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Abstract: Remotely sensed artificial lighting radiances at night can provide spatially explicit
proxy measures of the magnitude of human activity. Satellite-derived nighttime light images,
mainly provided by the Defense Meteorological Satellite Program (DMSP) and the Visible Infrared
Imaging Radiometer Suite (VIIRS) day/night band (DNB), have been increasingly used to study
demographic and socioeconomic activities for a wide range of issues—for instance, human population
dynamics, economic growth, and urbanization process—at multiple scales. In practice, the lack of
texture information regarding man-made surfaces would usually lead to substantial difficulty in
delineating the spatial dynamics in human settlements due to the diverse distributions of artificial
nocturnal lighting sources, which are closely related to the predominant land-use/land-cover
(LULC) types and their evolutions. An understanding of how nighttime lighting signals respond to
synchronous anthropogenic LULC changes, therefore, is crucially important for the spatiotemporal
investigations of human settlement dynamics. In this study, we used DMSP-derived nighttime light
(NTL) data and Landsat-derived LULC maps to quantitatively estimate the pixel-level responses of
NTL signals to different types of human-induced LULC conversions between 1995 and 2010 across
China. Our results suggest that the majority (>70%) of pixel-level LULC conversions into artificial
lands (including urban, rural, and built-up lands) might show a statistically significant increase in
nighttime brightness with an average >20 (in digital number, DN) step change in nighttime lights
(dNTL), both of which are distinctly higher than that in the LULC conversions into non-man-made
surfaces on the whole. A receiver operating characteristic (ROC) curve-based analysis implies
that we might have an average chance of ~90% to identify the nationwide LULC conversions into
man-made surfaces from all types of conversions through the observed changes in artificial nocturnal
luminosity signals. Moreover, ROC curve-based analyses also yield two nation-level optimal dNTL
thresholds of 4.8 and 7.8 DN for recognizing newly emerged three types of artificial lands and urban
lands between 1995 and 2010 across the entire country, respectively. In short, our findings reveal
fundamental insights into the quantitative connections between the anthropogenic LULC changes and
the corresponding responses of synchronous nightlight signals at the pixel-level, which are generally
essential for further applications of satellite-derived nocturnal luminosity data in the spatiotemporal
investigations of human settlement dynamics.
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1. Introduction

Satellite-based observations of artificial nocturnal brightness have been extensively used for a
range of issues related to human activity because of the well-documented significant relationships
between nighttime lighting (NTL) signals and several urbanization, demographic, and socioeconomic
variables over time and space [1–10]. The outstanding characteristic of remotely sensed nighttime light
datasets is that they can provide us with timely and consistent proxy measures of the degrees of various
human activities in a spatially explicit manner [11–15] closely related to land features [16]. The widely
used nighttime light images were previously provided by the Defense Meteorological Satellite
Program (DMSP) and are currently being derived from the Visible Infrared Imaging Radiometer Suite
(VIIRS) day/night band (DNB) onboard the Suomi National Polar-Orbiting Partnership (Suomi-NPP)
satellite [17–21]. Both satellite-derived observations show significant quantitative responses of
sensed nighttime light radiances to gross domestic product, human population size, urbanized areas,
and electric power consumption at local, regional, and national scales [22–33].

Compared with visible or infrared remote sensing images representing the spatial patterns of
natural and man-made land features, satellite-derived nighttime light data are primarily determined
by the spatial distributions of artificial lighting sources at night. Thus, the lack of detailed texture
information regarding landscape features poses a major challenge to characterizing the spatial and
temporal patterns in human settlements [34]. Moreover, the saturation (for DMSP data due to the
lack of on-board radiance calibration) and over-glow (i.e., pixels can be lighted by adjacent lighting
sources, for both DMSP and VIIRS DNB data) effects of nightlight signals can markedly affect the
spatial identifications of artificial land features [25,31,34]. In practice, satellite-derived land-use and
land-cover maps and vegetation index data have typically been applied in nighttime light data-based
studies to diminish the impacts of the abovementioned effects and improve the recognition accuracy
of man-made surfaces across human settlements [35–37].

Although the combination of nighttime light data and other sources of remote sensing data can
be helpful for studying human activity in terms of the magnitude and its spatial patterns, the spatial
partition of human settlements is still challenging, largely because of both the diversity of human
activity and the spatial heterogeneity of artificial lighting sources at night, even though we have
more detailed looks as provided by the current VIIRS DNB images. Hence, an understanding of the
connection between nighttime lights and corresponding land features and how nightlight signals
respond to anthropogenic land-use and land-cover (LULC) changes at the pixel level is crucial for
further applications of remotely sensed nocturnal luminosity data. Unfortunately, despite their
fundamental importance, these two issues are less well understood.

Using VIIRS DNB nighttime light data and Landsat-derived LULC maps, our previous study [16]
has represented a nationwide investigation with respect to the pixel-level relationship between NTL
and various types of LULC across China. In the present study, we aim for the quantitative responses
of nighttime lighting signals to corresponding anthropogenic LULC changes between 1995 and 2010 in
China. DMSP-derived NTL data and Landsat-derived LULC data are used to perform a nationwide
comparative analysis of the pixel-level alterations in nighttime lights between the two observational
periods among different types of human-induced LULC conversions. Welch’s t-test is employed to
examine whether there exists a statistically significant step change in the pixel-level NTL signals in
response to synchronous LULC conversions. This study, together in association with our previous
investigation [16], represents an attempt to provide a basic understanding of the connections between
two satellite-based observations of nocturnal light radiances and the LULC types and their synchronous
alterations for further applications of nighttime light data in studies of human settlement dynamics.
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2. Materials and Methods

2.1. Land-Use and Land-Cover Data

Two LULC maps with a spatial resolution of 100 m under the Albers equal-area projection
across China’s mainland in 1995 and 2010 were provided by the Institute of Geographical Sciences
and Natural Resource Research (IGSNRR) [38]. These LULC datasets were derived from Landsat
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (EMT+) images and produced by using
a supervised classification method in cooperation with ground truth verification. Detailed information
regarding the LULC data can be found in [38,39]. In this study, the LULC types initially presented in
the IGSNRR maps were re-categorized into seven different categories: cropland (including rain-fed
and irrigated), vegetation (including grassland and forestland), water (consisting of rivers, lakes,
reservoirs, and bottomland), urban land (settlements), rural land (residential areas, including small
towns, villages, and hamlets), built-up land (consisting of industrial areas, factories, mines, oil fields,
salt fields, and transportation), and unused land (consisting of deserts, Gobi, swamps, and bare soil).
As exemplified by the Pearl River Delta, there are visible LULC conversions into human-dominated
lands between 1995 and 2010 (see Figure 1a,b), mainly driven by the underlying rapid economic
growth and urbanization process in this region and across the entire country as well. A total of
12,210,817 pixels (covering ~12.2 × 104 km2 of land surface) appear to have LULC changes between
1995 and 2010 across China and are thus involved in subsequent analyses.
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equator and ~0.8 km at 40°N) were provided by the National Oceanic and Atmospheric 

Figure 1. Illustrations of satellite-derived observations of anthropogenic land-use/land-cover (LULC)
changes and synchronous dynamics in nighttime lighting (NTL) signals over the Pearl River Delta
region in China. (a) Landsat-derived human-dominated land uses in 1995. (b) Landsat-derived
human-dominated land uses in 2010. (c) The Defense Meteorological Satellite Program (DMSP)-derived
average NTL changes between 1992–1995 and 2010–2013.

2.2. Nighttime Light Brightness Data

Time-series data of annual cloud-free composited stable DMSP nighttime light products
(version 4.0) for the period 1992–1995 and the period 2010–2013 were used in this study. DMSP NTL
images with a spatial resolution of 30 arc-seconds under the WGS84 spatial reference system (~1 km
at the equator and ~0.8 km at 40◦N) were provided by the National Oceanic and Atmospheric
Administration (NOAA) National Centers for Environmental Information (NCEI) (we downloaded
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the data from the website at https://ngdc.noaa.gov/eog/dmsp.html). DMSP NTL images were
re-projected into the Albers equal-area projection by a nearest neighbor resampling method to match the
LULC datasets. Original DMSP NTL images are composed of the annual average visible band digital
numbers (DN, hereafter) ranging from 0 to 63. To diminish the yearly variations and differences among
sensors, the second-order regression model proposed by [40] was used to empirically intercalibrate the
DMSP NTL products. Moreover, the annual composites of DMSP NTL images that show the best fitting
regression for years with two separate sensor composites were used in this study (here, F10 was used
for 1992–1994, F12 for 1995 and F18 for 2010–2013). As demonstrated in Figure 1c, the four-year mean
of DMSP NTL signals shows marked changes accompanying the LULC conversions (see Figure 1a,b),
prevalent over the Pearl River Delta, between the two observational periods. Hence, we would be able
to estimate the pixel-level responses of DMSP NTL signals to corresponding LULC changes.

2.3. Step Change in Nighttime Light Signals

Theoretically, anthropogenic LULC conversions usually accompany alterations in artificial
nighttime lighting sources, especially with respect to man-made surfaces. Hence, such changes
can be captured by satellite-derived measurements of nocturnal brightness. Figure 2a illustrates the
observed changes in DMSP NTL during 1992–1995 and 2010–2013 over a given LULC pixel, which was
recognized as cropland in 1995 and converted into urban land in 2010. For quantifying the response
of nightlight signals to corresponding LULC changes, we defined the step change in DMSP NTL
(termed dNTL throughout, in units of DN) as the difference between the four-year arithmetic means
of 2010–2013 and 1992–1995. We use here the four-year mean instead of that of a single year in an
attempt to reduce the effect of inter-annual variations and uncertainty in DMSP NTL signals and
further to allow us to perform the statistical test on the mean change in NTL signals responding to
the LULC conversions. In the present study, the two-sided Welch’s t-test (also known as the unequal
variances t-test) was used to test the statistical significance of dNTL based on the null hypothesis (H0)
that two observed time series of DMSP NTL data have equal means (i.e., dNTL = 0). In subsequent
analyses, we mainly use the average dNTL and the proportion of converted pixels showing statistically
significant dNTL (P-value < 0.05) at the pixel-level to estimate the response of DMSP NTL signals to
different types LULC conversions. Moreover, we use a receiver operating characteristic (ROC) curve
to obtain optimal dNTL thresholds for identifying LULC conversions into artificial lands. The flow
chart for the study is presented in Figure 2b. Data processing and analyses were performed in Esri’s
ArcGIS and the R software environments.
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Figure 2. (a) An illustrative example of observed changes in nighttime light (NTL) over a given pixel
converted from cropland (1995) into urban land (2010) between 1992–1995 and 2010–2013. Welch’s t-test
indicates that there is a statistically significant step change in nighttime lighting signals (dNTL) between
the two observational periods. (b) Flow chart of the study.

https://ngdc.noaa.gov/eog/dmsp.html
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3. Results and Discussion

3.1. LULC Changes and Nightlight Dynamics

Driven by the fast-growing economy and rapid urbanization process, China appears to
have undergone remarkable changes in the nationwide LULC over the past several decades [39].
As represented in Figure 3a, human activity contributes the majority of the LULC conversions
between 1995 and 2010. Most notably, sizeable pixels (~75.9% of the total 10,452,217, ~7.9 × 104 km2,
after excluding minor types of LULC conversions, hereafter) were found to be converted into
human-dominated lands (including croplands, urban lands, rural lands, and built-up lands) from
vegetation, water, and unused lands. Approximately 88.7% of LULC conversions were related to
croplands (~4.5 × 104 km2). ~21.7% of pixels (~2.3 × 104 km2) were converted into human settlements
(including urban and rural) and built-up lands. It is should be mentioned that some types of LULC
conversions with a pixel number less than 104 were excluded from Figure 3a because these minor
conversions typically occurred among non-man-made surfaces with dim nighttime lighting signals.
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for corresponding kinds of LULC conversions.

As exhibited in Figure 3b, all types of LULC conversions likely show increased nighttime light
radiances on average. In general, the LULC conversions into artificial lands, including urban, rural and
built-up lands (except the unused-to-built-up conversion), show a distinctly higher average step change
in DMSP NTL between 1992–1995 and 2010–2013 than those in other types of LULC conversions.
The most notable step change in DMSP NTL occurred in the LULC conversions into urban lands with
a mean of 23.2 ± 12.4 (standard deviation, SD). In particular, a relatively large average of dNTL was
found in both the cropland-to-urban (24.1 ± 12.4) and unused-to-urban (27.6 ± 12.4) conversions.
The LULC conversions among non-man-made surfaces—including croplands, vegetation, water,
and unused lands—commonly show a slightly increase in NTL, which is generally less than 6.0
(estimated for the cropland-to-water conversion). Overall, these results clearly indicate measurable
alterations in nighttime light data in response to the human-induced LULC changes, especially for
the LULC conversions into artificial lands. In the following sections, we mainly pay attention to
detailed statistical comparisons of dNTL for three major categories of anthropogenic LULC changes,
including the conversions from croplands, vegetation, and rural lands into other types of LULC.

3.2. Statistical Comparisons of dNTL for the LULC Conversions from Croplands

A total of ~4.5 million cropland pixels (~4.5 × 104 km2) have been converted into other types of
LULC between 1995 and 2010 across the entire country, of which 35.2% (~1.6 × 104 km2) and 49.3%



Remote Sens. 2018, 10, 1447 6 of 15

(~2.2 × 104 km2) were changed into vegetation and man-made lands, respectively (see Figure 4a).
The former major conversion from croplands likely resulted from the reforestation of the cultivated
lands, and the latter was driven by the epic urbanization process since the end of 1990’s in China [39].
Figure 4b displays the density distribution of dNTL for different types of LULC conversions from
croplands. Most obviously, the overall response of NTL signals to the LULC conversions from
croplands into three types of artificial lands (median = 24.7 with 1st–3rd quartile = 14.8–33.5 for
urban lands, 14.3 with 4.4–30.8 for rural lands, and 21.4 with 8.0–33.5 for built-up lands) are
generally much higher than those in other types of the LULC conversions. 88.8% (~0.9 × 104 km2),
76.7% (~0.5 × 104 km2), and 86.7% (~0.4 × 104 km2) of pixels show statistically significant dNTL
(P-value < 0.05) in the conversions into urban lands, rural lands, and built-up lands, respectively
(Figure 4e,f,g). In contrast, a major proportion of pixels in other types of LULC conversions show
no statistically significant increases in NTL signals (i.e., P-value > 0.05 or dNTL ≤ 0, here 84.8%
(~1.4 × 104 km2) for vegetation, 57.9% (~0.1 × 104 km2) for water and 83.3% for unused lands)
(see Figure 4c,d,h).
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Figure 4. Statistical results of the pixel-level step change in nighttime light signals for LULC conversions
from croplands into other types of lands between 1995 and 2010. (a) Relative proportions of different
types of LULC pixels converted from croplands. (b) Density distributions of dNTL. (c–h) Analyzed
results of Welch’s t-test for dNTL of LULC changes from croplands converted into (c) vegetation,
(d) water, (e) urban lands, (f) rural lands, (g) built-up lands, and (h) unused lands, respectively.

3.3. Statistical Comparisons of dNTL for the LULC Conversions from Vegetation

Between 1990 and 2010, ~4.3 million pixels (~4.3 × 104 km2) were found to be converted from
natural vegetation into croplands (accounting for 87.9% of the total converted vegetation pixels,
~3.8 × 104 km2) and artificial surfaces (12.1%, ~0.5 × 104 km2) (Figure 5a). Over the past two decades,
the LULC conversions from forestlands and grasslands into croplands mainly occurred in Northeast
and Northwest China due to notably increased agricultural activities in these two regions [39]. On the
whole, no visible changes in NTL signals (0.0 with 0.0–1.6) were found in the LULC conversions
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from vegetation into croplands (Figure 5b), in which merely 11.5% of pixels (~0.4 × 104 km2) shows a
statistically significant, but very slight, increase in nighttime light brightness between 1990 and 2010
(Figure 5c). The most marked average change in NTL signals appears to occur in the conversions of
vegetation into urban lands (20.6 with 10.7–29.6), in which most pixels (83.7%, ~0.1 × 104 km2) show a
significant positive change in NTL signals (Figure 5c). Two types of conversions, from vegetation into
both rural lands and built-up lands, show closely similar dNTL (5.5 with 0–19.0 vs. 6.6 with 1.3–19.0,
and 52.4% vs. 61.4% of pixels showing dNTL > 0 and P-value < 0.05, ~0.05 × 104 and 0.1 × 104 km2,
respectively) (see Figure 5b,e,f).
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Figure 5. Statistical results of the pixel-level step change in nighttime light signals for LULC conversions
from vegetation into other types of lands between 1995 and 2010. (a) Relative proportions of different
types of LULC pixels converted from croplands. (b) Density distributions of dNTL. (c–f) Analyzed
results of Welch’s t-test for dNTL of LULC changes from vegetation converted into (c) croplands,
(d) urban lands, (e) rural lands, and (f) built-up lands, respectively.

3.4. Statistical Comparisons of dNTL for the LULC Conversions from Rural Land

Diverse human activities and several land-use policies (e.g., urban expansion, rural exodus
and hollowing, and consolidation of rural lands) can lead to the conversions of rural lands into
other types of LULC in present-day China [41,42]. As shown in Figure 6a, 76.4% (~0.17 × 104 km2)
and 12.2% (~0.02 × 104 km2) of initial rural pixels (a total of ~0.2 million, ~0.2 × 104 km2) have
become urban lands and croplands, respectively, between 1995 and 2010 with the rapid urbanization
process and increasing rural depopulation [41]. Meanwhile, the remaining 5.4% (~0.01 × 104 km2)
and 6.0% (~0.01 × 104 km2) of initial rural lands have been converted into vegetation and built-up
lands, respectively. Conversions into both urban lands and built-up lands commonly show a notable
average dNTL (21.9 with 11.8–31.3 and 24.0 with 12.2–34.1, respectively) (Figure 6b). Correspondingly,
the statistically significant positive step change in NTL signals was found over 85.8% (~0.1 × 104 km2)
and 88.9% (~0.01 × 104 km2) of converted pixels in these two types of LULC conversions (Figure 6e,f).
On the whole, no remarkable changes in NTL signals have been observed for the LULC conversions
from rural lands into both croplands and natural vegetation with respect to the distribution of dNTL
(Figure 6b) and the proportions of converted pixels with a statistically marked step change in NTL
signals (Figure 6c,d).
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Figure 6. Statistical results of the pixel-level step change in nighttime light signals for LULC conversions
from rural lands into other types of lands between 1995 and 2010. (a) Relative proportions of different
types of LULC pixels converted from croplands. (b) Density distributions of dNTL. (c–f) Analyzed
results of Welch’s t-test for dNTL of LULC changes from rural lands converted into (c) croplands,
(d) vegetation, (e) urban lands, and (f) built-up lands, respectively.

3.5. Statistical Comparisons of dNTL among Different Types of Newly Emerged Lands

The above results jointly gave the descriptive summaries of quantitative responses of nighttime
lighting brightness to corresponding anthropogenic LULC changes across China with a focus on
three major categories of the LULC conversions from croplands, vegetation, and rural lands. Next,
we pay attention to statistical comparisons of the step change in nighttime lights among different
types of newly emerged lands converted from other types between 1995 and 2010. First, our results
suggest that most of the pixels converted into artificial lands (87.7, 74.1, and 70.6% for urban lands,
rural lands, and built-up lands, ~1.3 × 104, 0.6 × 104, and 0.7 × 104 km2, respectively) likely have a
marked step change in NTL signals (dNTL > 0 and P-value < 0.05) (Figure 7a). 42.1% (~0.2 × 104 km2)
of the pixel-level conversions into water show significant nightlight responses largely because of
increased human activities locally or in adjacent settlement/built-up areas. Such effects might also
contribute enhanced nighttime light radiances for few proportions of the LULC conversions into
croplands and other non-human-dominated lands. Second, as exhibited in Figure 7b, the statistically
significant (P-value < 0.05) positive step change in NTL signals was found across a total of ~3.7 million
converted pixels (~3.7 × 104 km2), in which the majority (69.6%, ~2.6 × 104 km2) were likely
converted into man-made surfaces, including urban lands (34.9%, ~1.3 × 104 km2), rural lands
(16.2%, ~0.6 × 104 km2), and built-up lands (18.4%, ~0.7 × 104 km2). Third, in spite of the statistical
significance, there are distinct differences in the distributions of the pixel-level net increases in
NTL signals among different LULC conversions into man-made lands and other types of lands
(see Figure 7c). The median is estimated to be larger than 22.0 commonly for the LULC conversions
into three types of artificial lands, while the median and the third quartile are typically less than 8.1
and 18.3, respectively, for the LULC conversions into other types of non-man-made lands. Moreover,
there are visible intercity differences in dNTL with respect to LULC conversions into urban lands
among 10 major cities (Table 1), probably because of the variations in the city form.
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Figure 7. (a) LULC type-specific percentages of pixels with significant positive dNTL (P-value < 0.05)
converted from other types between 1995 and 2010. (b) Relative proportions of pixels showing
significant positive dNTL (P-value < 0.05) and converted into different types of LULC between 1995
and 2010. (c) Density distributions of the pixel-level positive dNTL with P-value < 0.05 for different
types of LULC converted from other types between 1995 and 2010.

Table 1. Summary of the pixel-level step change in nighttime light signals (dNTL) for LULC conversions
into urban lands between 1995 and 2010 across 10 major cities in China.

City C1 C2 C3
dNTL

C4 C5 C6 C7

Guangzhou 403.3 806.1 402.8 13.71 5.75 21.87 80.22
Beijing 1017.0 1404.6 387.6 21.34 12.95 28.28 85.12
Suzhou 393.9 728.1 334.2 32.11 22.59 39.64 98.20
Tianjin 547.0 853.6 306.6 19.92 11.07 31.00 83.16

Chengdu 323.4 562.1 238.7 32.41 25.61 37.73 99.54
Nanjing 316.3 545.4 229.2 31.74 17.61 37.24 92.50

Shanghai 763.3 987.3 224.0 10.75 4.07 19.40 46.23
Zhengzhou 237.9 433.4 195.5 26.92 16.14 35.38 85.80
Hangzhou 206.5 397.0 190.5 26.59 16.24 32.61 89.19

Xi’an 207.4 316.3 108.8 10.88 5.14 23.45 73.43

C1—urban area in 1995 (km2); C2—urban area in 2010 (km2); C3—increased urban area (km2); C4—median of
dNTL; C5—first quartile; C6—third quartile; C7—proportion of pixels with P-value < 0.05 (%).

3.6. Threshold Selections of dNTL for Identifying LULC Conversions into Artificial Lands

On one hand, it is quite reasonable that more salient responses of nighttime lighting signals
are typically found in the LULC conversions into artificial lands in which a relatively large average
increase in NTL and a large proportion of converted pixels with a statistically significant step change
in NTL were usually found. This is mainly because satellite-derived nocturnal luminosity data are
particularly sensitive to land surfaces with high-density artificial lighting sources at night, generally in
human settlements and built-up areas. On the other hand, the aforementioned marked differences
in quantitative responses of NTL to different types of LULC changes could suggest that most LULC
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conversions into artificial lands might be distinguishable through the observed differences in the
responses of nighttime lighting signals. Then, a crucial question arises of how to determine the
threshold value of changes in NTL for spatial identification of newly emerged man-made surfaces
between two observational periods among various types of LULC conversions. In practice, the answer
to this question plays a pivotal role in guiding nighttime light data-based investigations of human
settlement dynamics, especially for urban expansions. As represented in the above analysis results,
there are always a few pixels converted into non-man-made lands and having marked responses in
NTL signals in terms of both the statistical significance and the magnitude, primarily because of the
diversity and the spatial heterogeneity of human activities, as well as the over-glow effect in nighttime
light images. By contrast, a small quantity of pixels converted into artificial surfaces have no visible
changes in nighttime light brightness. These findings can jointly state that the nightlight signals-based
partition might not completely distinguish the LULC changes into man-made lands and those into
non-man-made lands from each other.

As in our previous study [16], we used a receiver operating characteristic (ROC) curve to evaluate
the performance of dNTL threshold-based identification rules (a binary partition) in detecting the
newly emerged artificial lands among various types of LULC conversions and towards finding an
optimal threshold. The ROC curve is generally created by the sensitivity (known as the true positive
rate) against the specificity (the true negative rate). Here, the sensitivity measures the proportion of
actual LULC conversions from other types into artificial lands that are correctly identified as such.
Correspondingly, the specificity is defined as the proportion of LULC conversions into non-artificial
lands that are correctly excluded from the partition.

Analyses with two ROC curves were carried out for dNTL threshold-based identifications of
newly added artificial lands (including urban, rural, and built-up lands together) and urban lands
between 1995 and 2010, separately as displayed in Figure 8a,b. The area under the ROC curve (AUC)
provides a quantitative measure of the overall performance of dNTL threshold-based partitions.
For this study, the AUC value (with an expected value of 1) can be explained as the probability that
a randomly selected pixel with the condition (i.e., its dNTL value is larger than a given threshold)
from all converted pixels has the result indicating a greater likelihood of being an actual artificial
land in 2010 than that of a randomly chosen pixel without the condition. Here, the AUC value was
estimated to be 0.87 for all types of newly added artificial lands (Figure 8a) and 0.89 for emerged urban
lands (Figure 8b). More generally speaking, we might have an overall nearly 90 percent chance of
distinguishing newly added artificial lands converted from other types of lands between 1995 and
2010 by using the observed step change in nighttime lighting signals.

As illustrated in Figure 8a, a perfect identification is always located on the top-left point with an
expected value of 1 for both measures, the sensitivity and specificity. In our two cases, the optimal
threshold of dNTL can be obtained by a trade-off between the sensitivity and specificity using the
minimum distance between the point on the ROC curve and the perfect classification point. An optimal
dNTL threshold of 4.8 was estimated for the nationwide identification of the LULC conversions into
three types of artificial lands (see Figure 8a), while ~79.3% of target DMSP pixels (totally covering
~3.0 × 104 km2) were included and ~84.1% of non-target pixels (~9.2 × 104 km2) were excluded.
The majority (~95.5%) of non-target pixels can be precluded as the dNTL threshold is enhanced
to 12. Meanwhile, ~37.4% of target pixels were also omitted. By contrast, ~87.3% of target pixels
can be identified while the dNTL threshold is deduced to a low value of 2. A large proportion
(~31.1%) of non-target pixels, however, can also be contained. As shown in Figure 8b, the estimated
optimal dNTL threshold for identifying the LULC conversions into urban lands is equal to 7.8,
while ~86.6% of nationwide target pixels (~1.5 × 104 km2) were recognized and ~83.8% of non-target
pixels (~10.7 × 104 km2) were ruled out. When we increased the dNTL threshold to 12, ~87.8% of
non-target pixels and ~21.6% of target-pixels were ruled out. Although the reduction of the dNTL
threshold can apparently result in a marked increase in the sensitivity, a sizeable proportion of
non-target pixels might also be included in this case. Hence, given the capability of nighttime light data
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for identification of the LULC conversions into man-made lands, a trade-off between the sensitivity
and specificity in the threshold-based partition is crucially important.
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Figure 8. Receiver operating characteristic (ROC) curve-based nationwide threshold selections of dNTL
for identifying LULC conversions into artificial lands (a) and urban lands (b). (c) Spatial distributions
of newly emerged artificial lands between 1995 and 2010 over Beijing City. (d) The partitioned result
based on the step change in nighttime lights according to the optimal dNTL thresholds estimated by
the ROC curves in (a,b).

As exemplified by Beijing City, Figure 8c,d illustrate the spatial distributions of the LULC
conversions into urban, rural and built-up lands between 1995 and 2010 and the optimal dNTL
threshold-based partitions, respectively. The visible consistency of two distributions over the region
might indicate the overall effectiveness of nighttime lighting signals for detecting the spatial expansions
of man-made-surfaces during the urbanization process. Moreover, we can find that both the omitted
target pixels and included non-target pixels likely occur in the periphery of local hot spots of urbanizing
areas, where the capability of nighttime lighting signals is probably limited by both the complexity
of human activity and the over-glow effect of DMSP NTL images. Similar results can also be found
in other regions like the Yangtze River Delta urban agglomeration and the Pearl River Delta urban
agglomeration (see Figure A1). Table A1 gives quantitative comparisons of LULC conversions into
artificial and urban lands observed by Landsat-derived LULC maps and identified by optimal DMSP
dNTL thresholds across 10 major cities in China.

4. Conclusions

The utility of satellite-derived artificial lighting radiances at night for investigations of various
types of human activity at multiple scales has been widely addressed. Apart from the capability of
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sensors, the features of remotely sensed nocturnal luminosity images are mainly determined by the
spatial distributions of diverse artificial lighting sources on the ground. In the absence of explicit
texture information regarding artificial surfaces, it is often very hard to spatially identify diverse human
activities and their dynamics at a fine scale merely using the observed magnitude of nighttime light
brightness over time and space. Hence, the pixel-level quantitative estimates for both the connections
between nighttime light radiances and land-use/land-cover types and the responses of NTL signals to
anthropogenic LULC changes are fundamentally important for further uses of nighttime light data,
especially in studying the patterns and dynamics of diverse human settlements.

In our previous study [16], we investigated the pixel-level connections of the VIIRS-derived
nighttime light image to the LULC dataset (both in 2015) and revealed the notable differences in the
NTL signals between man-made surfaces and non-artificial lands. In this study, we further studied
the pixel-level quantitative responses of DMSP NTL signals to anthropogenic LULC changes between
1995 and 2010 across China. First, our results represent the high prevalence of distinct changes in
NTL signals responding to the LULC conversions into man-made land surfaces. These responses can
be quantitatively measured by a step change between two observational periods with the statistical
significance test. Second, a minor proportion of the LULC conversions into non-man-made surfaces
can also show marked increases in nighttime lights; the magnitude of changes in NTL on average,
however, is relatively low. Third, we thus are able to identify the LULC conversions into man-made
lands using the step change in nighttime lights with a high chance as estimated by the ROC curve.
Finally, an optimal threshold of step change in nighttime light brightness—for detecting newly added
artificial lands during the observational period—can be obtained by weighting both the sensitivity and
the specificity equally on the ROC curve.

In addition, the relatively coarse spatial resolution and visible over-glow effects in DMSP
nighttime light images are likely to cause a large uncertainty with respect to the spatial identifications
of artificial land dynamics, especially in the peripheral areas of human settlements and built-up lands.
By comparison, the current nighttime light images derived from VIIRS DNB with a higher spatial
resolution, a wider radiometric detection range, and a lower over-glow effect can provide us with a
detailed look at land surfaces over human settlements. Whether the quantitative response of VIIRS
DNB NTL signals to anthropogenic LULC changes can be beneficial for identification of artificial
land dynamics should be investigated in future studies, while the long-term archives of VIIRS DBN
nightlight data (especially the annual composite product) become available. Such investigations are
quite important for the increasing uses of satellite-derived nocturnal luminosity data, particularly in the
context of the uncertainty and mis-specification in nighttime light data-related results and applications.
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land area in 2010; C3—increased artificial land area; C4—increased artificial land area with dNTL > 

4.8 according to Figure 8a; C5—urban area in 1995; C6—urban area in 2010; C7—increased urban area; 

C8—increased urban area with dNTL > 7.8 according to Figure 8b. 

References 

1. Sutton, P.C. A scale-adjusted measure of “urban sprawl” using nighttime satellite imagery. 

Remote Sens. Environ. 2003, 86, 353–369. 

2. Doll, C.; Muller, J.; Morley, J. Mapping regional economic activity from night-time light satellite 

imagery. Ecol. Econ. 2006, 57, 75–92. 

3. Ghosh, T.; Powell, R.L.; Elvidge, C.D.; Baugh, K.E.; Sutton, P.C.; Anderson, S. Shedding light on 

the global distribution of economic activity. Open Geogr. J. 2010, 3, 148–161. 

4. Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. 

Acad. Sci. USA 2011, 108, 8589–8594. 

Figure A1. Spatial distributions of newly emerged artificial lands between 1995 and 2010 over
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The partitioned result based on the step change in nighttime lights according to the optimal dNTL
thresholds over (c) the Yangtze River Delta urban agglomeration and (d) the Pearl River Delta
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Table A1. Summary of optimal dNTL threshold-based identifications of LULC conversions into
artificial and urban land areas (in km2) between 1995 and 2010 across 10 major cities in China.

C1 C2 C3 C4 C5 C6 C7 C8

Guangzhou 8152.1 13,398.8 5246.7 4486.4 403.3 806.1 402.8 271.9
Beijing 21,937.4 27,837.2 5899.8 5293.5 1017.0 1404.6 387.6 329.6
Suzhou 8647.6 17,044.4 8396.8 8402.6 393.9 728.1 334.2 326.6
Tianjin 18,159.6 22,979.3 4819.7 4653.3 547.0 853.6 306.6 255.6

Chengdu 11,089.1 14,973.2 3884.1 3851.2 323.4 562.1 238.7 238.1
Nanjing 9394.0 13,910.8 4516.8 4109.5 316.3 545.4 229.2 207.3

Shanghai 13,748.6 21,615.8 7867.2 6890.7 763.3 987.3 224.0 134.8
Zhengzhou 8067.0 10,702.5 2635.5 2456.7 237.9 433.4 195.5 174.2
Hangzhou 5025.2 8441.6 3416.4 3243.6 206.5 397.0 190.5 172.6

Xi’an 7834.1 9253.4 1419.3 1063.7 207.4 316.3 108.8 67.8

C1—artificial land area (including urban, rural and built-up lands together) in 1995; C2—artificial land area in
2010; C3—increased artificial land area; C4—increased artificial land area with dNTL > 4.8 according to Figure 8a;
C5—urban area in 1995; C6—urban area in 2010; C7—increased urban area; C8—increased urban area with
dNTL > 7.8 according to Figure 8b.
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