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Abstract: Most land cover mapping methods require the collection of ground reference data at the
time when the remotely sensed data are acquired. Due to the high cost of repetitive collection of
reference data, however, it limits the production of annual land cover maps to a short time span.
In order to reduce the mapping cost and to improve the timeliness, an object-based sample transfer
(OBST) method was presented in this study. The object-based analysis with strict constrains in area,
shape and index values is expected to reduce the accident errors in selecting and transferring samples.
The presented method was tested and compared with same-year mapping (SY), cross-year mapping
(CY) and multi-index automatic classification (MI). For the study years of 2001–2016, both the overall
accuracies (above 90%) and detailed accuracy indicators of the presented method were very close to
the SY accuracy and higher than accuracies of CY and MI. With the presented method, the times-series
land cover map of Guangzhou, China were derived and analyzed. The results reveal that the city
has undergone rapid urban expansion and the pressure on natural resources and environment has
increased. These results indicate the proposed method could save considerable cost and time for
mapping the spatial-temporal changes of urban development. This suggests great potential for future
applications as more satellite observations have become available all over the globe.

Keywords: land cover; remote sensing; automatic classification; sample transfer; object-based
analysis

1. Introduction

Currently, more than 50% of the world’s population live in cities and this figure is projected to
reach 67.2% in 2050 [1]. Along with the rapid growth of population concentrations and economic
activities being intensified, the demand for developed land increased dramatically, manifesting as
urbanization [2]. Global urban areas have been rapidly expanding, especially in developing countries.
The prospect is that the urbanization rate will reach 60% by 2030 [1]. The conversion of rural areas into
urban areas through development is currently proceeding more quickly in developing countries than
in the developed world, for example, in China, India, Vietnam and Bangladesh [1–6]. Urban expansion
inevitably converts the natural and semi-natural ecosystems into impervious surfaces and thus become
the most widespread anthropogenic causes of increased environmental degradation, such as natural
vegetation cover decline and arable land loss, urban heat islands, air pollution, hydrological circle
alteration and biotic homogenization [3–6]. Although urban land covers only less than 3% of the global
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terrestrial surface, their marked effects on environmental conditions becomes increasingly serious and
is generating increasing attention globally [5–7].

Since urban ecosystems are strongly influenced by anthropogenic activities, considerably more
attention is currently being directed towards monitoring urban land cover variations, which is not only
crucial for characterizing the ecological consequences of urbanization but also for developing effective
economic, social and environmental policies in order to mitigate expansion’s adverse impacts [5].
A considerable amount of research has been conducted all around the world to understand the spatial
patterns [1,3,6], driving forces [8] and the ecological and social consequences of urban expansion [7,9].
Among them, identifying and understanding the driving factors of urban expansion is crucially
important for the design of effective urban planning and management strategies [8]; monitoring pattern
changes could help characterize the ecological consequences of urbanization, as discussed above.
Therefore, considerable literatures have paid attention to monitoring land cover changes [4–7,9,10].

Remote sensing has been widely recognized as a powerful and cost-effective way to study
historical land cover dynamics and to relate their patterns to environmental and human factors [11–15].
Although supervised classification methods have been successfully employed for mapping urban land
cover dynamics in recent decades [16,17], such mapping efforts still rely on collecting ground reference
data for each classification. As images subject to different conditions (e.g., illumination, viewing
angle, soil moisture and topography), they are not stationary over time or space. Such differences can
affect the observed spectral signatures of the land-cover types, thus the classification algorithms and
parameters assigned for the input data at a certain time are probably not suitable for data from another
time, no matter how well they are developed [18]. This makes it difficult and expensive for mapping
land cover dynamics with times-series imagery.

Many efforts have been made to reduce the mapping cost and improve the timeliness of the map
products [19–22]. Decades ago, the idea of classifier extension or generalization was first proposed,
which aimed at finding a training set or a trained classification algorithm that can be utilized repeatedly
for multiple years without the need for year-to-year reformulation [19]. Temporal inputs, such
as the shape of time-series trajectory of vegetation indices extracted from multi-temporal imagery,
were involved in related studies [20–22]. However, successful examples are rare and mostly in natural
vegetation environments [22–25]. Alternatively, remote sensing index-based methods have been
developed, considering that the indices are often effective to highlight certain land cover type from
others [26–28]. In recent studies [29,30], an automatic strategy to map typical urban land cover, that is,
water, bare land, built-up, forest and cropland, has been presented with modified normalized difference
water index (MNDWI) [26], normalized bare land index (NBLI) [29] and the urban index (UI) [31].
With these indices, the thresholds for extract land cover types were assigned to an unsupervised
classifier, avoiding the iterative trial-and-error optimization process. In Reference [32], four land cover
types were mapped automatically with MNDWI, normalized difference vegetation index (NDVI) [33]
and the biophysical composition index (BCI) [34] and the multilevel Otsu’s thresholding method [35].
Unfortunately, both the type and number of indices available for automatic land cover mapping have
been limited.

From another point of view, the analysis of remote sensing images captured at different dates
could be considered as a Transfer-learning (TL) problem [36], particularly, a domain adaption (DA)
issue [37,38]. Images acquired in the same area at different time instants are associated with the
source domain and target domain, respectively [39]. Here, the source domain indicates the image
associated with prior knowledge or classified samples, target domain represents images needed to
be classified. In this study, it is believed the associated joint probability distributions of the two
domains are different but close enough, thus the source-domain information can help solve the
target-domain learning problem. However, errors (accident errors or human errors, etc.) in the process
of sample selection in source domain will probably affect the classification accuracy in the target
domain, when mapping with transferred samples.
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This study aims to improve the accuracy of mapping land cover variations without current
samples, based on an object-based sample transfer (OBST) method with strict constrains in area, shape
and index value. There, object-based sampling and change detection algorithms were developed in
the process of sample selection and sample transfer, respectively. Its results were carefully compared
with those from SY, CY and MI. At last, characteristics and potential applications about the proposed
strategy were discussed.

2. Materials

2.1. Study Site

Guangzhou is the third most populated city in mainland China, following Beijing and Shanghai.
As shown in Figure 1, the city is located in the downstream reaches of the Pearl River, about 120 km
north-northwest of Hong Kong and 145 km north of Macau. The city covers 7434.4 square
kilometers along the river from 112◦57′ to 114◦03′E and 22◦26′ to 23◦56′N in south-central Guangdong
province [40]. In 2016, the city was estimated to have a population of 14.04 million, making it one of
the most populous megacities on Earth. The migrant population from other parts of China comprised
about 40% of the city’s total population. The GDP reached ¥1961.1 billion (US $295.4 billion) and
GDP per capita was ¥145,254.4 (US $21,868.1) [40]. For the three consecutive years of 2013–2015,
Forbes ranked Guangzhou as the best city for business in the Chinese mainland. However, due to the
rapid industrialization, it is also considered one of the most polluted cities. Despite being located just
south of the Tropic of Cancer, Guangzhou has a humid subtropical climate that is influenced by the
East Asian monsoon. The primary land cover types in the city are built-up, forest, water, bare land
and cropland.
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Figure 1. The city of Guangzhou in Guangdong province, China, is the area of interest of this study.

As one of the fastest developing cities in China, Guangzhou underwent dramatic expansion in
the past decades. In previous studies, the land cover change in Guangzhou from 1998 to 2003 was
comprehensively analyzed based on Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper
Plus (ETM+) imagery [41]. The relationship between land surface temperature and land cover in the
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city and the rainfall-runoff relationship in the rapid growing metropolitan area was estimated with
remotely sensed variables [42]. A study monitoring annual urbanization activities in Guangzhou using
Landsat images from 1987 to 2015 was reported [32], where a multiple-indices strategy was employed
for automatic land cover classification.

2.2. Data

Landsat images covering the city (Path: 122, Row: 44) were carefully selected (Table 1). The data
were downloaded from the NASA Landsat data collection, with special consideration of cloud cover,
phenology and dryness of ground. In this study, the Landsat Thermal Infrared Sensor (TIRS) bands
were rescaled to 30 m prior to building an index image.

Table 1. Landsat images used in this study.

Capture date Sensor Bands Spatial Resolution (m) Cloud Amount (%)

30 December 2001 TM 7 30 0.01
4 December 2003 TM 7 30 3.00
28 December 2006 TM 7 30 0.01
2 November 2009 TM 7 30 0.00
2 November 2011 ETM+ 8 30 0.04
15 October 2014 OLI&TIRS 11 30 7.65
7 February 2016 OLI&TIRS 11 30 2.44

An independent set of IKONOS images covering the study site in corresponding year was
collected from Guangzhou Land Resource and Planning Commission and served as the validation
source. It is believed the manually interpreted results from the images could represent the ground
truth very well, due to its very high spatial resolution (1 m). Besides, administrative maps, climate and
environmental data were collected from the Guangzhou Municipal Environmental Protection Bureau.
Related social, commercial and transportation data came from the Guangzhou Statistical Yearbook.

With the failure of scan line corrector (SLC) of the Landsat Enhanced Thematic Mapper Plus
(ETM+) sensor since 2003, about 22% of an SLC-off image scene is not scanned. To improve the
usability of the ETM+ SLC-off data, multi-temporal Landsat images (other images in 2011, 2012 and
2013) were used as referable information by building a regression model between the corresponding
pixels [43]. Atmospheric correction of the Landsat images listed in Table 1 was implemented by the
Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) model in ENVI 5.3 [30]. Digital
numbers at each pixel were converted to surface reflectance through this process.

3. Methods

Our primary interest was to map the urban land cover variations. Among the five land cover
classes in this study, The built-up is defined as built environment with impervious surfaces dominated
by man-made structures such as buildings and transportation facilities; water includes areas of
open water such as rivers and ponds; bare land includes exposed soil surfaces with little vegetation
cover such as deforested land, abandoned farmland, quarries and naturally non-vegetated areas;
forest represents the woodlands; and cropland mainly includes herbaceous areas that are covered with
shrubs, grass, farmland and orchard.

As the training set is only available in the source domain (images classified), this study focuses
on how to transfer the labeled samples to the target domain (images unclassified) reliably. In order
to reduce the accident errors in the process of sample selecting and transferring, the OBST method
is presented. The main idea and flowchart of the method are shown in Figure 2 and described in
following subsections.
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Figure 2. The flowchart of the presented method.

Firstly, a multi-resolution segmentation (MRS) is carried out, as the first step and a necessary
prerequisite for the automatic object-based analysis.

Secondly, tens of spectral, geometric and texture features are developed to depict land cover
objects comprehensively, followed by a feature selection step to reduce insignificant features.

Thirdly, an object-based sampling method is presented, with strict constrains in area, shape and
index value, to reduce sample selection errors.

Then, an object-based change detection (CD) is put forward, where sample’s change could be
detected according to the proportion of changed or unchanged pixels within the sample, constrained
by the general patterns of land cover variations.

At last, a supervised classification with transferred samples in target image is carried out and
then compared with SY mapping, CY mapping and MI classification.

3.1. Image Segmentation

The multi-resolution segmentation (MRS) is probably the most popular and important
segmentation algorithm, among all related methods [44,45]. The vital step of image segmentation is
to select the input layers and specify their weights. In this study, the Landsat multispectral images
were set as the input, as the spectral profile recorded by the images is an important feature for
depicting a land cover type [46,47]. The weights of shape/color and compactness/smoothness were
first determined based on experience [48–50]. The weights of shape were selected from 0.1 to 0.5 with



Remote Sens. 2018, 10, 1457 6 of 18

a step of 0.05 and those of color from 0.9 to 0.5. The weights of compactness and smoothness were
both fixed as 0.5.

Here, five land cover types were analyzed: built-up, forest, water, bare land and cropland. Some
land surfaces such as paddy fields and fallow cropland are either indistinct or difficult to distinguish
from water and bare lands, respectively. Therefore, the trial-and-error method was used to select the
suitable scale parameter to depict the image segments [51–53]. It was found that the weights of 0.1 for
shape and 0.9 for color were more suitable.

3.2. Feature Definition and Selection

In order to depict image objects comprehensively, tens of spectral, geometric and texture features
were initially selected based on experts’ knowledge and experience, as shown in Table 2. The spectral
information is vital for depicting image objects. In this study, two spectral features, the mean
and standard deviation of grey values of all pixels of an image object, were selected. It has been
demonstrated that geometric features are of great help for identifying man-made objects or linear
objects [54]. Here, the length-width ratio, shape index and the number of corner points of image
object were involved and calculated. Texture analysis based on local spatial variation of intensity or
color brightness serves an important role in OBIA and the extracted texture features directly affect
the quality of subsequent processing [55]. The gray level co-occurrence matrix (GLCM) has been
extensively applied in texture description [56], showing that its results are better than other texture
discrimination methods [57,58]. In this study, several GLCM based texture features were involved
(Table 2).

Table 2. The features of objects.

No. Name Description No. Name Description

01–07
B1_mean Band 1 mean

21 NCorPts The number of corner points. . . . . .
B7_mean Band7 mean

08–14
B1_dev Band 1 Std

22 GLCM_1 Homogeneity. . . . . .
B7_dev Band7 Std

15 Len The length of objects 23 GLCM_2 Contrast

16 wid The width of objects 24 GLCM_3 Variance

17 L-W ratio The length-width ratio 25 GLCM_4 Angular second moment

18 Compact The compactness 26 GLCM_5 entropy

19 BorderLen The border length 27 GLCM_6 Correlation

20 ShapeIn The shape index

Feature selection is often required to reduce redundant data when analyzing high-dimensional
datasets. A wrapper feature selection method based on the RF algorithm [59,60] was applied to pick
up useful features from the feature pool.

3.3. Sample Selection

Within a type, the geometric shapes and sizes of image objects vary dramatically. According to
Tobler’s first law of geography [61], the center of small or narrow object is more likely affected by
surrounding objects, namely it is probably a mixed pixel. In contrast, the center part of bigger and
wider objects might be immune to surrounding influences and represents real land cover. Thus, bigger
and wider objects become preferred candidates. For this, a series of geometric criterions, including the
length-width ratio <8, area > the average and the number of corner points < 50, were involved to seek
interested candidates.
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According to previous study [30,32], pixels with higher index values could represent
corresponding land cover well. Thus, index value was imported as another criterion. To reduce
noises or errors, an index value range from [+σ] to [+3σ] was designed, in which E and σ were the
average and standard deviation of the index image, respectively.

Objects satisfied above criterions were first selected as candidates and then samples were
randomly picked up from the candidate pool. With strict constraints in area, shape and index value,
it is expected to reduce accident errors and human errors in sample selection. Besides, it is believed
that those samples could also reflect land cover variation better.

3.4. Sample’ Transfer

There are two cases for inter-annual samples’ transfer: (1) keep unchanged, (2) change to other
type. In order to detect the sample’s change, change detection (CD) technique was imported. As labeled
samples are not available in target domain, it is hard to apply post-classification CD here. Considering
a sample may change partly, pixel-based CD should be implemented first, then sample’s status could
be determined according to the proportion of changed pixels within the object. among them, note that
it is always necessary, but often difficult, to assign a suitable threshold value to differentiate change
from no change precisely and research often suffers from the mis- or over-detection of changes [62,63],
as a lower threshold may exclude areas of change and a high value includes too many areas of change.

According to above discussion, a principle component analysis (PCA) was applied at first to detect
pixel’s change, in association with an unsupervised classifier (K-means) for assigning the threshold
(for judging change or no change) automatically [32]. Then, a sample’s status was determined if more
than 80% of its pixels were changed or unchanged. Otherwise, its status was thought to be unclear
and would not be involved in later process.

In the CD results, the locations of changed and unchanged samples were recorded. Here, unchanged
samples transfer the labeled information from the previous image to the new image, while the changed
samples reflect the land cover changes. For the changed samples, their types in the target image
were reassigned with a random forest classifier trained with unchanged samples. After that, samples’
change was further checked with the general patterns of land cover variations.

3.5. Classification and Performance Evaluation

In this study, a non-parametric ensemble learning method for classification, the random forest is
employed for all supervised classifications, as it has been widely used in related fields with excellent
performance [64,65]. Here, 60% of transferred sample was considered as the training sets and the
remaining 40% of samples as the test sets. Both the training sets and the selected feature subsets were
used to train the RF models and then classify the test sets. The mean and stdev values of the accuracies
were obtained from 50 random runs.

In order to evaluate the performance of the presented method, several related methods were also
involved as comparison, including: (1) supervised classification with training and validation samples
from the same year, namely single-year mapping (SY); (2) supervised classification with training
samples and test sets from different years, namely cross-year mapping (CY); and (3) multiple-indices
based classification (MI) [30]. As shown in Table 1, Landsat images of Guangzhou in 2001, 2003, 2006,
2009, 2012, 2014 and 2016 were used in the experiments. Confusion matrices and kappa coefficients
were employed to evaluate the accuracies, with the reference data manually interpreted from IKONOS
images covering the study site in corresponding years. Furthermore, the drivers of land cover variation
and the interaction between it and surroundings during the study year will be discussed, with related
climate, environmental, social, commercial and transportation data.
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4. Results

4.1. The Process of Presented Method

The process of the presented method, including image segmentation, sampling, change detection,
sample transfer and object-based classification, is illustrated in Figure 3. Only a subset of the study site
(Figure 3a) is displayed for better visualization.
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Figure 3. The process of the presented method. (a) partial Landsat image in 2001, (b) image objects in
vector overlaid on the MNDWI image, where brighter tone indicates higher index value; (c) labeled
samples overlaid on the segment image; (d) classification result in 2001, (e) detecting the change of
cropland between 2001 and 2016, (f) relabeling the changed cropland, (g) transferred samples for the
2016 image and (h) classification result in 2016.

In Figure 3b, the MNDWI image was used as background, to show if the segmentation results
match index images well. Then, samples were selected with constrains in geometric shape and index
value introduced in Section 3.3 and shown in Figure 3c. To demonstrate the process of change detection,
a single type of cropland and its samples with clear changes are involved in Figure 3e,f. Namely,
objects within which the proportions of change or unchanged pixels are less than 80% are not shown in
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figures. In Figure 3e, the grey polygons suggest that cropland is changed to other types. Note it makes
up a significant part of the original distribution. After the relabeling step, the new land cover types
become clear (Figure 3f). Clearly the changed croplands were mostly converted to built-up, with some
changing to bare land and forest. This reflects the primary tendency of urban land cover dynamics to
some extent. Based on the change detection result, sample’s change was detected Figure 3g Compared
with Figure 3c, many bare land samples have changed to built-up, several crop samples have changed
to built-up and bare land, while water and forest sampled remained relatively stable. Consequently,
the number of built-up sample has increased remarkably, bare land samples and cropland samples
have decreased respectively and others keep unchanged. The classification result with the transferred
samples is shown in Figure 3h, which also reveals dramatic increase of built-up areas from 2001 to 2016.

4.2. Validation and Comparison

In order to evaluate the performance of the proposed method, experiments on Landsat images of
Guangzhou in 2001, 2003, 2006, 2009, 2012, 2014 and 2016 were implemented. Furthermore, the SY, CY
and MI classifications were carried out for comparison analysis. Related results are shown in Figure 4,
Tables 3 and 4.
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Figure 4. The land cover maps in 2016. (a) SY result, (b) CY result with samples from the 2001 image,
(c) MI result and (d) OBST result.

Using the classification of the 2016 image as example (Figure 4), the MI and OBST results are
visually close to the SY result, while the CY result is much different. Specifically, the built-up area in
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the CY result (470 km2) is much less than the SY result (560 km2) and the difference is mainly due to
the misclassification of built-up into bare land. This tells that mapping with samples from a previous
year cannot efficiently reflect the dramatic urban expansion in a rapidly developing city.

Table 3. Overall accuracies for 2001–2016.

Method

Year
2001 2003 2006 2009 2012 2014 2016

SY 94.39 94.55 93.33 94.99 94.12 93.08 95.37
MCY * 81.57 84.60 83.35 86.95 86.70 81.28 84.63

MI 88.95 89.66 86.15 87.97 85.82 88.45 87.35
OBST 91.62 90.74 92.81 91.43 91.54 92.03 93.56

* MCY indicates the mean cross year mapping at the year.

In Table 3, all SY accuracies are higher than 93%, suggesting that supervised classification is able
to achieve a very high accuracy with training data collected in the same year as image acquisition.
When performing classification with samples from different years, the MCY accuracy (about 82–87%
in different years) is about 10% lower than SY. Note that the higher MCY values are located at the
middle of this row, as the mean time difference between 2009 and the other years is the least. The MI
accuracies (about 88%) are higher than the MCY accuracies and close to the SY accuracies. The OBST
accuracies are higher than 90%, only slightly lower than the SY accuracy. The above results suggest
that the presented method is able to map urban land cover dynamics accurately. The performance
of the presented method is further analyzed in Table 4, where detailed accuracy indicators from the
confusion matrices are displayed.

Table 4. Detailed accuracy indicators of the related methods.

OA
(%)

Kappa
Coeff.

Producer’s Accuracy (%) User’s Accuracy (%)

Built-
Up Forest Water Bare

Land
Crop
Land

Built-
Up Forest Water Bare

Land
Crop
Land

SY 94.26 0.9215 91.98 98.61 98.11 92.00 87.88 98.41 100 88.14 93.88 86.57
MCY 84.15 0.8084 81.08 96.59 97.18 86.49 52.05 89.55 92.39 98.57 47.76 80.85

MI 87.76 0.8573 89.50 94.17 98.66 75.25 84.50 78.17 91.08 96.93 100 80.48
OBST 91.94 0.8879 86.15 95.83 96.04 93.39 83.19 97.22 95.74 89.82 96.47 87.85

For the MI classification, the producer’s accuracies of bare land and cropland and the user’s
accuracy of built-up and cropland, are much lower than those in the SY, suggesting that the related
indices are not able to distinguish the above types clearly enough. The image index could be considered
as a dimension reduction method for distinguishing certain land cover types by transforming the
principle information into one dimension. However, this transformation is often very difficult, due to
the high complexity, similarity and mixture of spectral response patterns between pixels. Furthermore,
indices are sensitive to dynamics of ground surface and atmospheric situation (i.e., cloud or haze).
What is worse, the process of extracting a type from an index image is usually not independent of the
other types. For instance, bare land, forest and cropland are extracted from the NBLI image, so that
errors occurring in one step also affect the following steps.

The table suggests that the performance of OBST method is very close to the performance of SY
and much better than MI. It is suggested that the land cover dynamics cannot be completely recorded
and modeled in image, due to the high complicated surrounding impact factors. In Table 4, both the
producer’s and user’s accuracies of cropland are much lower than other classes. Considering that
cropland is actually a mixture of various herbaceous vegetation types, its spectral patterns are very
complex. On the one hand, the spectral characteristics of some pixels in one class may be similar to
other classes. Specifically, wet cropland is similar to water bodies, dry and fallow cropland is similar
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to bare land, dense cropland is similar to forest and so on. On the other hand, the differences among
pixels within the type may be very large, for example, the difference between fallow cropland and
dense cropland. Consequently, it is difficult to classify cropland accurately. Generally speaking, forest,
water and bare land have relatively homogeneous physical characteristics and spectral patterns and
the differences between them are relatively clear. Therefore, their accuracies are higher than cropland.
Although some built-up pixels may be a mixture of impervious surface, grasses, trees, ponds and so
forth, most of them have similar or homogeneous spectral patterns, guaranteeing higher classification
accuracy. To improve the accuracy of sample transfer based classification, mixed pixel analysis should
be considered in future studies.

4.3. Land Cover Dynamics of the Study Site

The times series land cover maps of the city derived from the Landsat images are shown in
Figure 5. Based on visual inspection, the classification results well capture the spatial patterns of
land covers in each year. Forests were clustered in the eastern mountainous areas and water areas
were relatively unchanged during these years, benefiting from the environmental protection policies
in China. At the same time, urbanization in Guangzhou is evident, as the built-up area is largely
expanded to the north, east and south of the urban core. The built-up area in Guangzhou almost
continuously increased from year to year and the derived areas of built-up area for the downtown of
Guangzhou city in 2016 were nearly two times of that in 2001.
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According to Figure 6, built-up areas in Guangzhou have increased rapidly since 2001. The derived
built-up areas were approximately 260 km2 in 2001 and reached to above 560 km2 in 2016. When
fitting with a simple linear trend, the annual growth rate of the built-up areas derived from Landsat
images was approximately 20 km2 per year from 2001 to 2016. Although the built-up areas appeared
to increase continuously during the past 15 years in Guangzhou, the increasing rates could vary in
specific periods. For example, there were slight slow-growing periods in 2001–2006 and fast-growing
periods in 2006–2016. The uneven growing rates of built-up areas in the study period were likely
related to the immigration of rural population into Guangzhou in previous studies [41]. At the same
time, croplands have experienced dramatic decrease since 2001. The derived cropland areas were
approximately 670 km2 in 2001 but reduced to about 420 km2 in 2016. The annual decline rate of the
cropland areas derived from Landsat images was approximately 16.7 km2 per year in these years.
The dynamics of other types, that is forest, water and bare land, were not so clear and remarkable.
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The study reveals that Guangzhou has undergone rapid urban expansion and the majority of
new built-up areas are previously croplands. This suggests that the pressure on natural resources has
increased in the city to meet the growing demand for built-up area. As urbanization requires more
and more built-up areas for housing, business and transport infrastructure, it is generally being met
through the development of natural lands (e.g., agriculture lands, forests, water bodies and so on),
which ultimately results in a considerable reduction in the open and green areas of that region. How
urban expansion interacts with social economy and exerts impacts on environmental sustainability is
beyond the scope of the current study but is of interest to investigate with synthesized modelling in
the future research.

5. Discussion

5.1. Characteristics of the Proposed Method

Due to the rapid development of Earth observation techniques, it becomes convenient to obtain
a large number of remotely sensed imagery over a certain area at different times, from hundreds
of Earth observation platforms However, this brings challenges that how to timely process the big
remote sensing data, in terms of rapidly transferring the data into information and then knowledge.
In last decades, supervised classification methods are mainly adopted for mapping land cover change
However, algorithms and parameters specified for classifications at certain time are probably not
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suitable for those at other time or other sites, no matter how well the classifier is developed. Collecting
reference data and training sample sets are always necessary for each single mapping, which often
costs considerable time and budget. Thus, it becomes very difficult to monitor land cover dynamics in
multi years, as a large number of times series images have to be processed.

This study aims to test if it is possible to eliminate the need to collect reference data repeatedly
from year to year by finding out the transfer strategies of samples between years. According to the
knowledge transfer, the knowledge discovered from historic data (source domain) could be used to
map land cover from new images (target domain). Namely, although samples in one year may be not
reusable in another year, affected by atmosphere, sensor calibration, solar elevation, solar azimuth,
phenology and so on, some prior experience and knowledge may be helpful for new classification
with data mining method. In order to seek and distribute knowledge from prior samples and ensure
its availability for future users, the number and pattern of samples’ change should be analyzed and
found out.

This study assumed that the change of randomly selected samples must following the dynamics
of land cover, when images are carefully selected with special considering for image quality, weather
conditions and cloud covers. Through carefully test and analysis, general rules about land cover
dynamics in developing and developed cities are concluded that: (1) most built-up, water, forest,
cropland maintain unchanged and bare land are rare in a developed city; (2) in a developing a city,
most built-up, water, forest and cropland keep unchanged, bare land mainly change into built-up,
while most changed crop land becomes bare land. This implies the tendency of samples’ change is very
clear. Then accident or human errors could be easily removed with object-based sampling algorithms,
through a simple filter step (i.e., he threshold 80%). Similarly, accident errors could be reduced when
using OBST method. Experiments indicates the accuracy of mapping land cover without current
samples has been improved with the proposed method, which is very close to SY accuracy. This prove
the OBST method could be great helpful to reduce accident and human errors in the process of sample
selection and transfer.

Related to the method, only source knowledge and target image are necessary, other steps
(i.e., sample selection, sample transfer and mapping) could automatic realized by extracting and
fusing previous information. Especially, samples for new mapping could be automatic generated
without iteratively collecting and training samples by human, which lift the level of automation and
applicability. This is a novel attempt towards total automatic mapping with knowledge discover theory
and remote sensing technology. Experiments illustrate this solution could be applied for automatic
mapping in some cases, although the performance of proposed method are still a little lower than SY.
That’s because the dynamics of some pixels or objects may be different from the main pattern of their
type, as they are seriously affected by complicated surrounding impact factors. Then, errors will likely
occur in the process of transferring samples. In the future research, novel machine learning algorithms
should be imported to discover and simulate sample transfer patterns accurately.

In order to introduce the proposed method efficiently, simple algorithms and thresholds are
employed in this experiment. In practical, some more specific and effective could be used. For instance,
multi-instance learning based decision tree could be used for classification and multiple analysis
detection for samples change detection and so on. Then, the mapping accuracy with this transfer
learning strategy could be further improved. Besides, the criterions for selecting object sample and
detecting changed samples could be further developed and optimized, to improve the reliability of
transferred sample. Further research will focus on improving change detection accuracy and samples’
quality, and on exploiting unlabeled samples or unreliable samples. Recent years, semi-supervised
learning based algorithms have been presented to deal with those samples, which should be employed
in future research.
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5.2. Issues of Guangzhou Urbanization

With time series images, land cover variations of Guangzhou have been mapped (as shown in
Figures 5 and 6). Related results reveal that the city has undergone rapid economic, industrial and
urban development in recent years, similar to other cities in China, India, Vietnam and Bangladesh [1–5].
Note that in the rapid urban expansion in Guangzhou, the majority of additional built-up and bare
land are acquired by converting areas that were previously cropland. As Guangzhou is located on one
of the most productive agricultural lands in China-the Pearl River Delta, this conversion from natural
or agricultural land into impervious surfaces consumes not only ecosystem goods and services but also
considerable food production. However, in developing countries, such as China, India, Bangladesh
and Vietnam, state-led industrialization and urban growth policies have often compelled farmers to
sell high-yield cropland to developers [4–9]. According to the Ministry of Land and Resources of
China, the total cultivated land in Mainland China continually decreased by approximately 5.6 million
hectares during last two decades [11]. Fortunately, more and stricter policies to protect cropland from
urban development have been presented in recent years.

This study also reveals that the increasing level of urbanization is leading to a considerable
reduction in the open and green areas, as expanding built-up areas for housing, business and transport
networks, mainly come from development of natural lands (e.g., grass lands, forests, water bodies
and so on). This may bring potential vulnerability to natural hazards, such as channel-bank and
road-surface erosion, habitat destruction, landscape degradation and fragmentation, climate change,
species extinction as well as the reduction of net primary productivity [45], which has occurred in Ho
Chi Minh [4], Dhaka [2,5,7]. Besides, note numerous bare land areas emerges along with urbanization
processes, which could cast irreversible impacts on the urban environment, such as air pollution and
soil loss [66]. In Figure 5, it is also found that the rapid human activity results in serious landscape
fragmentation, namely numerous unconnected small patches of vegetation and cultivated land, greater
isolation as well as higher percentage of edge areas in patches emerges in the city [66,67], Similar to
Dhaka, Bangladesh [5]. As built-up and bare land types consistently exhibited the highest mean Land
Surface Temperature (LST) [66], increase in unmanaged urbanization in the city and its immediate
surroundings probably led to a continuous increase in LST as vegetation and floodplains are converted
into either bare land or built-up surfaces [6].

A related study [32] reveals that land cover variation changes and urban expansion of the city
are governed by a combination of geographical, environmental and socio-economic factors. Rapidly
growing economy provides sufficient opportunities for built-up expansion and massive migration
from western China to this developing city [32]. Census data indicated that the GDP of Guangzhou
was only 45.2 billion dollars in 2001, which increased to 312 billion dollars in 2016 [43], with an annual
growth rate of 39.4%. In 2016, the urban population grows to 14.04 million (about half of the population
of Texas), with an annual growth rate of 6.6%. Among them, about 40% of the urban population was
from western or central China, like other Chinese mega-cities, Beijing [8], Shanghai and Shenzhen.
The additional demand for employing and accommodating the increased immigrants becomes another
driver of urban expansion [2,4,7].

Rapid urbanization, along with manufacturing industries and large number of vehicles has
resulted in some environmental problems, called “urban diseases.” In the plum rain season,
flash flooding hazards have become a serious issue and have caused human death and damages
to urban infrastructure in the city [45], similar to that in Dhaka [3]. According to the 2016 annual report
from the local government [68], the annual average concentration of PM2.5 was 36 µg/m3, 4 times
higher than that of Florida and 310 days had good air quality, accounting for 84.7% of the whole
year. Investigation on water quality disclosed that 70% of national monitoring streams was good,
while 88.7% of 53 polluted streams could not meet the lowest water quality criterion (the Chinese
V type) yet [68]. Besides, the average noise on road at night in downtown was 55.3 decibels, which is
officially labeled as slightly polluted [68]. More effective economic, social and environmental policies
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should be developed based on in-depth monitoring and analyzing the patterns, drivers and impacts of
urban expansion, in order to mitigate expansion’s adverse impacts.

6. Conclusions

In this study, in order to reduce the mapping cost and improve the timeliness of the LULC
dynamics of Guangzhou city, an object-based sample learning method was presented. The objected-
based analysis (OBA) with strict constrains in area, shape and index value is expected to reduce sample
selection bias (i.e., accident errors and human errors) in selecting and transferring samples and then
improve the stability of transfer learning based mapping. For the study years of 2001–2016, when the
training set was collected in the same mapping year, SY yielded accuracies higher than 93%. However,
when the classifier trained in one year was applied to other years, the mean CY accuracy was about
83%. The MI accuracies were generally around 88%, higher than the MCY accuracy and close to the SY
accuracy. Both the overall accuracies and detailed accuracy indicators of the presented methods were
higher than MCY and MI and were very close to the SY accuracy. It is therefore suggested that the
presented methods are able to map urban LULC automatically, obtaining a satisfactory performance.

With the presented methods, the times series Land cover maps of Guangzhou have been derived
and analyzed. Results indicate the derived built-up areas were approximately 260 km2 in 2001,
then grew to above 560 km2 in 2016, with a growth rate of approximately 20 km2 per year; the derived
crop land areas were approximately 670 km2 in 2001, then reduce to about 420 km2 in 2016, with a
decline rate of 16.7 km2 per year; the variations of other types, that is, forest, water and bare land,
are not so clearly and dramatic. The study reveals that Guangzhou has underwent rapid urban
expansion and the majority of new built-up areas were previously crop lands. This suggests that the
pressure on natural resources and environment has increased in the city to meet the growing demand
for built-up area. More effective economic, social and environmental policies should be developed to
mitigate urban expansion’s adverse impacts, based on in-depth monitoring and analyzing the patterns,
drivers and impacts of urban expansion.

The most promising application of the proposed strategy would be analyzing times-series
satellite images. Mapping spatial-temporal variations of urban land cover automatically could save
considerable cost and time for processing large data sets. This provides great potential for future
applications as more and more satellite observations have become available all over the globe.
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