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Abstract: Two semi-analytical algorithms, Generalized Inherent Optical Property (GIOP) and
Garver-Siegel-Maritorena (GSM), were evaluated in terms of how well they reproduced the absorption
coefficient of phytoplankton (aph(λ)) and dissolved and detrital organic matter (adg(λ)) at three
wavelengths (λ of 412, 443, and 488 nm) in a zone with optically complex waters, the Upper Gulf
of California (UGC) and the Northern Gulf of California (NGC). In the UGC, detritus determines
most of the total light absorption, whereas, in the NGC, chromophoric dissolved organic material
(CDOM) and phytoplankton dominate. Upon comparing the results of each model with a database
assembled from four cruises done from spring to summer (March through September) between
2011 and 2013, it was found that GIOP is a better estimator for aph(λ) than GSM, independently
of the region. However, both algorithms underestimate in situ values in the NGC, whereas they
overestimate them in the UGC. Errors are associated with the following: (a) the constant a*ph(λ) value
used by GSM and GIOP (0.055 m2 mgChla−1) is higher than the most frequent value observed in
this study’s data (0.03 m2 mgChla−1), and (b) satellite-derived chlorophyll a concentration (Chla)
is biased high compared with in situ Chla. GIOP gave also better results for the adg(λ) estimation
than GSM, especially in the NGC. The spectral slope Sdg was identified as an important parameter
for estimating adg(λ), and this study’s results indicated that the use of a fixed input value in models
was not adequate. The evaluation confirms the lack of generality of algorithms like GIOP and GSM,
whose reflectance model is too simplified to capture expected variability. Finally, a greater monitoring
effort is suggested in the study area regarding the collection of in situ reflectance data, which would
allow explaining the effects that detritus and CDOM may have on the semi-analytical reflectance
inversions, as well as isolating the possible influence of the atmosphere on the satellite-derived water
reflectance and Chla.

Keywords: ocean color; inherent optical properties; remote sensing

1. Introduction

Ocean color remote sensors onboard satellites, such as the early coastal zone color scanner (CZCS)
and the current Moderate Resolution Imaging Spectroradiometer (MODIS), have provided information
on oceanographic structures and processes at different scales in the oceans, explaining a series of
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biological and ecological processes [1]. The data from these sensors has been used in studies on ocean
dynamics, biogeochemistry, and global climate change [2–5].

Specifically, these sensors have greatly improved the world’s understanding of the properties of
light absorption by water and particulate and dissolved material [6–12], and they have emphasized the
importance of observing the properties routinely from space. These properties exercise an important
influence on the function of marine ecosystems, determining, for example, the availability of solar
radiation for phytoplankton growth [13], the effectiveness of visual predation [14], and the kinetics of
photochemical processes [15].

The concentration of particulate material in water is important in coastal regions, with implications
for coastal protection, shipping, and recreational activities [16]. The analysis of absorption is necessary
for identifying the water components that contribute to the process of light absorption. The total
absorption can be described in terms of the additive contribution of different components [17]:

a(λ) = aw(λ) + ap(λ) + aCDOM(λ) (1)

where a(λ) is the light absorption coefficient at a given wavelength; aw(λ) is the light absorption
coefficient by pure water; ap(λ) is the light absorption coefficient by particulate material, which in turn
can be decomposed into the absorption by phytoplankton (aph(λ)) and the absorption by detrital organic
particles and minerals (ad(λ)); and, finally, aCDOM(λ) is the absorption coefficient by chromophoric
dissolved organic material (CDOM). The coefficients ad(λ) and aCDOM(λ) have similar spectral shapes
and they are evaluated as a sum (adg(λ)) [16]. Therefore, the total absorption a(λ) can also be expressed
as follows:

a(λ) = aw(λ) + aph(λ) + adg(λ) (2)

The absorption coefficients (aph(λ), adg(λ)) and the particulate backscattering coefficient (bbp(λ))
are referred to as inherent optical properties (IOPs) [18], and a variety of semi-analytical approaches
have been proposed [16] to derive IOPs from the remotely measured “remote-sensing” spectral
reflectance (Rrs(λ)) [19], especially for optically complex waters [20]. Two well-known—and
widely used—semi-analytical algorithms have been proposed by Maritorena et al. [21] and
Werdell et al. [22]. The first algorithm, known as Garver-Siegel-Maritorena (GSM), was initially
developed by Garver and Siegel [6] and it is based on a quadratic relationship between Rrs(λ)
and the absorption and scattering coefficients [23]. It uses a semi-analytical approach and
an optimization method to obtain estimates of chlorophyll a concentration (Chla), adg(443),
and bbp(443), assuming an underlying bio-optical model and using non-linear optimization [16].
The GSM products generated by NASA’s Ocean Biology Processing Group (OBPG) are described
at https://oceancolor.gsfc.nasa.gov/products/eval/#GSM. The second algorithm, referred to as
Generalized Inherent Optical Property (GIOP), also uses spectral optimization, but incorporates
several ideas from previously published bio-optical models and methods, allowing the user to isolate
and evaluate the individual differences between models in a controlled environment. GIOP products
are standard NASA OBPG products; see https://oceancolor.gsfc.nasa.gov/atbd/giop/. GIOP was
developed during two NASA-sponsored international IOP algorithm workshops at the Ocean Optics
XIX (October 2008) and XX (September 2010) conferences. The international working group associated
with these workshops proposed in consensus the preliminary configuration of GIOP, with alternative
settings and characteristics of the model defined with the objective of applying continuous evaluations.

Brewin et al. [16], among others, have evaluated the semi-analytical algorithms available for
the determination of IOPs, by means of an objective classification that allowed the grading of each
one. Their results showed that the overall score obtained by the algorithms that estimated aph(λ),
when accounting for individual scores across all wavelengths, was higher in GIOP, followed by the
others, among which was GSM. For the determination of adg(λ), the slightly higher scores obtained
were for the Quasi-Analytical Algorithm (QAA) [24,25] and the Hyperspectral Optimization Process
Exemplar (HOPE) models [26], followed by other algorithms including GSM and GIOP. Meanwhile,
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none of the algorithms captured well the variability in Sdg (spectral slope of adg(λ)). In their study,
the above authors indicated the need to use, in future inter-comparison exercises, an independent in situ
dataset for testing algorithms (in this case, NASA bio-Optical Marine Algorithm Dataset, NOMAD).

In this study, the authors evaluated GSM and GIOP by comparing their results with an in situ
database of aph(λ), ad(λ), and aCDOM(λ) from an optically complex region, the northern part of the Gulf
of California. The selection of the best model was done based on statistical tests, and the results of the
analyses allowed the authors to identify the possible adaptations of the algorithm that could improve
the retrieval in this type of region.

2. Materials and Methods

2.1. Study Area

The study area comprises the northern part of the Gulf of California (Mexico) and is located
at 30.5◦N to 32◦N and −115◦W to −113.5◦W (see Figure 1). In previous studies, this area has been
classified into two zones (Upper Gulf of California and Northern Gulf of California) according to
hydrodynamic characteristics and bio-optical properties [27–29]. The shallower zone (<30 m) is the
Upper Gulf of California (UGC) and is characterized by high turbidity and strong water-column
mixing [30], high chlorophyll a concentration (Chla), the dominance of microphytoplankton (diatoms
and dinoflagellates), and a high contribution of detritus to total light absorption [29]. The Northern
Gulf of California (NGC) is a deeper region more oligotrophic than the UGC, dominated by
picophytoplankton (cyanobacteria and green algae), with lower values of Chla and light absorption
by detritus [29]. A transitional zone separates both regions (see Figure 1), whose location can change
according to differences in hydrodynamics. A detailed description of the particular bio-optical
characteristics of each region can be found in Betancur-Turizo et al. [29].
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Figure 1. (a) Study area map. (b) Transition zone between the Upper Gulf of California (UGC) and
Northern Gulf of California (NGC) bio-optical regions, indicated by the dotted line. (c) Station location
for each cruise.

2.2. In Situ Data

Physical and biological data were collected during six oceanographic cruises in the study area
performed during neap tides. Table 1 indicates the sampling dates, and Figure 1c the location of the
stations. Surface water samples (approximately 0.50 m deep) were collected using 5 L Niskin bottles
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for the determination of phytoplankton (aph(λ)), detritus (ad(λ)), and CDOM (aCDOM(λ)) absorption
coefficients according to the protocol indicated in Mitchell et al. [17]. Chla concentration was measured
using High-performance liquid chromatography (HPLC) with the method proposed by Thomas [31].
The specific absorption coefficient by phytoplankton (a*ph(λ), m2 (mg Chla)−1) was calculated by
normalizing aph(λ) by Chla. More details of these analyses are provided in Betancur-Turizo et al. [29].

Table 1. General information of the oceanographic cruises and measured variables.

Cruises Dates Variables

June 2008 3–16 aph(λ), ad(λ)
June 2010 1–10 aph(λ), ad(λ)

March 2011 24 March to 1 April aph(λ), ad(λ), aCDOM(λ)
August 2012 3–10 aph(λ), ad(λ), aCDOM(λ)

September 2012 4–9 aph(λ), ad(λ), aCDOM(λ)
June 2013 11–21 aph(λ), ad(λ), aCDOM(λ)

The semi-analytical algorithms that determine the IOPs do not estimate the absorption coefficients
of detritus ad(λ) and aCDOM(λ) independently, but as an integrated variable called adg(λ) which
represents their sum. For this reason, this variable was determined by the sum of each of the absorption
spectra of ad(λ) and aCDOM(λ). The newly generated spectra were fitted to an exponential function
y = Ae(−S*λ) between 250 and 500 nm using a nonlinear least square minimization routine. The exponent
S of the equation was called Sdg and corresponds to the spectral slope of the absorption spectrum of
adg(λ). Finally, given that the June 2008 and 2010 cruises did not have CDOM data, the analyses of this
variable were applied only to the data of the four cruises taken between 2011 and 2013 (see Table 1).

2.3. Satellite Data

A selection process of MODIS-Aqua Level 1A files was done, in which scenes with less than 80%
cloudiness and/or sun glint were selected for the study period. The result was a total of 48 images
(see Table 2) with a spatial resolution of ~1.1 km at nadir. These files were extracted from the
online OBPG Data Processing System database (https://oceancolor.gsfc.nasa.gov/cgi/browse.pl)
in accordance with the available passes depending on the date of each analyzed cruise (see Table 2).

Table 2. General information on the in situ database analyzed and effective monitoring days used for
the extraction of Level 1A images.

Cruises Total Stations Julian Days Total Days Per Cruise Selected Level 1a Images

June 2008 22 158–164 6 11
June 2010 30 152–159 8 8

March 2011 27 84–91 8 10
August 2012 10 216–223 8 3

September 2012 30 248–253 6 6
June 2013 46 162–171 9 10

Total 165 55 48

For the processing of Level 1A archives to Level 2, the L2GEN program was used and its standard
atmospheric correction scheme (SeaDAS version 7.4) was applied, selecting the IOP products adg(λ)
and aph(λ) at 412 nm, 443 nm, and 488 nm in their default configuration for algorithms GIOP and GSM.
After the generation of the L2 archives, the statistics median, the standard deviation, and the number
of valid pixels were calculated.

An exclusion process for each geographical position extracted was applied in those cases for
which one or more of the Level 2 L2GEN quality control indicators were not fulfilled (see Table 3).
All Level 2 archive variables were extracted from 3 × 3 pixel windows, centered on the pixel closest to
the in situ sample. For the analyses, only data with at least three valid pixels (out of a total of nine)

https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
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were included, due to increased errors from pixels close to clouds or land. Only model data with
quality control were paired with in situ information of the six cruises analyzed (see Figure 2).

Table 3. Level 2 flags used for excluding pixels from analysis.

Name Description

ATMFAIL Atmospheric correction failure
HIGLINT High glint determined

HILT High (or saturating) Top of the Atmosphere (TOA radiance)
HISATZEN Large satellite zenith angle

STRAYLIGHT Stray light determined
CLDICE Probable cloud or ice contamination
LOWLW Very low water-leaving radiance

MAXAERITER Absorbing aerosols determined

The MODIS-Aqua images for match-up analysis (one km spatial resolution) were processed for
Chla estimation using SeaDAS V7 and using the OCx product with the OC3M algorithm. Average Chla
from a box of 3 × 3 pixels centered at the station position was used for comparison between MODIS
Chla and in situ Chla in order to evaluate its influence on the aph(λ) estimation.
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Figure 2. Data of the six cruises that had in situ information on the coefficients (a) aph(λ) and (b) adg(λ)
in the study zone. Black circles represent stations paired with the Generalized Inherent Optical Property
(GIOP) algorithm, and red points represent stations paired with the Garver-Siegel-Maritorena (GSM)
algorithm. The dotted black line represents the intermediate position of the transitional zone that
separates the bio-optical regions UGC and NGC [29].

2.4. Semi-Analytical Algorithms

GIOP and GSM were used to retrieve the absorption coefficients from the satellite data, and the
estimates were compared with in situ data. In GSM [21], the following parameterizations are used:

aph(λ) = Chla aph(λ) (3)

adg(λ) = adg(443)exp−S(λ−443) (4)

A constant value for a*ph(λ)is specified as 0.055 m2 mgChla−1. S is the spectral decay constant for
dissolved substances and detritus absorption [32], whose value has been specified in the GSM source
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code as Sdg = 0.02061 nm−1 [33]. Using the spectral satellite radiance as input, the Levenberg-Marquadt
nonlinear least squares procedure was employed to solve for the remaining unknown terms, namely
Chla and adg(λ) [32].

GIOP uses the same constant value for a*ph(λ) (0.055 m2 mgChla−1) that is used in GSM, although
Sdg is specified as 0.018 nm−1. The GIOP model [22] allows one to specify different parameterizations
and optimization approaches, including the a*ph(λ) and Sdg eigenvectors employed, the number of
eigenvalues resolved, the optimization method selected, and the number of sensor wavelengths. All of
these GIOP elements are therefore defined by specifying eigenvectors for each optically significant
constituent assumed to exist in the water column [22].

2.5. Algorithm Evaluation Methodology

The degree of association between the IOP products and the in situ data was evaluated through
the “match-up” technique [34]. Variables graphed were the absorption coefficient of phytoplankton
(aph(412, 443, and 488)) and the absorption coefficient of CDOM and detritus (adg(412, 443, and 488))
(y axis) against their respective in situ counterparts (x axis). These wavelengths were selected because
they are representative of most remote sensors and in particular MODIS-Aqua. Below are the statistics
that were used for the algorithm evaluation.

Pearson’s Correlation Coefficient (rp)

The statistical validity of the models was determined through the Pearson’s correlation coefficient
(rp), whose mathematical expression is as follows [35]:

rp =
CovA,B

(SDA× SDB)
, (5)

where CovA,B is the covariance of A and B and SDA and SDB are the standard deviation of A and B.
This coefficient is a measure of the correlation (linear dependence) between two variables A and B,
giving a value between +1 and −1 inclusive (1 indicates a direct linear relationship, −1 indicates an
inverse linear correlation, and zero indicates no linear relationship). The coefficient’s significance is
determined with a hypothesis test, known as correlation analysis [35]:

H0: rp = 0, (6)

Ha: rp 6= 0. (7)

To accept or reject hypothesis H0, the value rcalculared was compared with the value rcritical based
on the degree of freedom (df = n − 1) and the error α (0.05). rcritical was the minimum significant value
of rp. If rcalculated > rcritical, H0 was rejected and rp was statistically significant, but if rcalculated < rcritical,
H0 could not be rejected and rp was not significant [34].

Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) is a frequently used measure of the difference between
values predicted by a model (xi = satellite data) and the values actually observed (yi = in situ data)
from the environment that is being modeled. It is calculated according to [35]:

RMSE =

√
1
N ∑N

i=1 (y i− xi)
2 (8)

The RMSE can be confirmed using the sum of square errors (χ2): this statistical test is the minimum
error of the modeled data (satellite) with respect to the observed data (in situ). In the comparison
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between models, the lesser value of χ2 is the one which better describes the answer and is calculated
according to [35]:

χ2 = ∑(y − ŷ )2 (9)

Bias

Bias provides information on the tendency of the model to overestimate (Bias > 0) or underestimate
(Bias < 0) a variable and is calculated according to [35]:

Bias =
1
N∑N

i=1

(
yi − xi

xi

)
(10)

Taylor Diagram

The Taylor diagram illustrates a different set of statistics in terms of uRMSD* that is comprised
of the standard deviation (σ) of the model output and in situ data, σmodel and σin situ, as well as the
Pearson’s correlation coefficient (rp) between estimates and in situ measurements [36]:

uRMSD∗ =

√
1 +

σmodel2

σin situ2 − 2 ∗ σmodel
σin situ

∗ rp (11)

The Taylor diagram provides a way of 2-D graphing three statistical parameters (rp, σ, and RMSD)
that indicate how closely a pattern matches observations. With these statistics in the same plot, it is
easy to determine how much of the overall root-mean-square difference in patterns is attributable to a
difference in variance and how much is due to poor pattern correlation [37]. The statistical significance
was evaluated using an α of 5%.

3. Results and Discussion

3.1. Phytoplankton Absorption Coefficient

Betancur-Turizo et al. [29] analyzed the spatial and temporal variability of light absorption
properties in the study area. They observed that there was a strong temporal variability with a
spatial pattern that allowed the definition of two bio-optical regions named Upper Gulf of California
(UGC) and Northern Gulf of California (NGC), with particular characteristics that indicated that
these regions were very different when evaluating the individual contribution by phytoplankton,
detritus, and CDOM to total light absorption. In particular, in the UGC, ad(λ) contribution to total
light absorption was most of the time higher than 40% followed by aCDOM(λ), whereas in the NGC,
a co-dominium between aph(λ) and aCDOM(λ) was observed most of the time.

In this study, a total of 150 aph(412, 443, and 448) in situ data were collected, but because of
clouds, atmospheric corrections failure, and other aspects described in Table 3, only 75 match-ups
were generated for GIOP and 76 for GSM (see Figure 2a). The difference in the number of data used
for GIOP and GSM was due to outliers that were excluded from the analysis. The data used for these
analyses are listed in the Supplementary Material (see Table S1). Figure 3 presents the comparison
between the in situ data and the algorithm output for the entire dataset and also by region (UGC and
NGC). The performance statistics indicated that GIOP was in general a better aph(λ) estimator than
GSM regardless of the bio-optical region, although the differences were small. Special attention should
be given to the strong underestimation of aph(412) by GSM, independently of the bio-optical region
(bias between −0.70 to −0.86) (see Figure 3d–f). However, both algorithms in general underestimated
the in situ values (negative bias) in the NGC, whereas they overestimated them (positive bias) in the
UGC, although the negative bias in the NGC was much lower than the positive ones in the UGC.



Remote Sens. 2018, 10, 1443 8 of 17

Figure 3. Comparative analysis between in situ and satellite aph(412, 443, and 488 nm) for GIOP and
GSM models, with the statistics Root Mean Square Error (RMSE), bias, rp, and χ2; the 1:1 line is indicated
for reference. The green and blue colors correspond to the UGC and NGC regions, respectively. In the
first column (a, d, g, j, m, p) the entire database was used, in the second (b, e, h, k, n, q) only data from
UGC, and in the third (c, f, i, l, o, r) only data from NGC.
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Taylor diagrams (see Figure 4) confirmed that the aph(λ) derived from GIOP was slightly better
than the GSM aph(λ), with higher values of rp (≈0.45) and normalized standard deviations close to
1.0. This, in addition to the underestimation observed in the match-ups independently of the analysis
applied (entire dataset and by bio-optical region) and the higher χ2 value presented by the GSM model,
support the conclusion that GIOP better derives aph(λ) values for both bio-optical regions.
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As previously mentioned, GIOP and GSM use a constant value for a*ph(λ)(i.e., a*ph(443) =
0.055 m2 mgChla−1), which is then scaled according to Chla concentration to derive aph (λ). Moreover,
Chla is derived from empirical OCx, that is, some of the ocean color band ratio algorithms OC3
or OC4 [38,39]. In this study’s data, a*ph(443) values varied between 0.011 and 0.37 m2 mgChla−1,
where most data were below 0.055 m2 mgChla−1 (see Figure 5a), with the exception of the June 2013
cruise when values increased to up to 0.37 m2 mgChla−1. Variability in a*ph(λ) could be associated
with changes in pigment composition and cell size [40], which varied among cruises and bio-optical
regions [29]. For example, in June 2013 the UGC region was dominated by fucoxanthin, a pigment
that indicates the presence of diatoms and larger cells (i.e., microplankton) [41], whereas, in the NGC,
zeaxanthin was the major pigment indicating the importance of cyanobacteria and a dominium of
small cells (picoplankton) [29]. At the same time, this cruise was the one with the highest number of
stations dominated by zeaxanthin (i.e., cyanobacteria) that represented a group characterized by high
light absorption efficiency (i.e., high a*ph(λ)) [42], which agreed with the study’s results (see Figure 5a).
Frequency histograms were also generated by region (see Figure 5b,c) to emphasize the differences
between them. In the UGC (see Figure 5b), most data were between 0.025 and 0.125 m2 mgChla−1,
whereas, in the NGC, most data were between 0.02 and 0.06 m2 mgChla−1. Furthermore, the most
frequent value (mode) was 0.03 m2 mgChla−1 in both regions. These results indicated that a change
in the default input values used by GSM and GIOP should be considered in addition to a temporal
adjustment of the same value in order to improve aph(λ) estimations in the study area.

Another source of error in both algorithms could be the satellite estimation of Chla (i.e., OCx
performance). To evaluate its influence in the aph(λ) calculation, the satellite estimates were compared
with in situ measurements (see Figure 6). Results for the entire dataset (n = 122) indicated an
overestimation of in situ Chla (bias = 1.72) with a RMSE of 0.45 and a correlation coefficient of
0.76. The positive bias was larger for the NGC and smaller for the UGC.
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Figure 6. Relationship between in situ chlorophyll data (Chla) and satellite chlorophyll data for the
June 2008, June 2010, March 2011, August 2012, and June 2013 cruises, plotted on a logarithmic scale.
The dashed line is the one-to-one line. RMSE is computed on log10-transformed data, and bias on
original data.
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In summary, there was a slight underestimation of aph(443) in the NGC (GIOP bias = −0.02,
GSM bias = −0.06) related to an underestimation of a*ph(443) and a strong overestimation of Chla
(bias = 1.93). There was a strong overestimation of aph(λ) in the UGC (GIOP bias = 0.71, GSM bias =
0.65) related to the same underestimation of a*ph(443) and smaller overestimation of Chla (bias = 1.41).
A positive relationship was expected between Chla and aph(λ) [40], i.e., an overestimation of in situ
Chla would result in an overestimation of aph(λ). If it is assumed that the same error is associated with
a*ph(443) in both regions, differences between them should be related to Chla. Our results suggest that
in the NGC the effect of underestimating a*ph(443) somewhat compensated the effect of overestimating
Chla. In the UGC, on the other hand, the fact that a*ph(443) was more variable than in the NGC
should be taken into consideration, which would explain, at least partly, the inferior performance of
both algorithms.

3.2. Absorption Coefficient of Dissolved and Detrital Matter

The total number of adg(412, 443, and 448) in situ data were 84; however, for the same reasons
previously explained (Section 3.1), only 28 match-ups were generated for GIOP and 32 for GSM
(see Figure 2b). The difference in the number of data used for GIOP and GSM was due to outliers that
were excluded from the analysis. The data used for these analyses are listed in the Supplementary
Material (see Table S2). The comparative analysis between the absorption coefficient adg(λ) measured
in situ and retrieved by GIOP and GSM was done with the entire dataset and by bio-optical region for
wavelengths centered on 412, 443, and 488 nm (see Figure 7). In general, GIOP gave better results than
GSM represented by lower RMSE and higher rp and χ2. Irrespective of the algorithm used, the best
estimations were at 488 nm, whereas the poorest sensitivity was observed at 412 nm. When comparing
algorithm performance in the UGC and the NGC, it was observed that estimations were more accurate
in the NGC than in the UGC.

Taylor diagrams indicate that both algorithms were statistically significant (α = 0.05) when the
analysis was done without distinguishing between bio-optical regions (Figure 8a compared with
Figure 8b,c), with higher values of rp (>0.60) and normalized standard deviations around 0.8 for GIOP
and with a higher dispersion for GSM. However, when data was analyzed by region, it was observed
that in the UGC, rp were lower than the critical value (−0.60 and 0.60) for both algorithms, indicating
that neither one was able to reproduce the in situ values of adg(λ). In the NGC, rp were above 0.50 and
statistically significant (rcalculated > rcritical, α = 0.05).

In conclusion, both GIOP and GSM performed poorly for adg(λ) estimations. In the UGC region,
they underestimated the in situ data and, according to rp, estimations were not statistically accurate.
For the NGC region, the situation changed, given that the statistics were slightly better for GIOP than
for GSM, with higher rp values (>0.29), normalized standard deviations close to 1.0, lower values of
RMSE, bias close to zero, and the lowest values of χ2 This indicates that the algorithm that best derives
adg(λ) for the NGC is GIOP.

Because adg(λ) was calculated as the sum of ad(λ) and aCDOM(λ), it was considered important
to analyze the average spectra of these individual variables for each cruise and bio-optical region.
This analysis was conducted by comparing the values of adg(λ) from GIOP and GSM at five wavelengths
(412, 443, 448, 555, and 678), specifying the contribution given by detritus (ad(λ)) and CDOM (aCDOM(λ))
to the absorption coefficient adg(λ). The underestimation associated with both algorithms appeared
related to those cruises for which the contribution from detritus to adg(λ) was greater than that from
CDOM (see Figure 9b–d), independently of the bio-optical region.
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Figure 7. Comparative analysis between in situ and satellite adg(412, 443, and 448) for the GIOP and
GSM algorithms, with statistics Root Mean Square Error (RMSE), bias, rp, and χ2. The 1:1 is indicated
for reference. The green and blue colors correspond to the UGC and NGC regions, respectively. In the
first column (a, d, g, j, m, p) the entire database was used, in the second (b, e, h, k, n, q) only data from
UGC, and in the third (c, f, i, l, o, r) only data from NGC.
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Figure 9. Average spectra of the absorption coefficient of dissolved and detrital matter (adg(λ))
calculated for each cruise in the UGC (a–d) and NGC (e–g). The pie chart inside diagrams represents
the percentage contribution of detritus (ad) and chromophoric dissolved organic material (CDOM) (ag)
to adg(λ). Open circles represent GSM adg(λ) values and black crosses represent GIOP adg(λ) values.
Note: The August 2012 cruise was represented by a single station and was not included in the figure.

The estimation of adg(λ) by GSM considers an Sdg value of 0.0206, whereas GIOP considers a
value of 0.018. However, in situ data showed that most values were below 0.018 especially in the
UGC where the mode was 0.012, whereas, in the NGC, it was 0.018 (see Figure 9). Lower values of
Sdg were related with a higher contribution by detritus, as was the case in August 2012, September
2012, and June 2013 in the UGC (see Figure 10). These results suggested that the input value for Sdg
should be modified for UGC to yield better adg(λ) estimations. After using the in situ Sdg as model
input, the results were much improved (see Table 4). In the NGC, characterized by a greater dispersion
of in situ Sdg values, the statistical improvement was much more evident that in the UGC, especially
with the GSM algorithm.
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Figure 10. (a) In situ Sdg variability for all cruises analyzed in this study, including the value used in
GIOP (Sdg = 0.018, black dotted line) and GSM (Sdg = 0.02061, gray dotted line). Also indicated are the
frequency histograms for (b) UGC and (c) NGC.

Table 4. Comparison between statistics applied to the in situ absorption coefficient adg(λ) and the
outputs of the models in their default configurations (GIOP, GSM), and the outputs after adjustment
with the in situ Sdg values (GIOP *, GSM *). The lowest values of RMSE and Least squares are indicated
in bold letters.

λ
N SDIn situ SDSatellite RMSE Bias Least Squares

GIOP GIOP * GIOP GIOP * GIOP GIOP * GIOP GIOP * GIOP GIOP * GIOP GIOP *

UGC
412 11 11 0.19 0.19 0.09 0.13 2.45 2.34 −0.32 −0.26 0.75 0.69
443 11 11 0.14 0.14 0.05 0.05 1.77 1.57 −0.39 −0.19 0.39 0.31
488 11 8 0.09 0.10 0.02 0.01 1.18 1.04 −0.51 −0.42 0.18 0.13

NGC
412 26 26 0.14 0.14 0.09 0.08 2.25 2.06 0.23 0.35 0.63 0.53
443 26 26 0.09 0.09 0.05 0.04 1.43 1.32 0.25 0.25 0.26 0.22
488 26 26 0.05 0.05 0.02 0.02 0.76 0.72 0.19 0.02 0.07 0.06

λ GSM GSM * GSM GSM * GSM GSM * GSM GSM * GSM GSM * GSM GSM *

UGC
412 10 5 0.10 0.08 0.13 0.14 1.51 0.57 −0.20 −0.05 0.14 0.72
443 10 7 0.07 0.08 0.05 0.09 0.76 0.48 −0.12 0.13 0.16 0.68
488 7 5 0.05 0.06 0.01 0.04 0.54 0.16 −0.35 0.09 −0.25 0.88

NGC
412 22 17 0.04 0.04 0.09 0.10 1.12 1.02 0.54 0.41 0.53 0.59
443 22 18 0.03 0.03 0.05 0.06 0.55 0.67 0.42 0.60 0.54 0.67
488 22 16 0.02 0.01 0.02 0.04 0.21 0.34 0.17 0.51 0.52 0.79

4. Conclusions

In this study, a statistical analysis was carried out to compare the performance of two
semi-analytical algorithms (GIOP and GSM) to retrieve absorption coefficients in regions characterized
by different bio-optical properties, namely the UGC and the NGC. GIOP was a better estimator for
aph(λ) than GSM, independently of the bio-optical region. Both algorithms, however, underestimated
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in situ values (negative bias) in the NGC, whereas they overestimated (positive bias) in the UGC. One
possible source of error was the constant a*ph(443) value used by GSM and GIOP (0.055 m2 mgChla−1)
that was higher than the most frequent value observed in the study’s data (0.03 m2 mgChla−1).
Other uncertainties were associated with the satellite Chla estimation, which overestimated the in situ
Chla. Furthermore, GIOP gave better results for the adg(λ) estimation than GSM, especially in the NGC.
The most important observation was that the underestimation associated with both algorithms was
obtained for cruises during which the contribution from detritus to adg(λ) was greater than that from
CDOM, independently of the bio-optical region. Indeed, the spectral slope Sdg was identified as an
important term for the accurate estimation of adg(λ), and the study’s results indicated that using a fixed
input value was not adequate. Observations have to be taken in account for future improvements of
this type of model in this region and other optically complex waters. The evaluation confirms the lack
of generality of algorithms like GIOP and GSM, whose reflectance model is too simplified to capture
expected variability. Finally, a greater monitoring effort is suggested in the study area regarding the
collection of in situ reflectance data, which would allow explaining the effects that detritus and CDOM
have on the semi-analytical reflectance inversions, as well as isolating the possible influence of the
atmosphere on the satellite-derived water reflectance and Chla.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/9/1443/
s1, In Tables S1 and S2 there is the data used for the analyses presented in this work.

Author Contributions: S.P.B.-T. and A.G.-S. conceived and designed the data processing and analyses; E.S.d.-A.
was responsible of in situ data sampling, participated in statistical analyses and collaborated throughout the entire
process with ideas, corrections, and advisory sessions; J.T. participated in data processing (application of GIOP
and GSM) and, with R.F., provided suggestions and courses of action, and they both contributed to the writing
and editing of the manuscript.

Funding: This research was funded by projects SIMAC-CONACYT, SIMAC-2000107017; CICESE: Ecological
monitoring of the Upper Gulf of California” (PANGAS-Packard Foundation); IPN-CICIMAR: SIP 1721,
20160514-CONACYT: 236864. The Secretariat of the Mexican Navy and R/V Francisco de Ulloa (CICESE)
supported the cruises.

Acknowledgments: The first author received support from CONACyT (Mexican Council of Science) through a
Ph.D. scholarship (No. 384224) and during August-December 2018 from the Inter-American Institute for Global
Change Research (IAI) through the grant IAI-CRN3094. The National Aeronautics and Space Administration
supported the work of R. Frouin and J. Tan under grants NNX14AM3G and NNX14AQ46A. We thank all the
students from the Phytoplankton Ecology Team of the Faculty of Marine Science that participated in cruises and
sampling procedures. The authors gratefully acknowledge the comments of anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. McClain, C.R.; Cleave, M.L.; Feldman, G.C.; Gregg, W.W.; Hooker, S.B.; Kuring, N. Science Quality SeaWiFS
Data for Global Biosphere Research. Available online: https://rsg.pml.ac.uk/staff/tjsm/sea_tech.html
(accessed on 18 August 2017).

2. McClain, C.R.; Christian, J.R.; Signorini, S.R.; Lewis, M.R.; Asanuma, I.; Turk, D.; Dupouy-Douchement, C.
Satellite ocean-color observations of the tropical Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 2002,
49, 2533–2560. [CrossRef]

3. Gregg, W.W.; Conkright, M.E.; Ginoux, P.; O’Reilly, J.E.; Casey, N.W. Ocean primary production and climate:
Global decadal changes. Geophys. Res. Lett. 2003, 30, 1809. [CrossRef]

4. Behrenfeld, M.J.; Boss, E.; Siegel, D.A.; Shea, D.M. Carbon-based ocean productivity and phytoplankton
physiology from space. Glob. Biogeochem. Cycles 2005, 19, GB1006. [CrossRef]

5. Yoder, J.; Kennelly, M. What Have We Learned About Ocean Variability from Satellite Ocean Color Imagers?
Oceanography 2006, 19, 152–171. [CrossRef]

6. Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemical
interpretation: 1. Time series from the Sargasso Sea. J. Geophys. Res. Oceans 1997, 102, 18607–18625.
[CrossRef]

http://www.mdpi.com/2072-4292/10/9/1443/s1
http://www.mdpi.com/2072-4292/10/9/1443/s1
https://rsg.pml.ac.uk/staff/tjsm/sea_tech.html
http://dx.doi.org/10.1016/S0967-0645(02)00047-4
http://dx.doi.org/10.1029/2003GL016889
http://dx.doi.org/10.1029/2004GB002299
http://dx.doi.org/10.5670/oceanog.2006.98
http://dx.doi.org/10.1029/96JC03243


Remote Sens. 2018, 10, 1443 16 of 17

7. Lee, Z.; Carder, K.L.; Steward, R.G.; Peacock, T.G.; Davis, C.O.; Patch, J.S. An empirical algorithm for light
absorption by ocean water based on color. J. Geophys. Res. Oceans 1998, 103, 27967. [CrossRef]

8. Carder, K.L.; Chen, F.R.; Lee, Z.P.; Hawes, S.K.; Kamykowski, D. Semianalytic Moderate-Resolution
Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on
nitrate-depletion temperatures. J. Geophys. Res.Oceans 1999, 104, 5403–5421. [CrossRef]

9. Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001,
106, 7163–7180. [CrossRef]

10. Lee, Z.-P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient
of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. Oceans 2005, 110.
[CrossRef]

11. Lee, Z.-P.; Du, K.; Arnone, R.; Liew, S.; Penta, B. Penetration of solar radiation in the upper ocean: A numerical
model for oceanic and coastal waters. J. Geophys. Res. Oceans 2005, 110. [CrossRef]

12. Hu, C.; Lee, Z.; Muller-Karger, E.; Carder, L.; Walsh, J.J. Ocean color reveals phase shift between marine
plants and yellow substance. IEEE Geosci. Remote Sens. Lett. 2006, 3, 262–266. [CrossRef]

13. Capuzzo, E.; Painting, S.J.; Forster, R.M.; Greenwood, N.; Stephens, D.T.; Mikkelsen, O.A. Variability in the
sub-surface light climate at ecohydrodynamically distinct sites in the North Sea. Biogeochemistry 2013, 113,
85–103. [CrossRef]

14. Haraldsson, M.; Tönnesson, K.; Tiselius, P.; Thingstad, T.; Aksnes, D. Relationship between fish and jellyfish
as a function of eutrophication and water clarity. Mar. Ecol. Prog. Ser. 2012, 471, 73–85. [CrossRef]

15. Siegel, D.A.; Behrenfeld, M.J.; Maritorena, S.; McClain, C.R.; Antoine, D.; Bailey, S.W.; Bontempi, P.S.;
Boss, E.S.; Dierssen, H.M.; Doney, S.C.; et al. Regional to global assessments of phytoplankton dynamics
from the SeaWiFS mission. Remote Sens. Environ. 2013, 135, 77–91. [CrossRef]

16. Brewin, R.J.; Sathyendranath, S.; Müller, D.; Brockmann, C.; Deschamps, P.-Y.; Devred, E.; Doerffer, R.;
Fomferra, N.; Franz, B.; Grant, M. The Ocean Colour Climate Change Initiative: III. A round-robin
comparison on in-water bio-optical algorithms. Remote Sens. Environ. 2013, 162, 271–294. [CrossRef]

17. Mitchell, B.G.; Kahru, M.; Wieland, J.; Stramska, M.; Mueller, J.L. Determination of spectral absorption
coefficients of particles, dissolved material and phytoplankton for discrete water samples. Ocean Opt. Protoc.
Satell. Ocean Color Sens. Valid. Revis. 2002, 3, 231–257.

18. Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, MA,
USA, 1994.

19. Lee, Z.P. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications;
International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2006; Volume 5.

20. Sathyendranath, S. Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex; IOCCG Report 3;
IOCCG: Dartmouth, NS, Canada, 2000; p. 3.

21. Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model for
global-scale applications. Appl. Opt. 2002, 41, 2705–2714. [CrossRef] [PubMed]

22. Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.;
Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent
optical properties. Appl. Opt. 2013, 52, 2019–2037. [CrossRef] [PubMed]

23. Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic
radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [CrossRef]

24. Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband
quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [CrossRef] [PubMed]

25. Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. An Update of the Quasi-Analytical Algorithm (QAA_v5); IOCCG:
Dartmouth, NS, Canada, 2009; pp. 1–9.

26. Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral remote sensing for shallow
waters. I. A semianalytical model. Appl. Opt. 1998, 37, 6329–6338. [CrossRef] [PubMed]

27. Lavín, M.F.; Marinone, S.G. An overview of the physical oceanography of the Gulf of California. In Nonlinear
Processes in Geophysical Fluid Dynamics; Velasco Fuentes, O.U., Sheibaum, J., Ochoa, J., Eds.; Springer:
Dordrecht, The Netherlands, 2003; pp. 173–204.

28. Bastidas-Salamanca, M.; González-Silvera, A.; Millán-Núñez, R.; Santamaría-del-Ángel, E.; Frouin, R.
Bio-Optical Characteristics of the Northern Gulf of California during June 2008. Int. J. Oceanogr. 2014, 13.
[CrossRef]

http://dx.doi.org/10.1029/98JC01946
http://dx.doi.org/10.1029/1998JC900082
http://dx.doi.org/10.1029/2000JC000319
http://dx.doi.org/10.1029/2004JC002573
http://dx.doi.org/10.1029/2004JC002780
http://dx.doi.org/10.1109/LGRS.2005.862527
http://dx.doi.org/10.1007/s10533-012-9772-6
http://dx.doi.org/10.3354/meps10036
http://dx.doi.org/10.1016/j.rse.2013.03.025
http://dx.doi.org/10.1016/j.rse.2013.09.016
http://dx.doi.org/10.1364/AO.41.002705
http://www.ncbi.nlm.nih.gov/pubmed/12027157
http://dx.doi.org/10.1364/AO.52.002019
http://www.ncbi.nlm.nih.gov/pubmed/23545956
http://dx.doi.org/10.1029/JD093iD09p10909
http://dx.doi.org/10.1364/AO.41.005755
http://www.ncbi.nlm.nih.gov/pubmed/12269575
http://dx.doi.org/10.1364/AO.37.006329
http://www.ncbi.nlm.nih.gov/pubmed/18286131
http://dx.doi.org/10.1155/2014/384618


Remote Sens. 2018, 10, 1443 17 of 17

29. Betancur-Turizo, S.P.; González-Silvera, A.G.; Santamaría-Del-Ángel, E.; Millán-Núñez, R.; Millán-Núñez, E.;
García-Nava, H.; Godínez, V.M.; Sánchez-Velasco, L. Variability in the Light Absorption Coefficient by
Phytoplankton, Non-Algal Particles and Colored Dissolved Organic Matter in the Northern Gulf of California.
Open J. Mar. Sci. 2018, 8, 20–37. [CrossRef]

30. Argote, M.L.; Amador, A.; Lavín, M.F.; Hunter, J.R. Tidal dissipation and stratification in the Gulf of
California. J. Geophys. Res. Oceans 1995, 100, 16103–16118. [CrossRef]

31. Hooker, S.B.; Clementson, L.; Thomas, C.S.; Schlüter, L. The HPLC Method, Chapter 6. In The Fifth SeaWiFS
HPLC Analysis Round-Robin Experiment (SeaHARRE-5); NASA Technical Memorandum: Lanham, MD, USA,
2012; pp. 63–72.

32. Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Harding, L.W., Jr.; Feldman, G.C. Approach for the long-term
spatial and temporal evaluation of ocean color satellite data products in a coastal environment. SPIE 2007,
6680, 66800G.

33. Maritorena, S.; Siegel, D.A. Chapter 11: The GSM semi-analytical bio-optical model. Remote Sens. Inherent
Opt. Prop. Fundam. Tests Algorithms Appl. 2006, 73–79.

34. Santamaría-del-Ángel, E.; Millán-Núñez, R.; González-Silvera, A.; Cajal-Medrano, R. Comparison of In
Situ and Remotely-Sensed Chl-a concentrations: A Statistical Examination of the Match-up Approach.
In Handbook of Satellite Remote Sensing Image Interpretation: Applications for Marine Living Resources Conservation
and Management; EU PRESPO Project: Wittibreut, Germany, 2010; pp. 221–238.

35. Zar, H.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
36. Lee, Y.J.; Matrai, P.A.; Friedrichs, M.A.; Saba, V.S.; Aumont, O.; Babin, M.; Buitenhuis, E.T.; Chevallier, M.;

De Mora, L.; Dessert, M. Net primary productivity estimates and environmental variables in the Arctic
Ocean: An assessment of coupled physical-biogeochemical models. J. Geophys. Res. Oceans 2016, 121,
8635–8669. [CrossRef]

37. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos.
2001, 106, 7183–7192. [CrossRef]

38. O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C.
Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Oceans 1998, 103, 24937–24953. [CrossRef]

39. O’Reilly, J.E.; Maritorena, S.; Siegel, D.A.; O’Brien, M.C.; Toole, D.; Mitchell, B.G.; Kahru, M.; Chavez, F.P.;
Strutton, P.; Cota, G.F. Ocean color chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4.
SeaWiFS Postlaunch Calibration Valid. Anal. 2000, 3, 9–23.

40. Bricaud, A.; Claustre, H.; Ras, J.; Oubelkheir, K. Natural variability of phytoplanktonic absorption in oceanic
waters: Influence of the size structure of algal populations. J. Geophys. Res. Oceans 2004, 109. [CrossRef]

41. Jeffrey, S.W.; Mantoura, R.F.C.; Wright, S.W. Phytoplankton Pigments in Oceanography: Guidelines to Modern
Methods; UNESCO Publishing: Paris, France, 1997; ISBN 978-92-3-103275-2.

42. Millán-Núñez, E.; Sieracki, M.E.; Millán-Núñez, R.; Lara-Lara, J.R.; Gaxiola-Castro, G.; Trees, C.C. Specific
absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep Sea
Res. Part II Top. Stud. Oceanogr. 2004, 51, 817–826. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4236/ojms.2018.81002
http://dx.doi.org/10.1029/95JC01500
http://dx.doi.org/10.1002/2016JC011993
http://dx.doi.org/10.1029/2000JD900719
http://dx.doi.org/10.1029/98JC02160
http://dx.doi.org/10.1029/2004JC002419
http://dx.doi.org/10.1016/j.dsr2.2004.05.023
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	In Situ Data 
	Satellite Data 
	Semi-Analytical Algorithms 
	Algorithm Evaluation Methodology 

	Results and Discussion 
	Phytoplankton Absorption Coefficient 
	Absorption Coefficient of Dissolved and Detrital Matter 

	Conclusions 
	References

