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Abstract: Seasonal freeze-thaw (FT) impacts much of the northern hemisphere and is an important
control on its water, energy, and carbon cycle. Although FT in natural environments extends south
of 45◦N, FT studies using the L-band have so far been restricted to boreal or greater latitudes.
This study addresses this gap by applying a seasonal threshold algorithm to Soil Moisture Active
Passive (SMAP) data (L3_SM_P) to obtain a FT product south of 45◦N (‘SMAP FT’), which is then
evaluated at SMAP core validation sites (CVS) located in the contiguous United States (CONUS).
SMAP landscape FT retrievals are usually in good agreement with 0–5 cm soil temperature at SMAP
grids containing CVS stations (>70%). The accuracy could be further improved by taking into account
specific overpass time (PM), the grid-specific seasonal scaling factor, the data aggregation method,
and the sampling error. Annual SMAP FT extent maps compared to modeled soil temperatures
derived from the Goddard Earth Observing System Model Version 5 (GEOS-5) show that seasonal FT
in CONUS extends to latitudes of about 35–40◦N, and that FT varies substantially in space and by
year. In general, spatial and temporal trends between SMAP and modeled FT were similar.
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1. Introduction

Seasonal freeze/thaw (FT) impacts about half of the northern hemisphere [1]. It is a dominant
control on the water, energy, and carbon cycle, including groundwater and surface water dynamics;
exchange of latent and sensible heat controlled by vegetation; and snow and soil processes [2–7].
While the impacts of FT have been studied in great depth at boreal and higher latitudes [8], there are also
examples of impacts on hydrological processes [9,10] and roads [11] in the contiguous U.S. (CONUS).

A lack of in situ soil temperature observations presents a key knowledge gap in assessing frozen
soil extents. Owing to limited in situ soil observations, seasonal FT studies are often strictly limited
to observed or modelled air temperatures [4]. However, air and soil temperatures will usually be
different as snow, vegetation, litter, and organic layers insulate soils. Soils may be relatively warmer
(colder) than air temperature during freeze-up (thaw), or they may not freeze at all.
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There is mounting evidence that passive microwave FT observations provide a transformative
means to improve our understanding of the spatiotemporal FT processes for a variety of
landscapes [1,4,12–14]. Typically, the retrieval of the FT state from passive microwave observations
uses a change detection approach to identify changes to the dielectric constant using a brightness
temperature threshold, a moving average window, or edge detection [4]. These approaches have
been successfully applied for almost two decades primarily using 19 and 37 GHz observations from
SSM/I (and to a lesser extent, from AMSR-E). More recently, studies have successfully used L-band
(1–2 GHz) observations from space to detect FT state primarily via the Soil Moisture and Ocean Salinity
(SMOS) [13–17], SAC/D Aquarius [18], and Soil Moisture Active Passive (SMAP) observations. L-band
is more effective at detecting soil FT as compared to higher frequencies. L-band corresponds to a
greater emission depth and is less impacted by vegetation [13–15].

A current omission of recent L-band FT studies is that they did not extend to latitudes below 45◦N.
Impacts of seasonally freezing soils are not limited to just these northern regions. Earlier work using
passive microwave observations at higher frequencies included regions below 45◦N. For example,
Zhang et al. (2003) developed a FT algorithm for CONUS using the 19 and 37 GHz bands of SSM/I [1].
Their maps suggested that frozen ground would be found in most of CONUS. Kim et al. (2017) used
SSMR and SSM/I data (37 GHz) to generate global frozen landscape extents based on data ranging
from 1970–2008 [18]. Those results showed that most of North America froze at one point during
winter. Therefore, L-band FT retrievals should yield good results in at least some regions south of 45◦N.

This study evaluates FT retrievals at SMAP core validation sites (CVS) located in CONUS.
SMAP CVSs are densely sampled and usually consist of about ten stations covering a spatial extent of
about 40 km by 40 km. Previous studies have used boreal (>45◦N) latitude CVSs to validate the FT
product [19,20]. Sites below 45◦N have been used for soil moisture validation [21], but some of these
sites should also be well-suited to assess SMAP FT retrievals at mid-latitudes.

We use a detection approach similar to that used for the NASA SMAP FT product (L3_FT_P).
Our hypothesis is that SMAP landscape FT retrievals would often (e.g., >70%) correspond to soil
FT states at mid-latitude CVSs. This study is primarily concerned with evaluating SMAP retrievals
against 0–5 cm soil temperature data collected at mid-latitude CVSs, but also maps annual (2016–2018)
freeze extents in CONUS.

2. Data and Processing

2.1. SMAP Radiometer Data (L3_SM_P, Version 4)

The SMAP data record started on 31 March 2015 and provides global coverage every 2–3 days [3].
The radiometer has an ellipsoidal instantaneous field of view of 38 km by 49 km. SMAP observations
are gridded on 362 km2 Equal Area Scalable Earth (EASE 2.0) grids for the standard product [22,23],
but an enhanced product using 92 km2 grids is also available [24–26]. This study is limited to using the
362 km2 SMAP Level 3 Soil Moisture Passive (L3_SM_P, version 4) data [27].

L3_SM_P primarily provides volumetric soil moisture (m3/m3) data. This dataset also includes
other gridded data, such as brightness temperature (Tb), which has been corrected for static water,
and modeled soil temperature derived from the Goddard Earth Observing System Model Version
5 (GEOS-5) ‘Teff’ [28–30]. The L3_SM_P product includes up to two observations per grid per day.
The observations correspond to local equator crossing times of 6 AM (descending orbit) and 6 PM
(ascending orbit). This work used the L3_SM_P data as input to a seasonal threshold approach (STA)
to produce a FT product (‘SMAP FT’) that extends below 45◦N (Section 3.1).

2.2. Data Processing and Selection of Test Sites

Seasonal soil FT was examined at seven Agricultural Research Service (ARS) SMAP CVSs
(Figure 1). SMAP CVSs are relatively densely sampled. Each site contains 15–54 stations located
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within about a 402 km2 region. The ARS network is the main network used for SMAP algorithm
calibration and validation, and contains seven out of eight SMAP CVSs in CONUS [31].

SMAP retrieved landscape FT states are validated using 0–5 cm soil temperature data obtained
from ARS. Hourly temperatures were examined for soil FT during the period of record (2001–present) at
a total of 177 in situ stations. QA/QC checks were performed on the ARS data. First, soil temperatures
colder than −20 ◦C and warmer than 50 ◦C were removed from the analysis. Then, the hourly
soil temperatures at each station were also compared to the mean temperature of all stations at the
SMAP CVS for that time-period; if that difference exceeded ±20 ◦C, those data were also removed.
CVSs where soils seasonally froze were identified, and 6 AM/PM soil temperature data were compared
to SMAP landscape FT retrievals (Table 1).

Table 1. SMAP core validation sites (CVS) along with counts of frozen soil occurrence at each CVS
(Nfr), for period of record. The mean number of days that soils were frozen each year was computed by
dividing Nfr by the period (in years) and rounding to the nearest integer. N is the number of stations
that are part of each CVS.

ID CVS N Location Climate a IGBP b Start Nfr Nfr/Yr

(Lat, Lon) Stop

0401 Reynolds Creek 20 Idaho Semi-Arid Grasslands September 2001 499 31
(43.133, −116.768) February 2018

1601 Walnut Gulch 54 Arizona Arid Shrub February 2002 0 0
(31.666, −110.242) February 2018

1602 Little Washita 20 Oklahoma Temperate Grasslands January 2007 0 0
(34.893, −98.090) February 2018

1603 Fort Cobb 15 Oklahoma Temperate Grasslands January 2007 0 0
(35.356, −98.553) February 2018

1604 Little River 33 Georgia Temperate Cropland January 2001 0 0
(31.573, −83.621) January 2018

1606 St. Joseph’s 15 Indiana Cold Croplands January 2007 436 40
(41.449, −85.011) February 2018

1607 South Fork 20 Iowa Cold Croplands January 2001 377 75
(42.426, −93.417) February 2018

a Koeppen-Geiger Climate Classification [32]; b International Geosphere-Biosphere Program.
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In situ data showed that soils only froze in Idaho, Iowa, and Indiana (Table 1). The coldest
two months were either December and January or January and February. When averaged by month,
soil temperatures fell below freezing only in Iowa (January and February). Iowa soils also froze most
often, on average 75 days per year, followed by Indiana (40 days) and Idaho (31 days). Therefore,
this study will be limited to the Idaho, Iowa, and Indiana CVSs.

2.3. Idaho, Iowa, and Indiana SMAP Grid Attributes

Idaho is located in a semi-arid climate and incorporates heterogeneous landscapes consisting
of grasslands, hills, and some forested areas. The Indiana and Iowa CVSs are mostly homogeneous
(croplands) and are located in a cold climate. At the Idaho, Iowa, and Indiana CVSs, stations are
distributed over two, four, and one SMAP grids, respectively (Figure 2). The station centroid is located
near the grid center in Indiana, but near the grid boundaries in Idaho and Iowa. Grids are labeled
according to their indices in the SMAP grid geolocation data (https://nsidc.org/data/ease/tools).
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3. Methods

3.1. FT Algorithm

The NASA SMAP FT algorithm uses a seasonal threshold approach (STA) to categorize radiometer
retrievals as frozen or thawed. Compared to other FT delineation approaches, STA has the advantage
of low data latency [4,33,34]. The first step of STA is to determine a seasonal scale factor ∆(t) based on
a specific metric such as brightness temperature (Tb) or normalized polarization ratio (NPR) [4,19].
NPR is used to generate the NASA SMAP FT product and is defined as

NPR = (TbV − TbH)/(TbV + TbH) (1)

in which TbV and TbH are the vertical and horizontal polarization, respectively.

https://nsidc.org/data/ease/tools
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In the NASA SMAP FT algorithm, freeze reference values (NPRfr) are found by averaging the
10 smallest NPR values occurring in January and February [19]. These months are selected because
they are usually the coldest of the year in the northern hemisphere and have the greatest likelihood for
landscape elements (i.e., soils) to be frozen. The same is done to compute thaw references (NPRth) but
using the 10 largest NPR values occurring in July and August.

For each grid cell, date, and overpass (6 AM and 6 PM), the NPR(t) is computed and scaled by the
upper (NPRth) and lower bounds (NPRfr), in which the seasonal scale factor ∆(t) is defined as

∆(t) = (NPR(t)−NPRfr)/(NPRth −NPRfr) (2)

The seasonal scale factor is compared to threshold value ∆(t)thr to determine whether a landscape
is frozen or thawed in which

if ∆(t) is

{
> ∆(t)thr, soil state is ′thawed′

≤ ∆(t)thr, soil state is ′frozen′
(3)

In case of the standard NASA SMAP FT product (L3_FT_P), ∆(t)thr is equal to 0.5. If NPR(t)
exceeds (falls below) the midpoint between the upper (NPRth) and lower bounds (NPRfr), the SMAP
retrieval is set to thawed (frozen). The SMAP FT algorithm used in this study closely follows that
of the NASA SMAP FT algorithm with few minor differences (Table 2). There are several reasons
for the differences. The SMAP freeze-thaw (soil moisture) product has so far only been provided on
the northern hemisphere (global) EASE grid. Since the goal of this work was to study a region not
covered by the northern hemisphere EASE grid, data was instead taken from the soil moisture product.
Also, the freeze-thaw signal at sub-boreal latitudes may not have a strong signature, and the STA
is known to work better when the difference between NPRth and NPRfr is greater. Thus, only the
smallest/largest 5 data were used to set the NPR references. The study wanted to only compare
observational data that was collected at the same time; therefore, NPR(t) was set to ‘NA’ whenever
a grid was not observed. To evaluate whether FT retrievals substantially changed depending on
whether AM or PM data was used, AM and PM NPR thresholds were calculated separately and used
to determine the FT state. Mitigation of FT retrieval errors was not attempted for the purpose of
directly showing how well STA-based FT retrievals perform at the SMAP CVSs. A variable rather than
constant ∆(t)thr was used to show how accuracy metrics vary with ∆(t)thr and to explore the extent to
which FT retrieval accuracy could be optimized.

Table 2. Tabular summary of the Freeze/Thaw (FT) delineation algorithm used in this study compared
to that used to generate the standard NASA SMAP FT product.

Metric ‘SMAP FT’ (This Study) NASA SMAP FT a

Input Water-corrected Tb from L3_SM_P b Uncorrected Tb from L1C
Spatial extent Core Validation Sites <45◦N Limited to >45◦N

Method Seasonal threshold Seasonal threshold
Metric Norm. Pol. Ratio (NPR) Norm. Pol. Ratio (NPR)

‘Freeze’ reference (NPRfr) Mean of smallest 5 data Mean of smallest 10 data
‘Thaw’ reference (NPRth) Mean of largest 5 data Mean of largest 10 data

Period of NPRfr January, February; 2016–2018 January, February; 2016
Period of NPRth July, August; 2015–2017 July, August; 2015

Fill NPR(t), if no observation No fill Filled with prior data
Reference NPR calculation AM/PM computed separately Average of AM/PM data

Additional processing None Mitigation of false FT
FT delineating threshold, ∆(t)thr Variable (0.01–2.00) Constant (0.50)

a NASA L3_FT_P product [34]; b NASA L3_SM_P product [27].
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3.2. Classification Accuracy

Classification accuracy is evaluated following the approach in Derksen (2017) [19].
SMAP landscape FT retrievals and in situ soil observations are classified as either frozen or thawed.
An error flag, ‘err’, is set based on comparisons of coincident observations (Equation (4))

err is

{
0 if SMAP = Obs
1 if SMAP 6= Obs

(4)

in which SMAP = 1 (0) if the SMAP retrieval is frozen (thawed) and Obs = 1 (0) if the in situ soil
state corresponds to frozen (thawed). Furthermore, instances of ‘err’ = 1 were grouped into errors
of omission (SMAP = 0, Obs = 1) and errors of commission (SMAP = 1, Obs = 0). Three accuracy
metrics are used to summarize the results: ‘Freeze Accuracy’, ‘Thaw Accuracy’, and ‘Overall Accuracy’
(Equations (5)–(7)).

Freeze Accuracy = 100 ∗ NSMAP=1,Obs=1/(Ntotal,Obs=1) (5)

Thaw Accuracy = 100 ∗ NSMAP=0,Obs=0/(Ntotal,Obs=0) (6)

Overall Accuracy = 100 ∗ (NSMAP=1,Obs=1 + NSMAP=0,Obs=0)/(Ntotal) (7)

in which N are counts of each of the combined SMAP and in situ states, Ntotal is the total number of
events and Ntotal, and Obs=1 (Ntotal, Obs=0) are the total number of in situ frozen (thawed) occurrences.
‘Freeze Accuracy’ (‘Thaw Accuracy’) is the percentage of in situ frozen (thawed) states that SMAP
identified correctly. ‘Overall Accuracy’ is the proportion of SMAP FT retrievals that correspond to the
situ soil state.

3.3. Assessment of Factors That Impact SMAP Retrieval Accuracy

3.3.1. Data Aggregation Scheme

SMAP CVS stations are usually located within a 40 km radius but rarely fall within the same
SMAP grid (Figure 2). There could be substantial landscape heterogeneity at this scale, and the impact
of only using data collected at stations within a grid versus that of the entire CVS is not clear. Using data
collected by a greater number of stations could reduce representativeness errors. The impact of in situ
data aggregation method on SMAP soil FT accuracy metrics is investigated by aggregating in situ data
by (1) grid and (2) centroid. The grid aggregation method averages temperature data of all stations
within a SMAP grid. The centroid aggregation method averages data of all stations belonging to a CVS.
SMAP data are taken from the grid cell containing the centroid of the stations that make up the CVS.

3.3.2. Temporal Subsets

NASA SMAP FT accuracy has been reported at variable time scales including the period of record
of the active radar (April–July 2015) or a full year [19,20]. Derksen et al. (2017) reported that there are
relatively more errors of commission during summer than winter [19]. Therefore, validation metrics
were computed on annual basis and for a cold period, ‘winter’ (October through March).

3.3.3. NPR Threshold

A range of values for ∆(t)thr (from 0.01 through 2.00) were used to explore how validation
metrics change as function of this threshold. Values greater than 1.00 are considered, because the
NPR references (NPRfr, NPRth) do not necessarily include the global maximum or minimum value of
NPR(t), because they are computed by averaging the five lowest (highest) values during January and
February (July and August). The most extreme NPR(t) values may occur outside these periods.
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3.3.4. Sampling Error

The validation of the SMAP retrieval algorithm is limited by the ability of in situ observations to
accurately capture the FT state of the region encompassed by a SMAP grid. In situ stations are only
able to sample a limited portion of the SMAP grid area, and stations are usually not well distributed
throughout a grid. To estimate the impact of sampling on accuracy metrics, we relax the requirement
that the average in situ temperatures are used. Instances in which SMAP retrievals and in situ data
disagreed (SMAP = 0, Obs = 1 and SMAP = 1, Obs = 0) were re-evaluated to produce the ‘potential
overall accuracy’ metric. This metric is calculated by counting SMAP retrievals as correct as long as at
least one in situ station corroborated the SMAP retrieved soil state.

4. Results

4.1. Freeze and Thaw References Values

NPRfr is nearly identical irrespective of whether AM or PM observations are used (Table 3).
However, NPRth(PM) is 10–20% greater than NPRth(AM) and explains the relatively greater dynamic
range (∆NPR) of PM observations. The dynamic range varies from 1.5 to 1.7, from 2.0 to 3.8, and from
3.6 to 4.5 for Idaho, Iowa, and Indiana, respectively, and is by far the lowest at the Idaho CVS.

Table 3. Freeze (NPRfr) and thaw (NPRth) references for SMAP grids that contain CVS stations, in
which ∆NPR is computed from NPRth—NPRfr.

Idaho Iowa Indiana

Grid ID 60901 61865 62891 62892 63855 63856 65806 Average

AM
NPRfr 3.1 2.4 1.9 2.2 2.4 2.4 2.2 2.4
NPRth 4.5 3.9 4.8 4.6 4.4 4.4 5.9 4.6
∆NPR 1.5 1.6 2.8 2.4 2.0 2.0 3.6 2.3

PM
NPRfr 3.0 2.5 2.0 2.2 2.5 2.4 2.0 2.4
NPRth 4.7 4.2 5.7 5.5 4.9 5.1 6.5 5.2
∆NPR 1.7 1.7 3.8 3.3 2.4 2.7 4.5 2.9

4.2. SMAP FT Correspondence with In Situ Data

SMAP FT retrievals can be accurate during winter, especially when in situ soil temperatures
clearly fall below 0 ◦C (Figures 3–5). For Iowa and Indiana, SMAP FT retrievals were reasonably good,
even when soil temperatures were close to freezing. In Idaho, SMAP FT retrievals only matched the in
situ soil state when soil temperature fell below approximately −1 ◦C.

Because SMAP FT retrievals were not subject to error mitigation efforts, substantial errors of
commission can be seen during summer (Figures 3–5) when soils are quite warm. Figure 3 shows that
Idaho has numerous non-winter frozen retrievals. The number of freeze retrievals (CVS averages)
for 2015 to 2018 ‘summer’ data (April–September) are 174 (196), 74 (78), and 87 (60) for Idaho, Iowa,
and Indiana AM (PM) observations, respectively.

In the conceptual framework of the SMAP FT algorithm, a lower (higher) NPR would generally
correspond to lower (higher) temperature, because the soil state is frozen (thawed). Therefore,
NPR(t) should be positively correlated with soil temperature. The winter temporal subset for Iowa
shows good correlations of about 0.7 (0.75) for AM (PM) data (Figure 6). Idaho and Indiana have
lower correlations of about 0.0 (−0.2) and 0.3 (0.4) for AM (PM) observations, respectively. Owing to
errors of commission during summer, annual correlations between these quantities are poor (~0) or
even negative (~−0.5 for Idaho). Therefore, neither the summer nor the annual temporal subsets
should be used unless additional error mitigation steps are applied (e.g., the use of ancillary never
frozen/thawed masks).
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Figure 3. Time series of SMAP NPR (red) and in situ soil temperature (black) at 6 am (left) and
6 pm (right) local time for Idaho (site 0401, grid 60901) for winters 2015/16 (top), 2016/17 (middle),
and 2017/2018 (bottom). Here, SMAP data are subset to the in situ data record. The dashed lines
bounding the NPR are the reference NPR values for freeze and thaw. The solid line in-between them
is the NRP threshold. If NPR(t) is below (above) this line, then the SMAP retrieval is set as frozen
(thawed). The SMAP retrieval result is shown in the bars above the time series plot: light brown,
blue, and white boxes correspond to thawed, frozen, and missing data, respectively.

The distribution of observed temperatures by SMAP FT classification is shown in Figure 7.
SMAP FT retrievals during winter accurately distinguish between cold and warm soils at the Iowa and
Indiana CVSs. Results for AM (not shown) and PM data were similar. At these grids, the interquartile
ranges (IQR) for frozen temperatures are small, and medians are located at or below 0 ◦C. Thawed
temperatures vary greatly but are consistently warmer than 0 ◦C. SMAP FT retrievals clearly cannot
distinguish between warm and cold soils at the Idaho CVS.
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Figure 7. Boxplots of in situ soil temperature for (1) SMAP retrieved as thawed and (2) SMAP retrieved
as frozen during winter (October–March). The box shows the 25th to 75th percentile range of soil
temperatures. Whiskers extend to the last data point that is inside the 75th percentile value + 1.5× IQR,
in which IQR is the interquartile range (the 75th percentile—25th percentile value). Only points that lie
outside this range are plotted. The green line is plotted at the median value of the dataset.
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4.3. SMAP FT Retrieval Accuracy by Grid

SMAP winter accuracy varies by grid, CVS location, and performance metric, with overall
accuracies usually greater than 70% for AM observations and modestly better for PM observations
(75%) (Table 4). Improved PM validation metrics can probably be attributed to the greater ∆NPR
as compared to AM values (Table 3). Accuracies for freeze are usually substantially smaller than
those for thaw; thaw accuracies are rarely lower than 75%, while freeze accuracies were almost
always less than 75%, regardless of locations. Because correct thaw classifications make up the
major proportion (50–74%) of all classification results, and other categories (correct frozen detections,
errors of commission, and errors of omission) range between 1% and 27%, the overall accuracy is highly
influenced by thaw accuracy. Grid-to-grid variability within a CVS typically exceeded differences
among CVSs. The northeastern Iowa grid (62892) had notably higher accuracies for all metrics.

Table 4. Winter (October–March) performance using ∆(t)thr = 0.5. Values equal to and above 70% (80%)
are highlighted in yellow (green). ‘SMAP’ and ‘Obs’ are the SMAP and in situ freeze-thaw state with
0 (1) as thawed (frozen).

Idaho Iowa Indiana

Grid ID 60901 61865 62891 62892 63855 63856 65806

AM

Num. Obs. 180 180 249 249 156 249 244
SMAP = 1, Obs = 1 (%) 11.1 3.9 18.9 20.5 10.3 19.7 11.1
SMAP = 0, Obs = 0 (%) 60.6 67.2 52.2 61.5 62.8 53.8 63.5
SMAP = 0, Obs = 1 (%) 15.0 1.7 16.5 7.2 11.5 23.7 4.1
SMAP = 1, Obs = 0 (%) 13.3 27.2 12.5 10.8 15.4 2.8 21.3

Freeze Accuracy (%) 42.6 70.0 53.4 73.9 47.1 45.4 73.0
Thaw Accuracy (%) 82.0 71.2 80.8 85.0 80.3 95.0 74.9

Overall Accuracy (%) 71.7 71.1 71.1 81.9 73.1 73.5 74.6

PM

Num. Obs. 187 192 243 243 146 243 252
SMAP = 1, Obs = 1 (%) 8.0 2.1 23.5 21.4 8.2 19.3 10.7
SMAP = 0, Obs = 0 (%) 67.4 74.0 51.4 60.1 68.5 55.1 71.0
SMAP = 0, Obs = 1 (%) 13.4 1.0 9.9 4.9 9.6 21.4 4.8
SMAP = 1, Obs = 0 (%) 11.2 22.9 15.2 13.6 13.7 4.1 13.5

Freeze Accuracy (%) 37.5 66.7 70.4 81.3 46.2 47.5 69.2
Thaw Accuracy (%) 85.7 76.3 77.2 81.6 83.3 93.1 84.0

Overall Accuracy (%) 75.4 76.0 74.9 81.5 76.7 74.5 81.8

CVS station averages compared to the SMAP centroid grid show that data aggregation can
improve the accuracy metrics (Table 5). The overall accuracy improved by up to 5% for Idaho but
did not change in Iowa. SMAP validation metrics in Idaho improved irrespective of whether the
site was compared to the grid containing the centroid (60901) or the one below it (61865). Stations
located in the southern grid (61865) had considerably warmer soil temperatures than in the northern
grid. Thus, when all the Idaho stations were averaged, soil temperatures increased relative to the
northern grid SMAP FT retrievals. This resulted in a decrease in the number of freeze events
that were correctly classified and in an increase in the thaw events that were correctly classified.
Similarly, soil temperatures decreases relative to the southern grid improved SMAP freeze accuracy
but degraded the thaw accuracy.

4.4. Accuracy Metrics as Function of ∆(t)thr

The impact of the ∆(t)thr on validation metrics was analyzed using threshold values ranging from
0 to 2 (Figure 8). Clearly, the choice of seasonal scaling factor impacts the accuracy metrics. Figure 8
panels show that if ∆(t)thr is set equal to the smallest (largest) ∆(t), STA will classify all data as thawed
(frozen). For example, results at grid 61865 show that high thaw (~99%) and overall (~95%) accuracy
can be obtained if ∆(t) is set to zero (grid 61865, Figure 8).
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Table 5. Same as Table 4, except that the mean temperatures of CVS stations are used, and comparisons
are made with respect to the SMAP grid corresponding to the CVS centroid location. Because the Idaho
centroid was located in-between Idaho grids 60901 and 61865, the site mean temperature is compared
to SMAP FT retrievals at both grids. Values equal to and above 70% (80%) are highlighted in yellow
(green). ‘SMAP’ and ‘Obs’ are the SMAP and in situ freeze-thaw state with 0 (1) as thawed (frozen).

AM PM

Idaho Iowa Idaho Iowa

Grid ID 60901 61865 62891 60901 61865 62891

Num. Obs. 180 180 249 187 192 243
SMAP = 1, Obs = 1 (%) 10.0 12.8 18.5 7.0 10.4 23.5
SMAP = 0, Obs = 0 (%) 65.6 61.7 52.2 73.3 71.4 51.4
SMAP = 0, Obs = 1 (%) 10.0 7.2 16.5 7.5 3.6 9.9
SMAP = 1, Obs = 0 (%) 14.4 18.3 12.9 12.3 14.6 15.2

Freeze Accuracy (%) 50.0 63.9 52.9 48.1 74.1 70.4
Thaw Accuracy (%) 81.9 77.1 80.2 85.6 83.0 77.2

Overall Accuracy (%) 75.6 74.4 70.7 80.2 81.8 74.9
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Trivial cases can be avoided by selecting a ∆(t)thr in which both freeze accuracy and thaw accuracy
are substantial (e.g., >50%). For most grids, nontrivial values for ∆(t)thr range from about 0.3 to 1.0.
Additionally, it is important to maintain high overall accuracy. In most Figure 8 panels, overall accuracy
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has a global maximum somewhere between ∆(t)thr = 0.2 and ∆(t)thr = 0.8. When looking for a nontrivial
solution, it can be useful to select a ∆(t)thr corresponding to points of inflection or local maxima.

Accuracy metrics can substantially increase when ∆(t)thr is changed by only a small amount from
the NASA SMAP FT default value. For example, at grid 65806 AM, a ∆(t)thr ~0.4 could be selected
to take advantage of the local maximum before the overall accuracy decreases. At this ∆(t)thr value,
freeze, thaw, and overall accuracy are 70%, 87%, and 85%, respectively, compared to the default ∆(t)thr
of 0.5, which gives a 72% accuracy for each metric.

Nontrivial values for ∆(t)thr ranged from about 0.2 to 1.0 at the CVS grids. Using ∆(t)thr = 0.5 would
usually result in reasonably accurate, non-trivial values for each accuracy metric. Figure 8 clearly
shows the trade-offs between accuracy metrics, as ∆(t)thr is varied. It is recommended to either use
a default value of ∆(t)thr = 0.5 or to select a ∆(t)thr according to user needs (e.g., to maximize freeze
accuracy, thaw accuracy, overall accuracy, or a combination of these).

4.5. Estimation of In Situ Sampling Error

Recognizing that there is considerable within-pixel variability of in situ temperatures,
SMAP performance was re-examined using temperatures from individual stations (Figure 9). In many
cases, when SMAP FT retrievals disagreed with in situ data, at least one station reported a temperature
that agrees with the SMAP FT state. Station to station variability is greatest for Idaho and Indiana
(usually close to ± 1 ◦C from the mean) but can also be substantial in Iowa (usually within ±0.5 ◦C
from the mean). Most winter SMAP FT retrieval errors occur when soil temperatures are close to 0 ◦C.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 22 

Trivial cases can be avoided by selecting a Δ(t)thr in which both freeze accuracy and thaw accuracy 
are substantial (e.g., >50%). For most grids, nontrivial values for Δ(t)thr range from about 0.3 to 1.0. 
Additionally, it is important to maintain high overall accuracy. In most Figure 8 panels, overall accuracy 
has a global maximum somewhere between Δ(t)thr = 0.2 and Δ(t)thr = 0.8. When looking for a nontrivial 
solution, it can be useful to select a Δ(t)thr corresponding to points of inflection or local maxima.  

Accuracy metrics can substantially increase when Δ(t)thr is changed by only a small amount from 
the NASA SMAP FT default value. For example, at grid 65806 AM, a Δ(t)thr ~ 0.4 could be selected to 
take advantage of the local maximum before the overall accuracy decreases. At this Δ(t)thr value, 
freeze, thaw, and overall accuracy are 70%, 87%, and 85%, respectively, compared to the default Δ(t)thr 
of 0.5, which gives a 72% accuracy for each metric. 

Nontrivial values for Δ(t)thr ranged from about 0.2 to 1.0 at the CVS grids. Using Δ(t)thr = 0.5 
would usually result in reasonably accurate, non-trivial values for each accuracy metric. Figure 8 
clearly shows the trade-offs between accuracy metrics, as Δ(t)thr is varied. It is recommended to either 
use a default value of Δ(t)thr = 0.5 or to select a Δ(t)thr according to user needs (e.g., to maximize freeze 
accuracy, thaw accuracy, overall accuracy, or a combination of these). 

4.5. Estimation of In Situ Sampling Error 

Recognizing that there is considerable within-pixel variability of in situ temperatures, SMAP 
performance was re-examined using temperatures from individual stations (Figure 9). In many cases, 
when SMAP FT retrievals disagreed with in situ data, at least one station reported a temperature that 
agrees with the SMAP FT state. Station to station variability is greatest for Idaho and Indiana (usually 
close to ± 1 °C from the mean) but can also be substantial in Iowa (usually within ±0.5 °C from the mean). 
Most winter SMAP FT retrieval errors occur when soil temperatures are close to 0 °C. 

 
Figure 9. Temperature time series of stations (gray) with SMAP retrieval errors indicated (red marker). 
The black dashed line shows the site average 0–5 cm soil temperature. 

Figure 9. Temperature time series of stations (gray) with SMAP retrieval errors indicated (red marker).
The black dashed line shows the site average 0–5 cm soil temperature.



Remote Sens. 2018, 10, 1483 14 of 22

Previous research has used a range of methods to account for variability and sampling errors
of in situ observations. Here, the overall accuracy was recomputed in such a way that the SMAP FT
detection was only flagged as erroneous if more than 75% of the stations in a grid had a soil state
contrary to that determined by the SMAP algorithm (Table 6). Using this approach, SMAP FT retrieval
accuracy values increased for all grids with 80% to 90% accuracy rates at most grids (Table 6).

Table 6. Upper bound of SMAP retrieval accuracy for winter (October–March), by grid, for ∆(t)thr = 0.5.
Accuracy (Acc.) values are the original overall accuracy values that appear in Table 4. Potential overall
accuracy was computed assuming that the SMAP FT retrieval is wrong only if more than 75% of the
stations in a grid show a soil state contrary to the retrieval.

Grid ID Num. Stations Num. Obs. Acc. (%) Potential Acc. (%)

AM

Idaho 60901 8 180 71.7 82.8
61865 12 180 71.1 82.2

Iowa 62891 12 249 71.1 80.7
62892 4 249 81.9 89.2
63855 2 156 73.1 73.7
63856 2 249 73.5 78.7

Indiana 65806 15 244 74.6 86.1

PM

Idaho 60901 8 187 75.4 84.0
61865 12 192 76.0 85.4

Iowa 62891 12 243 74.9 85.2
62892 4 243 81.5 90.5
63855 2 146 76.7 77.4
63856 2 243 74.5 78.6

Indiana 65806 15 252 81.8 90.1

4.6. CONUS FT Extent from L3_SM_P

There are some conceptual problems in transferring the NASA SMAP FT northern grid algorithm
logic and applying it to CONUS. While it is reasonable to use July and August to compute NPRth
(barring errors due to dense vegetation, and inundation), most soils in CONUS will not freeze during
January and February. Setting of any NPRfr values where landscapes are thawed results in an incorrect
calibration of the STA.

Therefore, this study uses a secondary dataset to limit SMAP FT retrievals to those areas where
it is reasonable to define a seasonal freeze reference (NPRfr); the effective temperature ‘Teff’ [24],
shown in Figure 10, is included in the SMAP L3_SM_P product and used to delimit freeze extents for
CONUS (Figure 11). Regions where the average soil state was frozen were identified from January and
February Teff values (≤273 K). Teff should be a reasonably good indicator of in situ FT states, because
it is derived from the GEOS-5 model, which routinely assimilates soil temperature data at multiple
depths from major national networks, including the ARS. According to Teff, natural soils at latitudes
of about 35◦N or higher froze in CONUS during the 2015 to 2018 period (Figure 10). Therefore, it is
reasonable to define NPRfr values and to limit in situ comparisons to latitudes greater than about
35–40◦N.

Maps of Teff (Figure 10) agree with the earlier finding (Table 1) that soils only froze in three of the
CVSs (Idaho, Iowa, and Indiana) and that Teff is lower for Iowa than for the other CVSs.

PM data are usually about 1 K warmer than the AM data. Differences between the PM and AM
maps can be used to identify transition regions where errors due to melt could potentially be mitigated
by limiting analyses to SMAP AM data. However, the transition regions differ annually. Freeze extents
were comparable between 2016 and 2017, but in 2018, the freeze extent extended about 1.5◦ latitude
further south at locations east of 105◦W. With respect to the SMAP CVSs, these maps show that Iowa
froze each year, Indiana was above freezing in 2017, and Idaho had near-thawing temperatures in 2016
and 2018.
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The annual temperature maps were used to delimit satellite-derived FT extents in CONUS to
those regions where average Teff ≤ 273 K. Mean SMAP FT states for January and February were
identified by the metric of SMAP ‘freeze fraction’. The freeze fraction was computed at each grid cell
by dividing the number of SMAP freeze classifications by the total observations during January and
February each year (Figure 11). SMAP freeze fraction maps are consistent with model temperature
data (Figure 10). SMAP freeze retrieval rates were high (>0.5) in most regions that froze according to
Teff. Both SMAP FT and Teff data show substantial spatial and interannual variability and also have
similar patterns and trends. For example, in both sets of figures, 2018 was the coldest year and 2017 the
warmest. In 2017, a relatively warm soil state extended eastward from about 105◦W, while locations
north of 45◦N and west of 105◦W were colder than in 2016.

SMAP FT maps did not agree with those for Teff in the Northeast and eastern Canada. In the
Northeast, SMAP freeze rates are relatively lower (<0.5) than those for Canada east of 90◦W (>0.5).
Teff shows similar temperatures for both regions. One reason for this difference could be that the ∆NPR
is very small over needleleaf forests (Figures 1 and 12). Another possible explanation could be that
because there are observational gaps in eastern Canada, GEOS-5 would more heavily rely on model
results rather than in situ observations.
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Figure 12. AM and PM dynamic range of NPR and their difference, subset to 2018 freeze extents
obtained from January and February mean Teff being ≤ 273 K (Figure 10). Freeze (thaw) references
(NPRfr, NPRth) are obtained from the 5 lowest (highest) NPR values occurring during January and
February (July and August). ∆NPR(AM) is the dynamic range (e.g., for AM it is calculated from
NPRth(AM)—NPRfr(AM), and ∆NPR(AM)—∆NPR(PM)) is the diurnal difference of the dynamic
range. The last panel is a reproduction of Figure 1, added here to facilitate comparison of ∆NPR with
CONUS land cover (forests are shown in green). The reader is referred to Figure 1 for the legend.

For most of CONUS, the PM dynamic range is greater than the AM dynamic range (Figure 12).
This difference is especially pronounced in the Northern Great Plains region, where the PM dynamic
range is greater by about 1 (or ~25% assuming NPRAM = 4). The CVS results indicated that FT states
determined from PM overpass data are about 5% more accurate than from AM data (Tables 4 and 5).
This may be due to the larger PM dynamic range improving the STA [19].

Figure 12’s diurnal ∆NPR difference map (∆NPRAM-∆NPRPM) identifies regions where the
AM dynamic range is greatest and those regions where the PM dynamic range is greatest. It can
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be used to select between the AM and PM observations, and shows that ∆NPRPM is greater than
∆NPRAM east of 105◦W, whereas, ∆NPRAM is somewhat greater for a relatively small portion in the
Northwest—a region that includes the Idaho CVS. However, this is not necessarily a strong indicator
for the Idaho CVS, because the diurnal ∆NPR difference has considerable spatial variability near
this CVS. In contrast, grids surrounding the Iowa and Indiana CVSs have much lower pixel-to-pixel
variability, indicating that there is higher confidence in the PM observations. This result is supported
by Table 4, which shows that PM observations were more accurate everywhere except at one Iowa grid
(62892), where the overall accuracy remained about the same; however, PM observations could still be
considered improved at this grid, because freeze accuracy improved by 7% while thaw accuracy only
decreased by 3%.

5. Discussion

Derksen et al. (2017) found that the correlation between NPR time series with in situ temperature
was improved for AM (~0.8) over PM (~0.3) observations. That study also found that SMAP PM FT
data agreed better with in situ observations. This study found somewhat improved correlations for
PM data in Iowa and Indiana: FT flag agreement improved about 5% when PM data was used. It is
possible that PM validation metrics improved in part due to higher uncertainty in AM data caused
by refreezing [19]. It is difficult to make a statement on error bias between AM and PM in this study,
because commission or omission errors were similar (within 5%). Additionally, Derksen et al. (2017)
limited their study to a thawing landscape, because it focused on the period during which the active
radar collected data (April–July 2015) [19]. Our FT study focused on winter (October–March) but also
included months during which landscape freeze-up and thaw occurred in CONUS.

Although only a few sites were investigated, it was noted that validation metrics improved where
greater ∆NPR values were found (Tables 3 and 4). NPRfr was nearly constant between AM and PM
overpasses, whereas NPRth was about 20% greater (Table 3, Figures 3–5). Overall accuracy for PM
data was usually about 5% greater compared to AM. A likely explanation is that STA can, to a certain
extent, more confidently delineate between freeze and thaw if greater ∆NPR values are used as input
to the algorithm. Thus, the current approach for setting NPR references may produce a smaller than
optimal ∆NPR range to be used in conjunction with STA, and accuracy metrics (for ∆(t)thr = 0.5) are
not as good as they could be. It is also important to keep in mind that this work did not include any
error mitigation efforts, and accuracy metrics may be improved further.

To follow up on the question as to why NPRth(PM) values could be 10–20% greater than
NPRth(AM), a small case study was made for one Idaho grid (60901). Dates corresponding to the
maximum five NPRth were 11 July 2015, 13 July 2015, 10 July 2016, 12 July 2016, and 14 August
2017 (11 July 2015, 14 July 2015, 11 July 2016, 27 July 2017, and 15 August 2017) for AM (PM) data.
Dates obtained for AM and PM are nearly identical: Except for one “pair”, they are no more than
one day apart from one another. The meteorological record at a weather station in Boise, ID (~50 km
distance) indicated that there were only two precipitation events >1 mm in July/August 2015/2016,
namely, on 10 July 2015 between 8 AM—4 PM (about 8 mm) and on 10 July 2016 between noon and
6 PM (about 15 mm). It follows that if it is true that summer convective precipitation would provide
more water to soils during a 6 AM to 6 PM window vs. a 6 PM to 6 AM window, then it should be
expected that NPRth(PM) would be somewhat increased for 6 PM observations relative to those made
at 6 AM—and explain the increase in NPRth(PM).

An important limitation of methodology is that SMAP FT detection relies on a method traditionally
used to estimate water content in landscape elements (vegetation, and soils). NPR is equivalent to the
Microwave Polarization Difference Index (MPDI), which is a well-established quantity that has been
used to characterize whether a landscape (e.g., soil, vegetation) is wet or dry [35,36]. Liquid water,
dry soil, and ice, respectively, have dielectric constants (εr) of approximately 80, 5, and 3 [3,37].
Therefore, frozen soil—irrespective of its frozen water content—would have a dielectric constant that
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is comparable to that of dry soil. Thus, SMAP classification results should then also be interpreted as
‘wet’ (thawed) and ‘dry’ (frozen).

The higher incidence of SMAP ‘frozen’ retrievals during summer (Figure 4) can be attributed to
Idaho being relatively drier than the other CVS (semi-arid, Table 1). For dry sites such as the Idaho
CVS, it would be valuable to develop and test alternative FT retrieval methods that do not depend
on NPR, such as the one presented in Kim et al. (2011) [4]. That method also used the STA approach,
but applied it to TbV rather than NPR. L3_FT_P version 2 uses the TbV-based type of FT retrieval at
most grids below 45◦N [38].

Accuracy assessment of SMAP landscape FT retrievals is difficult due to the impact of
landscape heterogeneity on coarse resolution observations. The SMAP radiometer has an ellipsoidal
instantaneous field of view of 38 by 49 km and therefore incorporates landscape elements that are not
accounted for with station point data. At the studied CVSs, there are geographic biases in the siting of
stations with respect to each SMAP grid: Stations in grids 60901 (Idaho), 62891 (Iowa), 62892 (Iowa),
and 65806 (Indiana) are located inside a radius of about 20 km. Stations in grids 68165, 63855, and 63856
are located inside a radius of 10 km or less, and they cover less of the SMAP grid area.

The best accuracy metrics between SMAP FT and in situ temperature data were obtained in Iowa
(grid 62891) and Indiana (grid 65806). Relatively poorer results in Idaho may be attributed to the
small ∆NPR and the semi-arid climate. The semi-arid climate factors into a higher rate of errors of
commission, because NPR/MPDI discriminates between dry/wet rather than freeze/thaw.

Idaho also features a heterogeneous landscape that is better represented by in situ data if all
station data are used, rather than dividing station data according to grids (Section 4.3). Compared to
the boreal study, ∆NPR at grasslands and croplands situated in CONUS were substantially smaller.
In the boreal study, ∆NPR averaged about 2.9 (3.9) for grassland (cropland) compared to our results of
1.5 (2.6). While lower, ∆NPR obtained at CONUS CVSs are within one standard deviation of those
obtained in the boreal NASA SMAP FT study. Even at fairly homogenous CVSs (Iowa and Indiana),
significant sub-grid variability exists (Figure 9).

The relatively greater ∆NPR obtained in the boreal study for grasslands and croplands could
potentially be attributed to NPRfr values in that region that are more representative of fully frozen soils
than the current study. Reliable NPRfr values need soils within a landscape (SMAP grid) to be frozen to
a greater depth than the L-band penetration depth—a condition that is more difficult to satisfy at lower
latitudes. However, data obtained in the boreal study for the Canadian Prairie region (grasslands and
croplands) do not support this idea: The prairie NPRfr values (~3) exceeded those at SMAP CVSs
(2.4). However, prairie NPRth values were much larger (>6) than those obtained at SMAP CVSs (~5).
The boreal study’s ∆NPR map indicates that the Canadian Prairie region typically has ∆NPR values
between 3 and 4, a similar range to the mean values that were reported for their study’s grasslands (2.9)
and croplands (3.9). Thus, the relatively smaller ∆NPR for CONUS grassland and cropland sites could
more likely be attributed to their relatively smaller NPRth. While the Canadian Prairie region is dry,
the region’s climatology indicates that much of their annual rainfall totals occurs during a July/August
window, with July/August totals decreasing with decreasing latitude [39]. If the 2015 July/August
precipitation totals followed a similar spatial pattern, then this could explain why the July/August
NPRth values were greater in the boreal study than for CONUS. However, this perspective is limited
to only looking at the Canadian Prairies and a few locations in CONUS. Further exploration is needed
to conclusively support the above conjecture regarding greater NPRth and ∆NPR mean values for
grasslands and croplands in the boreal study compared to at CONUS CVSs.

Another important aspect is that landscape heterogeneity can also be caused by ephemeral water
(EW). Because FT algorithms exploit the substantial dielectric constant differences as water transitions
from frozen to liquid (and vice versa), it is important to be aware that the SMAP observations would
be additionally impacted by EW on land. While SMAP Tb values are routinely corrected for static
water [30], EW is a potential source of error. For example, wet snow may result in a ‘thawed’ SMAP
FT retrieval, while the soil may still be frozen [19]. In this case, the soil state cannot be directly
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detected, because a surficial water layer or wet snow masks the soil’s emission. Spring and midwinter
thawing may also produce ephemerally flooded areas within a landscape. Due to its high sensitivity to
liquid water, even a localized event can significantly impact the SMAP FT retrieval accuracy within
its footprint. However, dry snow can also be a source of error in FT retrievals at L-band because of
refraction and impedance matching [40,41]. These effects impact Tb such that the Tb signal more
closely corresponds to that of a frozen soil: The NPR of frozen soil covered by dry snow would be
lower than that of bare frozen soil. Thus, it is possible to have a false frozen retrieval in the case of a
wet soil being covered by dry snow. This situation is possible early in the cold season. If snowpack
properties and moisture at the snow/soil interface were available, we could study this potential source
of error in more detail.

Limiting assumptions related to FT to binary classification can also impact accuracy assessment,
mainly because relatively small differences in temperature change the classification of soil FT.
Small measurement uncertainty or instrumentation bias could lead to errors in observed soil state.
Thermistors used at the CVSs are optimally calibrated for a temperature of 20 ◦C and would have
errors ranging from ±0.1–0.3 ◦C at near-freezing temperatures. In situ FT detections might be more
robust if the soil dielectric constant were used instead of soil temperature. Also, the temperature at
which natural soils freeze is usually lower than 0 ◦C, and a significant portion of water may remain in a
liquid phase until soil temperatures fall well below freezing (e.g., −0.5 ◦C). Freezing point depression
would impact SMAP FT validation accuracy metrics, because soil may still be wet/thawed when its
physical temperature is less than 0 ◦C. During thaw, soils often become isothermal for an extended
period of time. In this state, both ice and water are present, and it is reasonable to refer to this state as
either frozen or thawed.

It is possible to improve on the shortcomings of binary classification by aggregating in situ soil
temperature data according to SMAP FT retrieval. In this representation, if SMAP retrievals are
sensible, frozen soils would be colder and show median temperatures close to or below freezing.
Figure 7 showed that SMAP landscape FT retrievals corresponded quite well with soil temperatures at
most grids, indicating that there should be good confidence in SMAP FT retrievals of the landscape
state corresponding to soil temperature at least at some locations in CONUS.

A priori knowledge of where SMAP FT retrievals are accurate would be especially valuable
for sub-boreal latitudes, because it is important to only define freezing thresholds where landscape
elements (i.e., soils) freeze. Inappropriate application of thresholds will cause the interpretation of
results to be extremely difficult, because classification results are impacted by retrievals over forested
areas or in climates that are both dry and cold. Version 2 of L3_FT_P addresses this issue by only using
the STA at those locations where model data indicated frozen conditions for at least 20 days per year.
This work also identified some indicators leading to improved SMAP FT retrievals. Here, the optimal
frozen condition appears to be greater than 20 days. The best performance was obtained in the Iowa
CVS. Iowa had nearly twice the frozen duration per year (75 days) and colder soil temperatures
that were considerably colder than Idaho or Indiana. The temperature of frozen soils should also be
considered. SMAP landscape FT retrievals would probably be more accurate if soils froze longer and
colder (e.g., average temperature below <−1.0 ◦C). Finally, the STA is not recommended for locations
where ∆NPR < 2.

6. Summary and Conclusions

This work compared spaceborne L-band microwave-based landscape freeze-thaw retrievals from
the SMAP radiometer to soil temperatures at SMAP core validation sites consisting of seven SMAP
grids located at latitudes between 41–43◦N in the contiguous United States. This work tested SMAP
FT retrievals using a seasonal threshold algorithm applied to SMAP soil moisture data (L3_SM_P) to
produce a FT product (‘SMAP FT’) that extends south of 45◦N.

Results showed that FT retrievals with overall accuracy greater than 70% can be obtained using a
seasonal threshold approach (STA) when analysis is restricted to October to March. This is because
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there were many errors of commission during April to September. Overall accuracy usually exceeded
70% (75%) for AM (PM) at all CVSs. SMAP FT corresponded best with Iowa and Indiana in situ
temperatures. Correlations were the highest in Iowa (0.7), followed by Indiana (0.3) and Idaho (0.0).
SMAP FT retrievals were also found to be accurate at distinguishing between cold and warm soils
except in Idaho. SMAP accuracy metrics may be better for PM than AM overpass data simply due to a
greater dynamic range for the normalized polarization ratio (NPR). A map of the diurnal difference
in the dynamic range of NPR indicated that PM retrievals are preferable for most of CONUS. SMAP
accuracy metrics are also sensitive to the choice of the seasonal scale factor and, potentially, the data
aggregation scheme. As to sub-grid heterogeneity, usually one or more CVS stations agreed with
SMAP FT, even when the station average did not. If SMAP FT retrievals are only counted as error
when 75% of the stations indicated a contrary soil state, retrieval accuracy could be as high as 80% to
90% at most grids. Annual maps of January and February freeze rates show that there are significant
interannual and spatial differences in the frequency with which each grid froze.

While SMAP landscape FT retrievals show good correspondence with in situ soil temperatures in
CONUS, further work is needed to assess SMAP FT quality for mid-latitudes. Accurate SMAP soil
state retrievals are more challenging at sub-boreal latitudes due to higher occurrence of midwinter
thawing, and more persistent and denser vegetation. SMAP FT retrievals are challenging in cold
semi-arid landscapes, due to their tendency to have soils dry enough to cause errors of commission.
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