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Abstract: The urban heat island (UHI) effect, in which urbanized areas tend to have warmer
conditions compared to their rural surroundings, has drawn increasing attention in recent years.
Using ground-based and satellite remote sensing data, we present a method to quantify the spatial
pattern and diurnal and seasonal variations in canopy layer heat islands (CLHIs) in China’s 32 major
cities during 2009 and investigate their relationships with built-up intensity (BI), nighttime lights,
vegetation activity, surface albedo, and surface urban heat island intensity (SUHII). The results show
that both the annual daytime and nighttime CLHI intensities (CLHIIs) were positive ranging from
0.2 ◦C to 2.2 ◦C and from 0.3 ◦C to 2.4 ◦C for these major cities, respectively. Higher CLHIIs were
observed in the night, especially for northern parts of China. Along urban–rural gradients, the
CLHI effect had an exponential decay shape and differed greatly by season. The CLHII distribution
correlated positively and significantly to BI and nighttime lights. Vegetation activity was negatively
correlated with the CLHII and more strongly in summer. Surface albedo showed an extremely weak
correlation with the CLHII. In addition, CLHII had a strong correlation with SUHII. The annual
daytime SUHII was 1.2 ± 1.1 ◦C (mean ± standard deviation) with 0.40 ◦C (95% confidence interval
0.36 to 0.44 ◦C) of annual daytime CLHII. The annual nighttime SUHII was 2.0 ± 0.8 ◦C with 1.04 ◦C
(0.99 to 1.09 ◦C) of annual nighttime CLHII. Our results suggest that, reducing built-up intensity and
anthropogenic heat emissions and increasing urban vegetation provide a co-benefit of mitigating
SUHI and CLHI effects.

Keywords: urban heat island; surface air temperature; land surface temperature; spatial variations;
driving forces

1. Introduction

As urbanization accelerates across the world [1], especially over the past three decades in China [2],
the urban heat island (UHI) effect has received extensive attention [3–9]. Urban heat island refers
to a serious climate problem in which the urban environment tends to experience overall warmer
conditions compared to the rural surroundings, bringing about ecological environmental and human
health effects, such as the impact on vegetation phenology, more energy consumption, and heat-related
mortality [1,10,11].

Typically, two main strands of research, i.e., surface urban heat island (SUHI) and canopy layer
heat island (CLHI), are devoted to investigate UHI effects [12]. The SUHI is determined by the
difference in temperature at the surface and has a strong relationship with the surface orientation
relative to the sun and land-use and land-cover [13,14]. The CLHI refers to a rise in the temperature of
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the urban atmosphere, and is determined by the difference in surface air temperature (SAT, generally
taken as the value at 2 m above the ground) between urban and rural surroundings.

Weather stations generally provide limited spatial coverage, which limits the analysis of CLHI. In
contrast, SUHI retrieval from thermal infrared remote sensing has been widely conducted across big
cities around the world because of easy access and broad coverage [4,15–17]. These studies indicated
that increasing vegetation coverage and surface albedo in urban areas, and reducing anthropogenic
heat emissions are effective measures with which to mitigate UHI. On the other side, the temperature
at the canopy layer is closely related to human sensible temperature and disease transmission, and
especially shows major health risks among elderly people [18,19]. The negative health consequences
of high temperatures would be exacerbated by the UHI effect [20,21], however, the majority of the
literature discusses land surface temperature (LST) for SUHI analysis [4,14–17,22,23], and few studies
use SAT retrieval from satellite data to analyze the CLHI effect [12,13]. The use of satellite-based data
to retrieve SAT for the analysis of the CLHI pattern was conducted in several cities, such as Wuhan [12],
Milan [13], Shanghai [24], Rome [25], and Beijing [26]. Furthermore, research also compared the SUHI
and CLHI of a city [26]. However, few studies link surface urban heat island to canopy urban heat
island on a large scale. Investigating CLHI and its relationship with SUHI on a national scale is needed
as it helps to improve our understanding of UHI.

In this project, we quantified the spatial pattern, diurnal and seasonal variations in CLHI during
2009, and compared the between-city differences in CLHI intensity (CLHII) to investigate their
relationships with possible driving forces and SUHI intensity (SUHII). Using ground-based data
and moderate-resolution imaging spectroradiometer (MODIS) products, we produced 1-km spatial
resolution SAT maps to quantify the CLHII in China’s 32 major cities. Built-up intensity (BI), nighttime
lights, vegetation activity, and surface albedo were used to explain CLHII distribution. Finally, we
discussed the relationships between SUHI and CLHI effects.

2. Materials and Methods

2.1. Data Sources

This article focuses on 32 major cities in China, including 31 municipalities or provincial capitals
and one special economic zone (Figure 1). MODIS collection-5 products of LST (703 images), enhanced
vegetation index (EVI, 228 images), land-use land-cover (LULC, 19 images), and surface shortwave
albedo (456 images) were collected in 2009. These satellite data are of high quality and are widely
used [17,27,28]. The MODIS instruments on board both the Aqua and Terra Spacecraft platforms
can obtain the image of the entire Earth surface with a revisit period of 1 to 2 d. The 8-d mean LST
products (MYD11A2) including daytime (~13:30) and nighttime (~01:30) temperature were used. The
LST data generally had an absolute bias of less than 1 K [27]. The MODIS monthly EVI products
(MOD13A3) were used to reflect vegetation activity. The MODIS yearly LULC data (MCD12Q1) were
used to distinguish urban pixels. The MODIS albedo products (MCD43B3) including black sky albedo
(BSA) and white sky albedo (WSA) over shortwave broadband (0.3–3.0 µm) were collected. Because
the BSA is linearly correlated with WSA [4], only WSA was applied in this study. The MODIS LST,
EVI, and albedo cover China with a spatial resolution of 1 km. The MODIS surface reflectance and
LULC products (MOD09A1) cover China with a spatial resolution of 500 m. A digital elevation model
(DEM, 62 images) was obtained from the Consultative Group on International Agricultural Research
(CGIAR) consortium for spatial information with a spatial resolution of approximately 90 m. The
Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) nighttime lights
(1 image) were available from the US National Oceanic and Atmospheric Administration (NOAA).
All data were resampled to 1 km spatial resolution using bilinear interpolation, and were merged
into monthly composites. The NOAA’s National Centers for Environmental Information (NCEI,
https://gis.ncdc.noaa.gov/) provides access to global weather data. A total of 370 weather station
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data sets were collected (Figure 1). The weather data records the hourly/sub-hourly SAT. We used
SAT observed at 02:00 and 14:00 to match the observation times of LST data.Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 17 
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Figure 1. Map showing the topography of China and the location of weather stations and the 32
major cities. These cities are municipalities or provincial capitals, except a special economic zone of
Shenzhen. A total of 370 weather stations from the National Weather Service (NWS) record the hourly
surface air temperature (SAT). Subplot shows seven geographical divisions in China. Abbreviations:
BJ, Beijing; CC, Changchun; CD, Chengdu; CQ, Chongqing; CS, Changsha; FZ, Fuzhou; GY, Guiyang;
GZ, Guangzhou; HB, Harbin; HF, Hefei; HT, Hohhot; HZ, Hangzhou; JN, Jinan; KM, Kunming; LS,
Lhasa; LZ, Lanzhou; NC, Nanchang; NJ, Nanjing; NN, Nanning; SH, Shanghai; SJZ, Shijiazhuang; SY,
Shenyang; SZ, Shenzhen; TJ, Tianjin; TY, Taiyuan; UQ, Urumqi; WH, Wuhan; XA, Xi’an; XN, Xining;
YC, Yinchuan; ZZ, Zhengzhou.

2.2. Methods

2.2.1. Near-Surface Air Temperature Estimation and Evaluation

The underlying relationships among SAT, LST, and auxiliary data have been widely investigated
for estimating SAT distributions [29,30]. The LST, a surface parameter significantly affected by the
land cover, plays the most important role in the estimation of SAT [31–33]. In addition, a large
amount of auxiliary data was used to improve the model performance, e.g., DEM [30,31], normalized
difference vegetation index (NDVI) [32], nighttime lights [34]. These data have been used well
to characterize the spatial pattern of SAT and also the change on time [33]. Random forest, an
algorithm establishing multiple decision trees and merges them together for more accurate and stable
predictions, was found to produce more accurate SAT distributions compared with ordinary least
squares regression and support vector machine methods [31]. The algorithm can avoid the problem of
multicollinearity faced by general regression analysis, with the ability to reach rapid convergence and
confer strong generalization [35]. It has been applied to good effect in both large-scale and fine-scale
SAT mapping [12,34]. Here, we used random forest regression models implemented in R language of
version 3.4.3 (https://www.r-project.org/) to map monthly mean daytime (14:00) and nighttime (02:00)
SAT based on EVI, nighttime lights, LULC, DEM, and daytime and nighttime LST data [34]. Quality
reports from these products indicated that cloud-contaminated pixels had been removed. Therefore,
monthly SAT at pixel level was only obtained in areas with clear sky days. First, we integrated daily
hourly SAT (i.e., daytime: 14:00 and nighttime: 02:00) into monthly mean hourly SAT to maintain
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consistency with satellite data. Next, SAT observations as response variable, and EVI, nighttime lights,
LULC, DEM, and daytime and nighttime LST as regression variables, were applied to random forest
regression models to predict daytime and nighttime SAT over the entire study area. The sample
was divided into 90% training sets and 10% validation sets. Training sets were used to establish the
relationships between variables. Validation sets were used to evaluate model accuracy. A 10-fold
cross-validation was conducted to obtain stable models. The standard deviation, mean absolute error
(MAE) and root mean square error (RMSE) were used to evaluate model performance.

2.2.2. Quantifying CLHII along Urban-Rural Gradients

Yearly MODIS LULC map regions were grouped into seven types (i.e., forest, grassland, cropland,
water, urban, bare ground, and snow) that used to distinguish urban coverage. We followed the steps
below to define urban and surrounding rural areas [17]. First, we generated a BI map from impervious
surface (i.e., the surface mainly covered by impenetrable materials such as asphalt, concrete, brick,
stone) extracted from MODIS land cover map based on a 1 km × 1 km moving window method.
Next, we selected a 50% BI threshold to divide the BI maps into high-intensity and low-intensity BI
polygons [15]. Then, we aggregated the high-intensity BI polygons and then created a buffer distance
of 2 km to delineate the urban border. We defined a rural area as a buffer area around an urban area,
with the same size as the urban area [17]. In particular, we excluded water pixels and those pixels with
altitudes exceeding 50 m above the highest point in the urban areas, since it may overshadow the effects
of urbanization on local temperature [15,36]. For each city, 15 km buffers, in 1 km intervals, emanating
outwards from the surrounding suburban areas to the outer suburbs were created to calculate UHI
intensity along urban-rural gradients. The way of regional division is shown in Figure 2.
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Figure 2. A schematic map shows the way of regional division.

Previous studies have used LST differences between urban and rural areas to calculate the
SUHII [4]. Generally, this method is more objective in comparison with previous analyses using a point
a certain distance away from the urban area as its reference location [15,16], yet it fails to calculate the
CLHII due to an obvious CLHI footprint along urban–rural gradients [12]. On this basis, we defined
the CLHII and SUHII as the difference between urban temperature (the average temperature over an
urban area as a bulk, without considering internal variations in a city) and the median of temperature
in the outermost buffer zones (i.e., the background temperature), because it can reduce the possible
bias caused by the outliers among the three outermost buffer zones [36]. We calculated the temperature
difference (∆Tn) in each buffer area and the surrounding rural temperature as follows:

∆Tn = Tn − Trural, (1)
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where ∆Tn is the temperature difference between the buffern and the background area; Tn is the
temperature in buffern; Trural is the rural temperature around the urban area (i.e., background
temperature). Among them, ∆T0 represents CLHII or SUHII in the urban area.

2.2.3. Quantifying the Potential Drivers of CLHI

Vegetation parameter, surface physical parameters, and two density parameters were defined to
explain the CLHII’s spatial variations. The vegetation parameter is calculated as the difference in EVI
(δEVI) between urban and rural areas. Surface physical parameters were calculated by the difference
in surface albedo (δAlbedo) between urban and rural areas. Density parameters include nighttime
lights and BI. In addition, we linked SUHI to CLHI effects across China’s 32 major cities. Each of
the buffers was a unit of statistical data and was used for correlation analysis. We calculated annual
and seasonal CLHII during 2009 for each city. Seasonal changes were tested in spring (March–May),
summer (June–August), autumn (September–November), and winter (December–February). Linear
regression was used to analyze the relationships between CLHII and the variables used in this study
across multiple cities.

3. Results

3.1. Spatial Pattern of CLHII and SUHII

Figure 3a shows the land cover and Figure 3b,c shows sthe spatial distribution of SAT during the
day and night in the Beijing metropolitan area. Apparently, the SAT in urban pixels was higher than in
other areas during both day and night in Beijing, presenting a clear CLHI effect. Figure 4 shows the
prediction errors of the regression model used to map SAT. The standard deviations of the observed
SAT were 8.6 ◦C, 5.6 ◦C, 10.2 ◦C, and 11.1 ◦C in spring, summer, autumn, and winter, respectively.
These standard deviations were significantly larger than the corresponding RMSE (Figure 4). Also,
the cross-validation R2 ranged from 0.88 in summer to 0.97 in winter. These results indicate that the
retrieval algorithm of SAT was accurate. The method presented in this article significantly improves
the spatial scale and accuracy of CLHI monitoring, compared to the case study (R2 = 0.53) in Wuhan
city, China [12].

Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 17 

 

2.2.3. Quantifying the Potential Drivers of CLHI 

Vegetation parameter, surface physical parameters, and two density parameters were defined 

to explain the CLHII’s spatial variations. The vegetation parameter is calculated as the difference in 

EVI (δEVI) between urban and rural areas. Surface physical parameters were calculated by the 

difference in surface albedo (δAlbedo) between urban and rural areas. Density parameters include 

nighttime lights and BI. In addition, we linked SUHI to CLHI effects across China’s 32 major cities. 

Each of the buffers was a unit of statistical data and was used for correlation analysis. We calculated 

annual and seasonal CLHII during 2009 for each city. Seasonal changes were tested in spring (March–

May), summer (June–August), autumn (September–November), and winter (December–February). 

Linear regression was used to analyze the relationships between CLHII and the variables used in this 

study across multiple cities. 

3. Results 

3.1. Spatial Pattern of CLHII and SUHII 

Figure 3a shows the land cover and Figure 3b,c shows sthe spatial distribution of SAT during 

the day and night in the Beijing metropolitan area. Apparently, the SAT in urban pixels was higher 

than in other areas during both day and night in Beijing, presenting a clear CLHI effect. Figure 4 

shows the prediction errors of the regression model used to map SAT. The standard deviations of the 

observed SAT were 8.6 °C, 5.6 °C, 10.2 °C, and 11.1 °C in spring, summer, autumn, and winter, 

respectively. These standard deviations were significantly larger than the corresponding RMSE 

(Figure 4). Also, the cross-validation R2 ranged from 0.88 in summer to 0.97 in winter. These results 

indicate that the retrieval algorithm of SAT was accurate. The method presented in this article 

significantly improves the spatial scale and accuracy of CLHI monitoring, compared to the case study 

(R2 = 0.53) in Wuhan city, China [12]. 

 

Figure 3. Beijing area maps of (a) Moderate Resolution Imaging Spectroradiometer (MODIS) land 

cover/use data, annual; (b) daytime (14:00); and (c) nighttime (02:00) surface air temperature in 2009. 

The pink, blue, and mazarine lines denote the borders of Beijing’s urban areas, suburban areas of the 

same size as urban areas, and outer suburbs with 15 km buffer distance measured outwards from 

suburb to outer suburb, respectively. Grey lines are equally spaced lines between suburban areas and 

the outer suburbs plotted at 1-km intervals. 

Both the annual daytime and nighttime CLHIIs were positive for these 32 major cities, which 

ranged from 0.2 °C to 2.2 °C in the day and from 0.3 °C to 2.4 °C in the night, respectively (the weakest 

CLHI in Chongqing and the strongest CLHI in Fuzhou in both day and night). The CLHII during the 

day varied irregularly in space, presenting a higher annual CLHII in the northeast, northwest, and 

southwest. During the night, the major cities located in the north of China (Northeast, Northwest, 

and North China) experienced more intense annual CLHII (Table 1). Diurnal variation shows that the 

CLHII is generally higher in the night, especially for northern parts of China (Figure 5). This 

asymmetrical diurnal variation had a consistent trend with SUHII in that nighttime SUHII in the 

northern parts of China tends to be higher [17]. Seasonal variation shows that the Southwest tends to 

present a higher CLHII in summer during both day and night (Table 1, Figure 5). Coastal cities 

showed a weaker CLHI effect compared to that above inland cities possibly due to the influence of 

atmosphere circulation. Figure 6 shows the SAT difference between urban buffers and background 

Figure 3. Beijing area maps of (a) Moderate Resolution Imaging Spectroradiometer (MODIS) land
cover/use data, annual; (b) daytime (14:00); and (c) nighttime (02:00) surface air temperature in 2009.
The pink, blue, and mazarine lines denote the borders of Beijing’s urban areas, suburban areas of the
same size as urban areas, and outer suburbs with 15 km buffer distance measured outwards from
suburb to outer suburb, respectively. Grey lines are equally spaced lines between suburban areas and
the outer suburbs plotted at 1-km intervals.

Both the annual daytime and nighttime CLHIIs were positive for these 32 major cities, which
ranged from 0.2 ◦C to 2.2 ◦C in the day and from 0.3 ◦C to 2.4 ◦C in the night, respectively (the weakest
CLHI in Chongqing and the strongest CLHI in Fuzhou in both day and night). The CLHII during the
day varied irregularly in space, presenting a higher annual CLHII in the northeast, northwest, and
southwest. During the night, the major cities located in the north of China (Northeast, Northwest,
and North China) experienced more intense annual CLHII (Table 1). Diurnal variation shows that
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the CLHII is generally higher in the night, especially for northern parts of China (Figure 5). This
asymmetrical diurnal variation had a consistent trend with SUHII in that nighttime SUHII in the
northern parts of China tends to be higher [17]. Seasonal variation shows that the Southwest tends to
present a higher CLHII in summer during both day and night (Table 1, Figure 5). Coastal cities showed
a weaker CLHI effect compared to that above inland cities possibly due to the influence of atmosphere
circulation. Figure 6 shows the SAT difference between urban buffers and background areas. It is
found that urban and surrounding areas had higher SAT than rural areas, and the CLHI effect had
an exponential decay shape along urban–rural gradients, which is the same as the trends seen along
urban-rural gradients in SUHII observed in previous studies [36]. In addition, the difference in CLHII
was apparent among both cities and seasons (Figure 6). For instance, Chongqing experienced a canopy
layer cool island effect in autumn. This cool island effect was also observed in Nanchang and Wuhan
in spring and Nanjing in winter (Figure 6).
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Figure 4. Density scatterplots of model fitting and cross-validation (CV) in (a) spring, (b) summer, (c)
autumn, and (d) winter at the seasonal level (n = 2170). Abbreviations: RMSE, root mean squared
prediction error; MAE, mean absolute error.

Table 1. Annual and seasonal variations in daytime (14:00) and nighttime (02:00) canopy layer heat
island intensity (CLHII, ◦C, mean ± standard deviation) across seven geographical divisions (Northeast,
North China, Northweast, East China, Southwest, Central China and South China) within China.

Northeast North
China Northwest East

China Southwest Central
China

South
China

Spring daytime CLHII (◦C) 0.7 ± 0.3 0.6 ± 0.3 1.5 ± 1.1 0.6 ± 0.7 1.3 ± 0.5 0.3 ± 0.7 1.0 ± 0.3

Summer daytime CLHII (◦C) 1.4 ± 0.2 0.8 ± 0.5 1.1 ± 0.4 0.6 ± 0.4 1.4 ± 0.7 0.5 ± 0.3 0.4 ± 0.2

Autumn daytime CLHII (◦C) 1.3 ± 0.3 0.7 ± 0.2 1.0 ± 0.6 1.1 ± 0.8 0.7 ± 1.0 0.8 ± 0.3 0.9 ± 0.2

Winter daytime CLHII (◦C) 1.5 ± 1.1 1.0 ± 0.3 1.1 ± 0.3 1.0 ± 0.8 1.0 ± 0.9 0.6 ± 0.2 0.9 ± 0.2

Annual daytime CLHII (◦C) 1.2 ± 0.3 0.7 ± 0.2 1.2 ± 0.5 0.8 ± 0.6 1.1 ± 0.6 0.6 ± 0.3 0.8 ± 0.2

Spring nighttime CLHII (◦C) 1.1 ± 0.3 1.2 ± 0.3 1.7 ± 0.7 0.7 ± 0.8 1.3 ± 0.7 0.3 ± 0.6 1.3 ± 0.6

Summer nighttime CLHII (◦C) 1.2 ± 0.0 0.6 ± 0.3 0.8 ± 0.3 1.0 ± 0.6 1.0 ± 0.5 0.7 ± 0.3 0.6 ± 0.2

Autumn nighttime CLHII (◦C) 1.2 ± 0.2 1.4 ± 0.5 1.3 ± 0.5 1.5 ± 0.9 0.7 ± 0.9 1.2 ± 0.4 1.4 ± 0.4

Winter nighttime CLHII (◦C) 2.1 ± 0.8 1.8 ± 0.2 1.5 ± 0.2 0.9 ± 0.6 0.8 ± 0.8 0.6 ± 0.6 1.3 ± 0.4

Annual nighttime CLHII (◦C) 1.4 ± 0.2 1.3 ± 0.3 1.3 ± 0.4 1.0 ± 0.6 0.9 ± 0.6 0.7 ± 0.4 1.1 ± 0.3
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Figure 7 shows the spatial pattern of SUHII for 32 major cities. The annual mean daytime and
nighttime SUHII had regional differences, which ranged from −2.0 (Lanzhou) to 4.3 (Fuzhou), and 0.7
(Wuhan) to 3.2 (Harbin), respectively. The negative (Lanzhou) and low (Wuhan) values may be due to
the influence of water environment, as the Lanzhou is the only provincial capital to cross the Yellow
River, and the water area in Wuhan accounts for nearly 1/4 of the total area of city. On the whole,
more intense daytime SUHII was observed in cities located in the northeast, east, and southern regions
of China, compared with those in the northwest and southwest. In contrast, a higher nighttime SUHII
was observed in the cities located in the northern and southwest parts of China, compared to those in
the southern and eastern regions. There were obvious seasonal variations in the spatial patterns of
SUHII, especially for the daytime SUHII. Most of the cities experienced more intense daytime SUHII
in summer compared to those in winter. At all seasons, most of the cities had more intense nighttime
SUHII in northern China. This spatial pattern of SUHII in both day and night is consistent with the
result of previous studies [17].
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Figure 5. Spatial distribution of CLHII during the period January–December 2009 across China’s
32 major cities, including seasonal variations during the day in (a) spring, (b) summer, (c) autumn,
(d) winter, and (e) annual, and during the night in (f) spring, (g) summer, (h) autumn, (i) winter, and
(j) annual.
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Figure 7. Maps showing the spatial pattern of the daytime SUHII in (a) spring, (b) summer, (c) autumn,
(d) winter, and (e) annual, and the nighttime SUHII in (f) spring, (g) summer, (h) autumn, (i) winter,
and (j) annual during the period January–December 2009 across China’s 32 major cities.
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3.2. Drivers of Spatial Variation in CLHI

Figure 8 shows that BI had significant and positive effects on CLHII, with a small seasonal
variation (significance level p < 0.001), indicating that the urban areas having high BI tend to have
more intense CLHII. The nighttime lights correlated significantly and positively to the CLHII, which
suggests that higher anthropogenic emissions exacerbate the CLHI effect, especially in summer and
winter (Figure 9). Additionally, the relationship of CLHII with vegetation and surface albedo are
shown in Figure 10; compared with winter (R2 = 0.15, p < 0.001), vegetation activity was correlated
more strongly and negatively to the CLHII in summer (R2 = 0.45, p < 0.001). Compared with other
seasons, surface albedo was correlated more strongly and negatively to the CLHII in summer and
winter, but presents very low correlations. (R2 = 0.02, p < 0.01). Most of the cities showed significant
and positive correlation with daytime and nighttime SUHII (Figure 11). In particular, most cities had a
stronger correlation between CLHII and SUHII during the day in summer (Figure 11a–d), and during
nighttime in other seasons (Figure 11f–i).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 17 
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Figure 8. Relationships of CLHII with BI. The average of seasonal CLHII is shown for different BI bins
(mean ± standard deviation). The insets show the correlation between CLHII and BI intensity. CLHII
in (a) spring, (b) summer, (c) autumn, and (d) winter for different BI binned into 0.25 intervals. The red
line is the linear regression line.
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Figure 9. Relationships of CLHII with nighttime lights (NLs). The average of seasonal CLHII is shown
for different NLs bins (mean ± standard deviation). The insets show the correlation between CLHII
and NLs. CLHII in (a) spring, (b) summer, (c) autumn, and (d) winter for different NLs binned into 20
intervals. The red line is the linear regression line.
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Figure 10. Relationships between CLHII and vegetation and surface albedo. Correlations and
relationships between CLHII and δEVI are shown in the vector and scatter diagram in (a) spring,
(b) summer, (c) autumn, and (d) winter, respectively. (e) Shows the correlation of annual CLHII with
δEVI. Correlations and relationships between CLHII and δAlbedo are shown in the vector and scatter
diagram in (f) spring, (g) summer, (h) autumn, and (i) winter, respectively. (j) Shows the correlation of
annual CLHII with δAlbedo. The red line is the linear regression line.
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Figure 11. Relationships between CLHII and SUHII. Correlations and relationships between daytime
(14:00) CLHII and daytime (~13:30) SUHII are shown in the vector and scatter diagram in (a) spring,
(b) summer, (c) autumn, and (d) winter, respectively. (e) Shows the correlation of annual daytime CLHII
with daytime SUHII. Correlations and relationships between nighttime (14:00) CLHII and nighttime
(~01:30) SUHII are shown in the vector and scatter diagram in (f) spring, (g) summer, (h) autumn, and
(i) winter, respectively. (j) Shows the correlation of annual nighttime CLHII with nighttime SUHII. The
red line is the linear regression line.

4. Discussion

4.1. Possible Drivers Controlling CLHII Spatial Patterns

The SUHII was driven by different variables, such as vegetation activity, surface albedo,
anthropogenic heat emissions, and BI [17]. These variables control the surface energy balance by
changing the heat fluxes [37]. Our results indicated that CLHII has strong correlations with SUHII,
particularly during the night. The possible mechanisms controlling CLHII are discussed below.
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4.1.1. Built-Up Intensity

There were significant and positive correlations between CLHII and BI, and the relationships
had small seasonal variations (Figure 8). We conclude that BI aggravates the CLHII by significantly
increasing the burden on surface, resulting in more heat storage at the surface and more heat release in
the form of sensible heat flux to atmosphere. A possible reason for this could be higher BI is expected to
help maintain warmer temperatures than those in areas with lower BI, because this heat can be emitted
by human activities and is stored by buildings and roads in urban areas [17,38,39] thus increasing the
burden on the CLHI effect.

4.1.2. Nighttime Lights

Nighttime lights are used as a proxy for socio-economic activities [40,41], and are also considered
as a proxy for anthropogenic heat emissions [17,42]. The anthropogenic heat flux released into the
atmosphere directly affects the local temperature. This part of the heat also can be converted into
sensible heat flux [43], and contribute to maintaining the SUHII, particularly during the night [4]. We
find significant and positive correlation between CLHII and nighttime lights (Figure 9), especially in
summer and winter. This positive correlation between CLHII and nighttime lights is analogous to the
studies of SUHII [4,17,39]. Therefore, we suggest the important role of anthropogenic heat emissions
on the CLHI effect. This correlation between CLHII and nighttime lights is better than that with
SUHII, implying the more direct influence of anthropogenic emissions on the CLHI effect compared to
SUHI effect.

4.1.3. Vegetation Activity

Vegetation increasing the latent heat flux via evaporation is expected to have a cooling effect
compared with impervious surfaces, and hence offers potential for mitigation of SUHI effects [4,16,23].
In addition, vegetation correlated significantly and negatively to the CLHII in both summer and
winter [12]. Our results show obvious spatial and seasonal variations in the relationships between
CLHII and δEVI (Figure 10). Furthermore, our results support the mechanism by which vegetation
mitigates the CLHI effect, through transpiration releasing water vapor, thus increasing the latent heat
flux. The vegetation feedback is more significant in summer and weakly in winter, which is attributed
to the phenology that vegetation undergoes more evaporation during the mature period compared to
that in periods of plant growth and senescence.

4.1.4. Surface Albedo

The proportion of impervious surfaces continues to increase as a result of rapid urbanization,
resulting in lower emissivity and surface albedo in urban areas. Together, the new materials used
in urban areas reduce heat loss because they can absorb more all-wavelength radiation and have a
higher heat-storage capacity [37,38]. The nighttime SUHII is generally driven by the surface heat fluxes
absorbed in the daytime [37], and hence those cities with larger and negative surface albedo difference
between urban and background areas (i.e., a larger and negative δAlbedo) are expected to experience
more intense SUHII at night. The surface albedo has a more significant effect in winter compared to
summer owing to defoliation and snow-cover [17]. In contrast, to confirm the difficult to interpret the
δAlbedo in a heterogeneous and variable scenario (urban and rural), research found that the δAlbedo
contributed little to the SUHI in Chinese cities both in spatial patterns and seasonal trends [44]. Similar
to the results from Zhou et al. [44], our results show that the impacts of surface albedo to CLHII
disappeared (Figure 10), given that this correlation is very low. In other words, our result shows a loss
of correlation with SAT, which is consistent with the results as reported in Baldinelli et al. [45]. In fact,
the relationship between surface albedo and SAT is not simple, due to the impact of the vegetation
(low albedo), present both in the urban and rural areas, as well as the seasonal variation. Also, when
the micro-scale heat transfer effect is high, their correlation disappears [45].
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4.2. Spatial Distribution of CLHII and Their Potential Drivers

The spatial distribution of CLHII was affected by physical mechanism, presenting diurnal and
seasonal variations (Figure 5). The annual daytime CLHII was explained by greater vegetation cover
in the southwest [17], and also in the northeast, and northwest (Figure 10, Table 1). During the night,
more intense annual CLHII in the northern parts of China, could be explained by low soil moisture
and strong positive feedback arising from the LST (Figures 7 and 11). A higher CLHII was observed in
the southwest in summer, which was mainly explained by the strong vegetation feedback (Figure 10).
Both nighttime lights and BI aggravated CLHII (Figures 8 and 9). A few cities experienced a canopy
layer cool island effect (Figure 6). For instance, there is a canopy layer cool island effect observed
in Chongqing in the autumn (Figure 6), which could be explained by the weak vegetation feedback
(Figure 10c).

4.3. Relationship between CLHI and SUHI Effects

The SUHII is generally thought to be biophysical in nature, arising from the difference of surface
properties between urban and rural land, including sensible heat convection efficiency, evaporative
cooling, sunlight reflection, and anthropogenic heat emissions [46,47]. We find that most of the
cities presented strong correlations between CLHII and SUHII, particularly at night (Figure 11). The
annual daytime SUHII (~13:30) explained 35% of the variation in annual daytime (14:00) CLHII. The
annual nighttime SUHII (~01:30) explained 81% of the variation in annual nighttime (02:00) CLHII
(Figure 11). These results indicated that the SUHI effect correlated significantly to the CLHI effect,
which is consistent with a case study in Milan, in which SAT and LST show a correlation coefficient
greater than 0.95 at night and a correlation coefficient of less than 0.6 during the day [48]. Furthermore,
the annual daytime SUHII was 1.2 ± 1.1 ◦C with 0.40 ◦C (Figure 11, 95% confidence interval 0.36 to 0.44
◦C) of annual daytime CLHII observed in urban areas. The annual nighttime SUHII was 2.0 ± 0.8 ◦C,
accompanied by 1.04 ◦C (Figure 11, 0.99–1.09 ◦C) of annual nighttime CLHII. In addition, the daytime
and nighttime SUHII explained 40% and 59% of the variation in CLHII during summer, respectively.
In contrast, the daytime and nighttime SUHII explained 12% and 77% of the variation in CLHII in
winter. The difference in correlation resulting from diurnal and seasonal variations can be interpreted
as arising from heat storage in daytime and heat release at night, and more heat being absorbed in
summer compared to winter.

5. Conclusions

This study quantified the spatial pattern, diurnal and seasonal variations in CLHI effect and
its drivers in China’s 32 major cities. Both the annual daytime and nighttime CLHII were positive
ranging from 0.2 ◦C to 2.2 ◦C and from 0.3 ◦C to 2.4 ◦C in China’s 32 major cities, respectively. The
cities located in Northern China experienced more intense CLHII, particularly at night. In addition,
the CLHI effect had an exponential decay shape along urban–rural gradients. Nighttime lights and BI
had positive effects on the CLHII. Vegetation correlated negatively, and more strongly, to the CLHII
in summer. Surface albedo showed an extremely weak correlation with the CLHII. In particular, we
provided a method to link CLHI to SUHI effects across China’s 32 major cities, and indicated that
CLHII had strong correlations with SUHII, implying the mitigation of SUHI effect provides a co-benefit
in mitigating CLHI effect. In summary, this research provides a new CLHI monitoring process and
can be used to guide further studies across other cities. However, in reality, the air temperature can
be influenced by advection, so that CLHII can depend on the wind and atmospheric stability. Some
studies have shown that wind speed affects surface–atmospheric interactions, causing attenuation
of UHI effect [49,50]. Therefore, it is necessary to consider more meteorological parameters to better
understand the spatiotemporal variation of CLHI effect in future studies.
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