4. Defining NDVI- and Phase–Space-Based Rice Phenometrics

The active tillering date (Dtil), middle heading date (Dhead), and maturity date (Dmat) were first
defined for the NDVI time series: The date of the maximum point on the first derivative was used to
estimate Dtil ; the date of the maximum point was used to estimate Dhead; and the date of the minimum
point on the first derivative was used to estimate Dmat (Figure 4a) [24,45,46]. Then, we applied these
existing phenological extraction methods to the phase–space. Specifically, the phenometrics were
redefined based on the time series of dist: Dtil was redefined as the date of the maximum point on the
first derivative of dist; Dhead was redefined as the date of the maximum value of dist and Dmat was
redefined as the date of the minimum point on the first derivative of dist (Figure 4b).

DmatDhead

 NDVI
 First derivative

 dist
 First derivative

N
D

VI

Dtil

Dtil DmatDhead

b

a

di
st

Date (DOY)

-0.010

-0.005

0.000

0.005

0.010

Fi
rs

t d
er

iv
at

iv
e

Vegetative phase Reproductive phase

-0.010

-0.005

0.000

0.005

0.010

Fi
rs

t d
er

iv
at

iv
e

Figure 4. Temporal profiles and the first derivatives of NDVI (a) and dist (b). The vertical dashed
lines refer to the dates of active tillering (Dtil), middle heading (Dhead), and maturity (Dmat), from left
to right.

Since soil-related factors (e.g., soil moisture) greatly impact the VI values in the early growth
period of rice (i.e., from transplanting to active tillering) due to the low vegetation cover, we prefer to
set the growth season of interest to start at active tillering instead of transplanting. As the heading
stage was supposed to divide rice development into vegetative and reproductive growth [45,47,48],
we defined the vegetative phase as the period from Dtil to Dhead and the reproductive phase as the
period from Dhead to Dmat. Thus, another three phenometrics, growth season length (Lseason), vegetative
phase length (Lveg), and reproductive phase length (Lrep), were calculated as follows:

Lseason = Dmat − Dtil , (6)

Lveg = Dhead − Dtil , (7)
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Lrep = Dmat − Dhead, (8)

where Lseason, Lveg, and Lrep represent the lengths of growth season, vegetative phase, and reproductive
phase (d), respectively. Particularly, the NDVI-based Lseason, Lveg, and Lrep were calculated by the
NDVI-based Dtil , Dhead, and Dmat, while the phase–space-based Lseason, Lveg, and Lrep were calculated
by the phase–space-based Dtil , Dhead, and Dmat.

2.5. Relative Phenophase Index (RPI)

To evaluate heavy metal stress-induced satellite-derived rice phenometrics, a relative phenophase
index was then defined as:

RPI =
Lrep − Lveg

Lrep + Lveg
, (9)

where Lveg and Lrep represent the lengths of the vegetative and reproductive phase, respectively.
The RPI characterizes the difference between the vegetative and reproductive phase durations relative
to the growth season. Based on the relationships between satellite-based phenometrics and the actual
rice growth stages, the delaying of the heading stage caused by heavy metal stress could also result in
a time lag of the Dhead, and thus a relative change of Lveg and Lrep. Therefore, the RPI for the stressed
rice paddies would theoretically exhibit a lower value due to the relative longer vegetative phase.
We developed NDVI- and phase–space-based RPI, computed based on NDVI- and phase–space-based
phenometrics, respectively, for a comparison in the subsequent analyses.

2.6. Statistical Analysis

Crop phenology is considered a function of accumulated degree days, photoperiod, and vernalization
requirements [49]. Specifically, a settled level of the temperature or solar radiation accumulation would
shift the crop growth cycle from one stage to the next stage. As the goal of this study was to detect the
stress-induced phenological characteristics, the meteorological variables should be taken into account
as interferences. We used partial correlation analysis and significance tests to evaluate the influence of
the meteorological variability on Lseason, Lveg, Lrep, and the RPI. The daily mean air temperature of the
growth season (Tseason), the vegetative phase (Tveg) and the reproductive phase (Trep) and the daily mean
solar radiation of the growth season (Rsseason), the vegetative phase (Rsveg), and the reproductive phase
(Rsrep) were calculated for each year of the period 2013–2017. To test the null hypothesis that the RPI
was not significantly different between experimental sites, a standard analysis of variance (ANOVA) was
conducted using a significance level of 0.001. The post-hoc test (Dunnett’s T3) was applied to determine
significant differences between any two of the four study sites at p < 0.001.

3. Results

3.1. Validation of Satellite-Derived Phenometrics with Field Investigation

The transplanting date, tillering stage, heading stage, maturity stage, and harvesting date (the end
of the maturity stage) acquired from the field survey are shown in Figure 5. The lengths of the actual
growth season (from transplanting date to harvesting date) were nearly the same for the 10 sample
plots. The timing of transplanting was generally earlier in Site A (from DOY 148 to DOY 153) than
in Site B (from DOY 154 to DOY 160), which caused the whole growth season of rice paddies in
Site B to lag behind those in Site A. We chose to qualitatively validate the derived phenometrics with
the survey data. Specifically, the satellite-derived Dtil , Dhead, and Dmat were validated against the
stages of tillering, heading, and maturity collected by field survey. The NDVI- and phase–space-based
phenometrics all lay within the corresponding rice growth stage, which indicated that satellite-derived
phenometrics are reasonable.
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Figure 5. Comparison between satellite-derived rice phenometrics and plot-based rice growth stages
for Site A and B in 2014. The satellite-derived phenometrics include the dates of active tillering (Dtil),
middle heading (Dhead), and maturity (Dmat), from left to right, derived from NDVI and phase–space,
respectively. The rice phenological stages from the 10 sample plots were acquired from the in-situ
investigations. The end of the maturity stage represents the harvesting date.

3.2. Comparison of the Spatial Variability of Phenometrics

The spatial distributions of mean Dtil , Dhead, and Dmat for Sites A and B during the period
2013–2017 are presented in Figure 6. Generally, all of these three phenometrics in Site A were earlier
than those in Site B. For either the NDVI- or the phase–space-based phenometrics, the overall mean Dtil
and Dhead in Site A were approximately 5–7 days earlier than those in Site B, while the overall mean
Dmat in Site A was only 2–3 days earlier than that in Site B. The NDVI- and the phase–space-based
phenometrics were close to each other. For both experimental sites, the overall mean values of
NDVI-based Dtil and Dhead were 1–3 days earlier than those based on phase–space, while the overall
mean values of NDVI-based Dmat were almost the same or a little later (approximately 1 day) compared
to the phase–space-based ones.

The spatial distributions of the mean Lseason, Lveg, and Lrep in Sites A and B during the period
2013–2017 are presented in Figure 7. For either the NDVI- or the phase–space-based phenometrics,
the overall mean Lseason and Lrep in Site A were 2–3 days longer than those in Site B, while the overall
mean Lveg in Site A was 1–2 days shorter than that in Site B. For both experimental sites, the overall
mean values of the NDVI-based Lseason and Lrep were 1–2 days longer than those derived from the
phase–space, while the overall mean values of NDVI-based Lveg were the same or a little longer (1 day)
compared to the phase–space-based ones. Noticeably, the spatial standard deviations of the 5-year
mean Lseason (2.8 to 3.1), Lveg (2.0 to 2.4), and Lrep (1.9 to 2.2) were distinctly smaller than those of the
5-year mean Dtil (5.0 to 5.5), Dhead (4.0 to 4.4), and Dmat (3.4 to 3.9).
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3.3. Influence of Meteorology on Phenometrics and the RPI

Table 3 shows the partial correlation coefficients between the phenometrics and the meteorological
factors in the four study sites. Lseason, Lveg, and Lrep were all significantly (p < 0.001) correlated
(negatively) with the daily mean air temperature during the corresponding period. For both of
the NDVI- and phase–space-based phenometrics, Lseason and Lveg showed moderate correlations
(−0.55 < r < −0.45) with the Tseason and Tveg, respectively, while Lrep showed weak correlations
(−0.34 < r < −0.33) with the Trep. Similarly, Lseason, Lveg, and Lrep were significantly (p < 0.001)
correlated (negatively) with the daily mean solar radiation during the corresponding period. For both
of the NDVI- and phase–space-based phenometrics, Lseason and Lveg showed moderate correlations
(−0.55 < r < −0.40) with the Rsseason and Rsveg, respectively, while Lrep showed weak correlations
(−0.31 < r < −0.29) with the Rsrep.

By contrast, the RPI showed generally weak or nonsignificant correlations with the meteorological
variables (Table 4). The NDVI-based RPI showed stronger correlations (−0.30 < r < −0.08) with the
daily mean air temperature and the daily mean solar radiation compared to the phase–space-based one
(−0.26 < r < −0.01). The correlations between the RPI and meteorological factors during the vegetative
phase were relatively stronger (−0.26 and −0.21).

Table 3. Partial correlation coefficients between derived phenometrics and meteorological factors
calculated based on the period of the corresponding phenometrics for all pixels in the four experimental
sites during the period 2013–2017. ** p-value statistically significant at <0.001.

NDVI-Based Phenometrics Phase–Space-Based Phenometrics
Lseason Lveg Lrep Lseason Lveg Lrep

Tseason −0.48 ** −0.45 **
Tveg −0.55 ** −0.54 **
Trep −0.34 ** −0.33 **

Rsseason −0.42 ** −0.40 **
Rsveg −0.55 ** −0.54 **
Rsrep −0.31 ** −0.29 **

Table 4. Partial correlation coefficients between the relative phenophase index (RPI) and meteorological
factors calculated based on the period of the corresponding phenometrics for all pixels in the four
experimental sites during the period 2013–2017. ** p-value statistically significant at <0.001.

NDVI-Based RPI Phase–Space-Based RPI

Tseason −0.19 ** −0.15 **
Tveg −0.30 ** −0.26 **
Trep −0.10 −0.08

Rsseason −0.17 ** −0.09
Rsveg −0.27 ** −0.21 **
Rsrep −0.08 −0.01

3.4. Regional Heavy Metal Stress Detection

The spatial and frequency distributions of RPI in the four experimental sites are presented in
Figures 8 and 9. The NDVI-based RPI was calculated by the mean Lveg and Lrep derived from NDVI, while
the phase–space-based RPI was calculated by the mean Lveg and Lrep derived from the phase–space during
the period 2013–2017. Generally, (1) RPI values for Site A (nonstress) were greater than those for Sites B,
C and D (stress); (2) for stressed sites, the RPI for Site B (moderate stress) was greater than those for Sites
C and D (severe stress); (3) RPIs for Sites C and D were close to each other. According to the statistical
results, both the NDVI- and phase–space-based RPI showed significant (p < 0.001) difference across
the heavy metal stress gradient (Table 5). Compared to the NDVI-based RPI, the phase–space-based



Remote Sens. 2019, 11, 13 12 of 17

RPI showed a more obvious difference under different stress levels according to the overlapping
proportion (Figure 9).
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Figure 8. Spatial distributions of the mean values of (a–d) the NDVI-based RPI and (e–h) the phase–
space-based RPI during the period 2013–2017.
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Figure 9. Statistical box charts of (a) the NDVI-based RPI and (b) the phase–space-based RPI in the four
experimental sites. Central lines represent the medians, boxes represent mean ± standard deviation,
and the whiskers represent the minimum and maximum values.

Table 5. Sensitivity of the NDVI- and phase–space-based RPI to heavy metal stress levels.

F a p a Sites A–B b Sites A–C b Sites A–D b Sites B–C b Sites B–D b Sites C–D b

NDVI-based RPI 95.33 <0.001 X X X X X
Phase–space-based RPI 256.32 <0.001 X X X X X

a F statistic and P-value obtained from the standard analysis of variance (ANOVA). b Significant changes
in the NDVI- and phase–space-based RPI for any two experimental sites according to the Dunnett’s T3 at
p < 0.001 are indicated with X.
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4. Discussion

Generally, the greenness and wetness VIs could reflect different aspects of the vegetation dynamics
and consequently lead to differences in the VI profiles [33]. Our results showed that the NDVI began
to decrease, while the wetness VI still stagnated at its maximum value (Figure 3a), which may suggest
that the biochemical components of the rice canopy begin to asynchronously change when entering
the heading stage. In the remote sensing context, the likely reason is that the increasing proportion of
the spikes in the canopy could contribute to lower chlorophyll content but almost unchanged water
content reflected on a pixel basis. Compared with the single-purpose VI, the phase–space method is
theoretically advantageous in characterizing the development of rice because the greenness–wetness
VI phase–space theoretically encompasses more information (e.g., pigment and water content). Thus,
we suggest that the NDWI time series should not only be used to eliminate the influence of snow,
and the phase–space partitioning may not only be applied throughout the whole year but also for the
growth season, for example, crop cycles. As NDWI can be disturbed by soil moisture, especially in the
case of low vegetation coverage, we did not use it as a separate VI in the phenology extraction and we
also did not study the period from transplanting to active tillering.

Heavy metal stress has been proven to cause a later heading stage in the rice development [4,6],
but it is still questionable when applying this theory to the remote sensing context. As a practical matter,
the shifts of the heading stage induced by heavy metal stress are difficult to measure quantitatively
due to the agricultural management and meteorological conditions. Dtil , Dhead, and Dmat showed
great spatial variability between Sites A and B (Figure 6) because they were mainly contributed by the
timing of transplanting and harvest, in which artificial uncertainty exists. Despite Lseason, Lveg, and
Lrep showing smaller variability (Figure 7), they all showed a significantly negative correlation with
the air temperature and the solar radiation (Table 3). Thus, these phenometrics are not suggested to
be appropriate stress indicators. Moreover, the mismatch in the temporal scale leads to an uncertain
relationship between the heading stage and the Dhead. Alternatively, we analyzed the relationship
between Lveg and Lrep and inferred that there should be a certain relation between the relative longer
Lveg (or shorter Lrep) and the delaying of the onset of the actual heading stage of rice.

Therefore, we proposed the RPI which takes advantage of the relative change on Lveg and Lrep for
the heavy metal stress discrimination. Constructed by a “normalized difference” form, the RPI ranges
from −1 to 1 in math calculations, while in the real world, it may show a narrower range of around 0.
For example, our results showed that the range of the RPI was from about −0.3 to 0.3. In this study,
the RPI was used as a qualitative connection between the delayed heading stage and the relatively
longer Lveg; the RPIs for the stressed rice should be generally lower than those for unstressed rice.
We tested the sensitivity of the RPI to two categories of distractions: (1) Human activities, particularly
transplanting; and (2) meteorological factors. The calculation of the RPI is based on the lengths of the
phenophases, which makes this index free of the timing of transplanting. As can be seen from the
results, the RPI could significantly reduce the disturbance of ambient temperature and solar radiation,
compared to the other phenometrics (Table 4). In the heavy metal stress determination, both the NDVI-
and phase–space-based RPIs were considered to be acceptable stress indicators for regional heavy
metal stress detection (Figure 9). Notably, the phase–space-based RPI performed statistically better
than the NDVI-based RPI due to the lower overlapping proportion, which indicates the difference in
the response mechanism of NDVI- and phase–space-based phenometrics to the heavy metal stress.
A conceivable reason is that heavy metals delay the temporal changes of overall metabolism more than
the photosynthesis during the heading stage and consequently extend the phase–space-based Lveg to a
greater degree compared to the NDVI-based one.

Although we specialized this study to rice phenology, the phase–space method as well as
the proposed RPI retain applicability to land surface phenology research for natural ecosystems.
The vegetative phase and the reproductive phase could be regarded as the “greenup” phase and the
“senescence” phase [50], respectively. There are various approaches to deriving the start (or end) of
the season, which could be roughly categorized into the threshold method [51–53] and the inflection
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point method [50,54]. We suggest that the inflection point method is more suitable to being transformed
into the phase–space. Furthermore, we hoped that the RPI could be applied to other environmental
changes that are causing intra-annual variability in phenology, not just for heavy metal stress in rice.

5. Conclusions

This study made progress in the theory and application of regional heavy metal stress detection
in rice paddies based on the satellite-derived VI time series. The temporal trajectories of the rice pixels
in the NDVI–NDWI phase–space were explored to comprehensively describe the development of rice
through both photosynthetic and metabolic activity. The extraction algorithms of Dtil , Dhead, Dmat,
Lseason, Lveg, and Lrep were applied to derive the phenometrics based on the phase–space. Among
all the derived phenometrics, Dtil , Dhead, and Dmat were largely dependent on the transplanting date
and Lseason, Lveg, and Lrep were significantly influenced by the air temperature and solar radiation.
The proposed RPI possessed the capability to capture the delayed heading stage caused by the heavy
metal stress with reduced effects of human activities and meteorological disturbance. However,
this study was limited to the relatively single rice variety in our study area, which is a typical region
of a subtropical monsoon climate; therefore, the applicability to other rice varieties or environmental
conditions still needs to be explored in our future work. In a word, the greenness–wetness synergetic
strategy possessed an advantage in responding to the variations in the whole physiological activity of
the plant under heavy metal stress. The phase–space method, as well as the RPI, is recommended for
investigation in future phenology research.
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