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Abstract: To classify Very-High-Resolution (VHR) imagery, Geographic Object Based Image Analysis
(GEOBIA) is the most popular method used to produce high quality Land-Use/Land-Cover maps.
A crucial step in GEOBIA is the appropriate parametrization of the segmentation algorithm prior
to the classification. However, little effort has been made to automatically optimize GEOBIA
algorithms in an unsupervised and spatially meaningful manner. So far, most Unsupervised
Segmentation Parameter Optimization (USPO) techniques, assume spatial stationarity for the
whole study area extent. This can be questionable, particularly for applications in geographically
large and heterogeneous urban areas. In this study, we employed a novel framework named
Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO), which
optimizes segmentation parameters locally rather than globally, for the Sub-Saharan African city of
Ouagadougou, Burkina Faso, using WorldView-3 imagery (607 km2). The results showed that there
exists significant spatial variation in the optimal segmentation parameters suggested by USPO across
the whole scene, which follows landscape patterns—mainly of the various built-up and vegetation
types. The most appropriate automatic spatial partitioning method from the investigated techniques,
was an edge-detection cutline algorithm, which achieved higher classification accuracy than a global
optimization, better predicted built-up regions, and did not suffer from edge effects. The overall
classification accuracy using SPUSPO was 90.5%, whilst the accuracy from undertaking a traditional
USPO approach was 89.5%. The differences between them were statistically significant (p < 0.05)
based on a McNemar’s test of similarity. Our methods were validated further by employing a
segmentation goodness metric, Area Fit Index (AFI)on building objects across Ouagadougou, which
suggested that a global USPO was more over-segmented than our local approach. The mean AFI
values for SPUSPO and USPO were 0.28 and 0.36, respectively. Finally, the processing was carried
out using the open-source software GRASS GIS, due to its efficiency in raster-based applications.

Keywords: unsupervised segmentation parameter optimization; GRASS GIS; image classification;
land cover; urban areas; big data

1. Introduction

Accurate and precise Land-Use/Land-Cover (LULC) maps derived from remotely sensed imagery
are crucial for applications spanning several fields, including spatial planning, population estimation,
environmental monitoring, and socio-economic and epidemiological modelling [1–4]. These map
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products not only provide useful information on their own, but also through their use as an input to
secondary models (e.g., population distribution models [3], hydrological models [5], or LULC change
models [6–8]. As such, maximizing the accuracy of LULC maps is a critical methodological facet in
reducing error propagation and enhancing the effectiveness of science-based policy-making.

For the classification of high- and very-high resolution (VHR) imagery in particular, Geographic
Object-Based Image (GEOBIA) analysis has been established as a superior method over traditional
pixel-based approaches [9], as it produces a semantic representation of data closer to reality than
the arbitrary nature of pixels [10]. Recent studies have attempted to establish a formal ontological
framework to further advance the use of objects as spatial representation units [11]. In GEOBIA,
the most crucial step before classification is the clustering of neighboring image pixels into segments
based on spatial, spectral, and contextual criteria [12]. These segments should ideally represent real
world objects or LC categories (e.g., building rooftops, or agricultural fields) that are larger than
the original image resolution [13]. As several studies have demonstrated, GEOBIA classification
accuracy is not only affected by the classification algorithm itself [14], but also by the quality of the
extracted image segmentation [15–18]. Consequently, the selection of an appropriate segmentation
(i.e., object-creating) algorithm, as well as its parametrization, are crucial with respect to the final
output [19–21].

Region-growing (RG) segmentation techniques are the most popular in GEOBIA literature, mainly
due to their implementation through the multiresolution segmentation algorithm [22], implemented
in the popular software eCognition (Definiens) [16,23–26]. The most important parameter in RG
segmentation is the Threshold Parameter (TP; e.g., the Scale Parameter of the multiresolution
segmentation algorithm in eCognition), which governs the average size of the created segments.
The selection of the parameter is most commonly attempted through a time consuming, user dependent,
trial and error process [27,28], in which the quality of the produced segmentations is assessed
visually [29], or through a quantitative comparison against reference data (i.e., manually digitized
polygons based on visual image interpretation) [30–32]. These approaches have been criticized for
being untenable due to their subjective nature and time inefficiency, whilst at the same time, the
improvement they can offer in classification accuracy might be limited [33]. Therefore, other research
has been directed towards the development of objectively defined Unsupervised Segmentation
Parameter Optimization (USPO) techniques, which evaluate individual segmentations based on
geostatistical metrics and do not require reference data [34–36]. To do so, various USPO metrics have
been proposed, such as the rate of change in local variance implemented through the estimation of
scale parameter tool (ESP) [34,37], the optimization of objective functions such as the Global Score
(GS) [38] and the F-measure [18,39] among others, with varying degrees of success. In the comparative
study of Grybas et al. [23], the F-measure was found superior to the ESP and GS, potentially due to
its sensitivity to over and under segmentation. The GS and F-measure assess spectral values within
(i.e., Weighted Variance (WV)) and between (i.e., Global Moran’s I (MI)) segments. Ideally, an accurate
segmentation should minimize the spectral heterogeneity within segments and maximize the spectral
heterogeneity between segments, so the TP that is found to maximize the aforementioned function is
accredited to be optimal [40].

So far, the optimization of segment-creating algorithms (and in this study, the region growing
one), has been attempted mainly through the use of global methods, either at single or multiple
scales [36,37]. A global approach implies that the optimization of the TP is adequate using the whole
extent of the study area or a subset which is assumed to be representative [15,33,41]. The vast majority
of the developments in the past years operate on that assumption, a situation exaggerated from the
relatively small study areas that are used (<3 km2 in ~95% of the recent literature on object-based
land cover mapping) as pointed out in the review of Ma et al. [42]. These approaches assume
spatial stationarity—that the relationship between input data and the segment generating process
is stable across space which is reflected by having a spatially invariant TP for the whole study area.
However, this begs the question “Why is the extent of the study area in a remote sensing application
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automatically assumed to be the most appropriate scale to optimize the segmentation algorithms?”.
This is of increasing importance as it has been recently demonstrated that partitioning the study area
in smaller regions can provide significantly different results, highlighting the effect of geographic scale
in remote sensing operations [43,44]. Spatial stationarity might hold for small homogenous regions,
but perhaps is unsuitable for large and/or heterogenous scenes. It would be sensible to hypothesize
that the optimal TP would intrinsically and significantly vary across space due to local variations
in data structure, particularly for urban areas, which are known for their landscape variability even
within the same LULC class. If a global approach would be used in such a case, it might only capture
an average and potentially misleading impression of the situation and lead towards adding bias
to the segmentation model, which could be reflected both in segmentation evaluation metrics and
classification accuracy. In recent years, few studies have tackled this issue by employing more localized
or regionalized procedures.

Johnson and Xie [36] refined their global segmentation results in a two-stage procedure by
re-segmenting local outliers using geospatial metrics such as Local Moran’s I. Cánovas-García
and Alonso-Sarría [43] demonstrated improvements in segmentation quality by optimizing the TP
independently in agricultural plots, instead of selecting a single parameter for the whole dataset.
However, the spatial units were selected a priori by using land use parcel vectors, which requires
ancillary data and expert knowledge of the study area. Recently, Kavzoglu et al. [35] proposed
a regionalized multiscale approach for small, semi-urban environments where initial, broad scale
segments derived from the coarse segmentation selection of the ESP tool, defined further areas
for calibrating segmentation parameters. Classification results were shown to improve as the
parametrization of the TP was performed regionally, rather than globally. The improvement local
methods offer for urban LULC mapping has been recently demonstrated by Grippa et al. [44], where the
study area was manually delineated into morphological zones that share similar built-up characteristics,
and a separate USPO optimization was applied to each one of them. Nonetheless, the operational
capabilities of such methods are either restricted computationally or require tedious manual labor
and user expertise that is rarely available. These limitations are important given the advent of big
data, which includes the use of VHR datasets at an increasing pace [45]. As such, our effort focuses on
semi-automatically identifying and quantifying the degree of spatial non-stationarity and geographic
scale dependency between the algorithm parameters for large and heterogeneous satellite images [1].

Our main hypothesis questions the use of global methods a priori, when heterogeneous and/or
large datasets are employed. To do so, a discrimination between the observation and operating scales
between the TP and USPO optimization must be made. The observation scale corresponds to the
whole extent of the study area, whilst the operating scale can be a spatial delineation, which better
reflects the optimization of a segmentation algorithm. In simpler words, we are asking the question:
“Are the segmentation results better if we analyze the data locally rather than globally?”.

In this paper, we present a methodological framework named Spatially Partitioned Unsupervised
Segmentation Parameter Optimization (SPUSPO) in which optimization of the TP is performed in a
localized manner. The proposed methods are automated and do not require reference information.
The underlying rationale of SPUSPO is based on the first law of geography [46] that “all things are
related but near things are more related”, which suggests that objects being near each other (e.g.,
built-up characteristics of a neighborhood) have a higher degree of similarity than a set of objects far
away. The results of the local optimizations are analyzed, mapped and quantified through spatial
statistics, highlighting the variation of segmentation parameters as a function of location and spatial
scale. The presented methods are evaluated both at the segmentation and classification level. As a
proof of concept, we evaluated the procedure for the large, heterogenous city of Ouagadougou, capital
of Burkina Faso. All of the analysis was performed using the GRASS open source GIS software along
with open access processing chains suited for satellite VHR datasets [47].
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2. Materials and Methods

2.1. Study Area and Data

The study area covered the city of Ouagadougou, capital city of Burkina Faso in Sub-Saharan
Africa (SSA). Ouagadougou comprises a complex and heterogenous urban landscape of planned
and unplanned neighborhoods and buildings, of various sizes and materials [48]. The city has been
undergoing extensive and partly unregulated urban growth (i.e., rural to urban migration) over the
last decades [49,50]. To map the LULC of the city, we used a 4-band (R, G, B, NIR) WorldView-3
multispectral image (607 km2, Figure 1) from October 2015, and a normalized Digital Surface Model
(nDSM) derived from stereo image acquisitions on the same image date. The native spatial resolution
of the Worldview-3 imagery is 0.30 cm but was resampled at 0.50 cm by the provider. The value
of the elevation information was critical, as the built-up characteristics were very hard to visually
discriminate from bare soil and artificial ground surfaces, due to the presence of dust on rooftops and
the use of similar construction materials for roofs and artificial ground surfaces. Thus, this challenging
study site provided a good stress test for our methods.
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Figure 1. (a) Study area extent illustrated from a WorldView-3 RGB composite of Ouagadougou,
(b) a typical built-up neighborhood of Ouagadougou and (c) Normalized Digital Surface Model for
the region.

2.2. Segmentation and Unsupervised Segmentation Parameter Optimization

The whole LULC classification framework was realized by employing and extending the
semi-automated processing chain proposed by Grippa et al. [1]. The chain was implemented in a
Jupyter Notebook format and integrated GRASS GIS functions with Python and R programming
languages, framing a complete procedure from the input of initial datasets to final LULC map
production. For segmentation, we utilized the RG algorithm implementation of GRASS GIS [51]
with all four bands (VNIR) used as inputs. In the GRASS implementation, the TP ranges between 0 to
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1, with 0 leading to the situation where each pixel represents a segment, while 1 unifies all image pixels
in one object. As Böck et al. [52] pointed out, the USPO metrics are sensitive to the range of candidate
segmentations used as input, so we empirically found a range that corresponded to cases of evident
over- and under-segmentations to be used as minimum and maximum possible values, as commonly
done in similar studies [18,53]. Thus, we evaluated 27 different segmentations starting with a TP of 4
and finishing at a TP of 31, guided by an incrementing step value of 1, as in previous studies, [54]. For
reader convenience, all TP values were multiplied by 1000 in the illustrative and text materials.

To evaluate the quality of each of the different segmentations, we used the inter- and intra-
segmentation heterogeneity metrics Moran’s I (MI) and Weighted Variance (WV), respectively.
MI calculates the degree of spatial autocorrelation present in the values of nearby geographic features,
and it was used in our case (and in many other USPO studies) to calculate how spectrally heterogeneous
segments are, on average, from their neighbors (i.e., in terms of the mean segment values calculated for
each spectral band). For this reason, it can provide a measure of “oversegmentation goodness”; Low MI
values for a segmentation layer indicate low spatial autocorrelation between segment spectral values,
suggesting that most segments belong to a different ground feature (with different spectral reflectance
properties) than its neighbors. WV, on the other hand, describes the average spectral variability within
segments (weighted by each segment’s area). WV can provide a measure of “undersegmentation
goodness”; Low WV values indicate little internal variation in the spectral properties of segments,
suggesting the segment does not contain a mixture of multiple ground features. MI and WV are
given by:

WV =
∑n

i ai ∗ vi

∑n
i ai

(1)

MI =
n ∑n

i ∑n
j wijzizj

M ∑n
i z2

i
(2)

where for Equation (1), n is the number of segments, vi is the variance and ai the area for each segment,
while in Equation (2), n is the number of segments, zi = xi − x, x is the mean value of segment x,
M = ∑n

i=1 ∑n
j=1 wij and wij is the element of the matrix of spatial proximity M, which indicates the

spatial connectivity for segments i and j [52,53].
To perform USPO, the oversegmentation and undersegmentation goodness values calculated

for each segmentation layer need to be combined into a single value, e.g., through addition [38] or
the F-measure [18]. We used the F-measure to combine MI and WV values in this study, as it was
demonstrated to be less sensitive to excessive over- and undersegmentation than other combination
approaches in Zhang et al. [39] and implemented in GRASS module “i.segment.uspo” [55]. To derive
an F-measure from these two components, we first need to normalize them to a similar range (0–1) [38]:

MIn =
MImax − MI

MImax − MImin
, (3)

WVn =
WVmax − WV

WVmax − WVmin
, (4)

where WVn is the normalized WV (or MI), WVmax is the maximum WV (or MI) value of all candidate
segmentations, WVmin is the minimum WV (or MI) value of all candidate segmentations and WV is the
WV (or MI) value of the current segmentation. The F-measure is a harmonic weighting of these two
features:

Fopt =
(

1 + a2
) WVmax − WV

a2 ∗ WVmax − WVmin
, (5)

where Fopt is the score of a candidate segmentation to be evaluated, ranging from 0 to 1, with higher
values indicating higher quality; and a is the relative weight factor that assigns different significance to
one metric over the other [18]. In our case we used a relative weight of 1, indicating equal weighting of
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the MI and WV components in calculating Fopt. The procedures were fully automated and parallelized
due to the flexibility of GRASS GIS for applications including large raster datasets.

2.2.1. Global USPO

The conventional global USPO approach involves using either the whole image extent as input
to the USPO procedure, or a representative subset [43]. Since our image was very large (20 GB),
we used the latter method, as depicted in Figure 2. The selected subset (10 km2) contained planned,
unplanned, and industrial built-up zones, with different kinds of vegetation, as well as bare soil, and
thus, was deemed an appropriate candidate. The TP resulting from applying USPO to that region was
12, and we consequently used that value to segment all parts of the WorldView-3 image.
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Figure 2. Subset of the WorldView-3 imagery (~10 km2) where the RG’s TP was optimized for use in
the whole image. The selected area contains a distribution of land cover classes representative of the
whole study area.

2.2.2. Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO)

As mentioned in the introduction, a global optimization of the USPO might not be appropriate
due to the spatial heterogeneity within the image. As such, an alternative approach would be to
partition the study area into several subsets, and to apply the optimization procedure locally in each
subset. If the segmentation level selected as optimal by a global USPO calculation approach differs
significantly from the segmentation level selected locally (i.e., through local USPO calculation in each
partition of the study area), a spatially non-stationary process is taking place, and thus a global model
might not be the best candidate to use. To investigate this phenomenon, we partitioned the image
in three automated ways. The first two methods for partitioning were done using regularly-shaped
rectangular tiles of predefined sizes, and the third partitioning method involved automated delineation
using a cutline creating algorithm. The predefined partition was based on splitting the WorldView-3
image, into tiles of equal area and for most cases, equal geometry. The area of the rectangular image



Remote Sens. 2018, 10, 1440 7 of 23

subsets for the first two partitioning approaches was 0.25 km2 (P1) and 0.12 km2 (P2), totaling to 2427
and 4887 subsets, respectively (Figure 3). Although the results of predefined partitioning can be fruitful
for exploratory purposes, they suffer from edge effects at their borders. Since they are predefined
and fixed in size, they arbitrarily partition the landscape, which can result in noisy/badly segmented
objects along the boundaries of the rectangular subsets as artifacts (i.e., splitting building roofs or
trees in half). To treat this issue, for the third and main partitioning approach (P3), we deployed a
cutline creating algorithm using Laplacian zero-crossing edge detection [56–58], as implemented in the
‘i.cutlines’ module of GRASS GIS [59]. In that way, the created subsets would delineate the landscape in
a more meaningful way, as they would follow linear patterns, such as roof edges and streets. The size of
the cutline-created subsets can be decided by the user with respect to the application case. In our case,
we created subsets closer to the P2 partition and as such, 4900 subsets were created. Examples of the
different spatial partitioning methods are illustrated in Figure 3. In both global and local approaches,
the minimum size of a created segment was preset at 14 pixels to avoid unnecessary oversegmentation.
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2.2.3. Spatially Partitioned Unsupervised Segmentation Parameter Optimization (SPUSPO)

One of the merits of carrying out a localized approach is that it allows for decomposing a global
process, into a wide set of useful information which is mappable. Since USPO was applied locally,
a unique TP was produced for each spatial subset. The variation of the local TP from the single TP
value of the global USPO can be quantified to assess the degree of spatial non-stationarity. If there
would be no unexpected variation in the TP, that would suggest that a global approach is indeed
adequate, ceteris paribus. Along with mapping the results, we proposed a Segmentation Parameter
Stationarity Index (SPSI), which was loosely based on the Stationarity Index of Osborne et al. [60] to
assess spatial non-stationarity in gaussian models:

SPSI =
IQR(TPL)

(TPG + TPstep) − (TPG − TPstep)
(6)

where TPG is the TP of the global USPO, TPstep is the step parameter of the USPO procedure,
and IQR(TPL) is the interquartile range of the distribution of the TP’s from a local approach.
The interquartile range was used to mask outlier TP values that could emerge from random variation.
Values equal to or smaller than 1 imply stationarity, as the variation of the local TPs is not exceeding
what one would expect from a random process. Values higher than 1 indicate that there is significant
spatial variation.

2.3. Land Use and Land Cover Classification

Ultimately, the segments were constructed with the aim of being labeled through a classification
model. As such, another method to assess the local and global USPO methods is through the accuracy
and performance of a LULC classification. The classification scheme and training data are presented
below (Table 1). The training data were collected through random and stratified random sampling,
and consisted of 2478 objects across the city, which were labeled through visual interpretation by
two experts during the same period. The amount of training data was selected in such way that the
addition of new data points did not significantly improve classification accuracy. Swimming pools
were sampled manually due to their scarcity. To evaluate the results of the classification between the
two methods, we used an expert-based manual delineation of Ouagadougou, based on building size
and density [44] (Figure 4). In each one of these built-up types, we randomly sampled 150 points
adding up to a total of 1650 points, and computed the Overall Accuracy (OA), as well as the F-score
for each LULC class. No overlapping between training and testing data was allowed.
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Table 1. Training objects for each LULC class and method.

LULC Description Training Set Size

Buildings (BU) 400
Swimming Pool (SP) 179

Artificial Ground Surface (AS) Asphalt, concrete, semi-built-up constructions 216
Bare Soil (BS) 399

Tree (TR) 191
Low Vegetation (LV) Grass, bushes, dry vegetation 702

Inland Water (IW) Lakes, ponds, rivers, wetlands 205
Shadow (SH) 186
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Figure 4. Morphological delineation of Ouagadougou based on built-up size and density categories.

To classify the whole image, we computed several descriptive statistics for segments, based
on the values of the pixels located within the segment, i.e., the values of each spectral band, NDVI
values, and nDSM values (min, median, mean, max, range, 1st and 3rd quantiles and sum) as well
as geometrical covariates (fractal dimension, perimeter, area, compactness). An Extreme Gradient
Boosting (XGBoost, R 3.5.1) classifier was used as it was recently shown to outperform benchmark
classifiers such as Support Vector Machine in VHR LULC classifications [14]. XGBoost is an ensemble
of Classification and Regression Trees that is based in the principle of boosting [61]. The parameters of
the algorithm were tuned through Bayesian Optimization [14,62], to ensure the quality of the results.
Finally, we performed feature selection to reduce the computational burden and potentially increase
the predictive capabilities of the model by deploying the popular Variable Selection with Random
Forests (VSURF) algorithm, which is suited for tree-based classifiers such as XGBoost [63,64]. Out of the
initial 59 features, 18 were selected by VSURF to build the most discriminant, redundancy-free model.
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2.4. Segmentation Goodness Metrics

To evaluate the effect of SPUSPO on the segmentation of buildings, we compared the cutline-based
segmentation and the global approach against reference data. In detail, we manually delineated 100
buildings that were randomly selected from the pool of training data used for the LULC classification.
Finally, we computed the Area Fit Index (AFI) which is a commonly used joint index of over- and
undersegmentation [31,32,53]:

AFI =
area(xi)− area(yimax)

area(xi)
(7)

where xi is the reference object and yimax is the largest relevant segment intersecting xi. Values
closer to 0 suggest a better segmentation, values > 0 imply oversegmentation whereas values < 0
undersegmentation.

2.5. Computational Requirements and Data Availability

The computing infrastructure used for the experiments consisted of two Intel® Xeon® CPU
E5-2690 (2 processors of 2.90 GHz, 16 cores, 32 processing threads) and 96 GB of RAM. Segmenting
the WorldView-3 image with a single TP parameter (tiled) required roughly 20 h of processing time
while on average, a SPUSPO method required about 63 hours by exploiting the parallelization of the
‘i.segment.uspo’ module of GRASS [56]. The code, results and processed material is openly accessible
in the following repository (https://zenodo.org/record/1341116#.W3FSUvZuJ_t) [65].

3. Results

3.1. Threshold Parameter Variation

The spatial variation of the TP was a function of the size and geometry of the subsets used for local
optimization. Figure 5 demonstrates that the variation follows patterns of the landscape. The locations
where high TP values were selected as optimal were mainly clustered around unplanned, low elevated
neighborhoods, whereas the locations where very low TP values were selected as optimal were mostly
found in vegetated areas, potentially due to their unique spectral properties (high local variation in
the NIR band). The local outputs of each metric used for the local USPO calculations can also be
enlightening with respect to illustrating the level of spatial heterogeneity of the imagery. Figures 6
and 7 confirm that MI and WV have an inverse relationship, with MI being decisive in optimization in
the central and eastern regions of unplanned areas, and vice-versa. The SPSI value was 1.5 for P1, and
2 for P2 and P3, indicating a non-stationary variation in optimal TP values.

https://zenodo.org/record/1341116#.W3FSUvZuJ_t


Remote Sens. 2018, 10, 1440 11 of 23

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 23 

 

‘i.segment.uspo’ module of GRASS [56]. The code, results and processed material is openly accessible 
in the following repository (https://zenodo.org/record/1341116#.W3FSUvZuJ_t)[65].  

3. Results 

3.1. Threshold Parameter Variation 

The spatial variation of the TP was a function of the size and geometry of the subsets used for 
local optimization. Figure 5 demonstrates that the variation follows patterns of the landscape. The 
locations where high TP values were selected as optimal were mainly clustered around unplanned, 
low elevated neighborhoods, whereas the locations where very low TP values were selected as 
optimal were mostly found in vegetated areas, potentially due to their unique spectral properties 
(high local variation in the NIR band). The local outputs of each metric used for the local USPO 
calculations can also be enlightening with respect to illustrating the level of spatial heterogeneity of 
the imagery. Figures 6 and 7 confirm that MI and WV have an inverse relationship, with MI being 
decisive in optimization in the central and eastern regions of unplanned areas, and vice-versa. The 
SPSI value was 1.5 for P1, and 2 for P2 and P3, indicating a non-stationary variation in optimal TP 
values. 

 

 

Figure 5. Spatial variation of the threshold parameter (TP) across Ouagadougou. (a) WorldView-3 
RGB composite, partitioning by (b) P1 (c) P2 and (d) P3 approaches, respectively. The TP controls the 
average size of the created segments. 

Figure 5. Spatial variation of the threshold parameter (TP) across Ouagadougou. (a) WorldView-3
RGB composite, partitioning by (b) P1 (c) P2 and (d) P3 approaches, respectively. The TP controls the
average size of the created segments.



Remote Sens. 2018, 10, 1440 12 of 23
Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 23 

 

 

 
Figure 6. Spatial variation of weighted variance (WV) across Ouagadougou. (a) WorldView-3 RGB 
composite, partitioning by (b) P1, (c) P2 and (d) P3 approaches, respectively. High values of WV 
indicate large intra-segment variability while low values describe more homogenous objects. 

Figure 6. Spatial variation of weighted variance (WV) across Ouagadougou. (a) WorldView-3 RGB
composite, partitioning by (b) P1, (c) P2 and (d) P3 approaches, respectively. High values of WV
indicate large intra-segment variability while low values describe more homogenous objects.



Remote Sens. 2018, 10, 1440 13 of 23
Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 23 

 

 

 
Figure 7. Spatial variation of Moran’s I (MI) values across Ouagadougou. (a) WorldView-3 RGB 
composite, partitioning by (b) P1 (c) P2 and (d) P3 approaches, respectively. The higher the MI value, 
the stronger the effect of spatial autocorrelation between a created segment and its neighbors. 

The variability of these parameters was also visualized in a set of boxplots in Figure 8. From this 
figure, the TP parameter variation is slightly smaller for the P1 approach than for the other two 
partitioning methods, possible because image partitions of P1 are larger than those of P2 and P3, and 
thus do not capture as much of the local heterogeneity in urban structure. Notably, when using 
smaller spatial partitions, MI tends to decrease (and WV tends to increase), which constitute the 
differences in TP among the different methods. 
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the stronger the effect of spatial autocorrelation between a created segment and its neighbors.

The variability of these parameters was also visualized in a set of boxplots in Figure 8. From this
figure, the TP parameter variation is slightly smaller for the P1 approach than for the other two
partitioning methods, possible because image partitions of P1 are larger than those of P2 and P3,
and thus do not capture as much of the local heterogeneity in urban structure. Notably, when using
smaller spatial partitions, MI tends to decrease (and WV tends to increase), which constitute the
differences in TP among the different methods.
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3.2. Land-Use Land-Cover Classification

The results of the LULC classification were found to be affected by the segmentation quality.
Figures 9 and 10 show case how SPUSPO could enhance classification accuracy by producing segments
better fitting the local environment, in various areas in Ouagadougou. Figure 9 demonstrates that
in both planned and unplanned regions, the improvement in classification results was mainly due
to the cutlines segmentation, delineating the buildings in a less oversegmenting fashion, avoiding
overestimation of built-up near the borders due to the inconsistent and “patchy” nature of the nDSM
as a predictor, that does not closely follow built-up boundaries.
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Figure 9. Example of the LULC map classification in a planned and unplanned built-up area. (a) LULC
classification with a global approach in a planned neighborhood, (b) RGB Pleiades Composite, (c) LULC
classification with a cutline approach in an unplanned neighborhood, and (d) LULC classification with
a global approach in a planned neighborhood, (e) RGB Pleiades Composite, (f) LULC classification
with a cutline approach in an unplanned neighborhood.

LULC classification based on SPUSPO was superior for vegetation and waterbodies of
Ouagadougou. Figure 10 demonstrates cases of confusion between low and high vegetation, when
using a global approach. Additionally, the misclassification of water as built-up is significantly less
with SPUSPO. Notably, a scene might be segmented with intrinsically different thresholds (Figure 10f),
which implies that the reason SPUSPO methods performed better is their incorporation of only the
spatial information of the segmented region, and not information that comes from locations far away,
which might not be useful at the local level.
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Figure 10. Example of the LULC map classification in a vegetated regions and inland water bodies. (a)
LULC classification with a global approach in a forested area, (b) RGB Pleiades Composite, (c) LULC
classification with a cutline approach in a forested area, (d) LULC classification with a global approach
in water bodies, (e) RGB Pleiades Composite, and (f) LULC classification with a cutline approach in
water bodies.

The Overall Accuracy for the SPUSPO and global optimization based on the reference set was
90.5% and 89%, respectively. Moreover, the differences among them were statistically significant,
based on a two-tailed McNemar’s test of similarity (p < 0.05). The local optimization was superior
for most cases, both when concerning the OA and per-class evaluation metrics (Table 2). The largest
improvements were found in the classification of inland water and shadows (+18% and +3% increase
on the F1 score, respectively).

Table 2. Precision, Recall and F-score metrics for each LULC class with SPUSPO and global
USPO, respectively.

Precision Recall F1

Class SPUSPO Global SPUSPO Global SPUSPO Global
Building 0.93 0.93 0.94 0.93 0.94 0.93

Artificial Ground Surface 0.83 0.83 0.88 0.86 0.85 0.84
Bare Soil 0.88 0.84 0.87 0.87 0.88 0.86

Tree 0.81 0.81 0.91 0.93 0.85 0.87
Low veg 0.94 0.94 0.89 0.86 0.91 0.90

Inland Water 0.86 0.73 0.66 0.47 0.75 0.57
Shadow 0.94 0.90 0.95 0.95 0.95 0.92
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An additional, indirect way to assess the segmentation quality is to investigate the variable
importance of the geometrical covariates. The geometrical covariates that were used in the classification
model after VSURF feature selection took place were perimeter, area, and fractal dimension. Figure 11
illustrates the improved effect a local approach has on the importance of most of these variables,
further supporting the merit of using SPUSPO. The interpretation of the results, refers to the gain in
model accuracy when a feature is used in the splits of the XGBoost tree development. The importance
of these covariates is varying, but in all cases, the local approach further enhances their predictive
power for classification, since the segments fit better the variability of the local environment.
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Figure 11. Feature importance of geometrical covariates, as derived from an XGBoost classifier, for the
global and cutline segmentation-based approaches, respectively. The method used to derive importance
is the gain in accuracy.

3.3. Segmentation Goodness Metrics

The results of the AFI for buildings are depicted in Table 3 through several descriptive statistics.
As expected, the building objects were less over segmented with SPUSPO, because the parameter was
spatially adapting to characteristics of each built-up neighborhood in Ouagadougou (Figure 12). The
AFI values of the local method were consistently closer to zero compared to their counterpart, further
promoting the use of this approach.

Table 3. Area Fit Index for building objects in Ouagadougou. Values closer to 0 suggest a better
segmentation, values > 0 imply over segmentation while values < 0 under segmentation.

Descriptive Statistics
Area Fit Index (AFI)

SPUSPO Global

1st 0.04 0.11
Median 0.22 0.38
Mean 0.28 0.36

3rd 0.53 0.62
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Figure 12. Example segmentations of buildings in Ouagadougou. Red color indicates segments created
by a global approach, while green color indicates segments coming from SPUSPO. The decrease of over
segmentation is evident in most cases, as the parameters are derived from neighboring locations, better
fitting the data structure.

4. Discussion

The results suggested that the benefits of performing SPUSPO, are multiple. To start with, it allows
for the local variations in spectral and spatial heterogeneity within an image to be incorporated into
the segmentation parameter optimization approach, which is more intuitive because the optimization
procedure is derived using the actual locations they are being applied to and not from locations
situated afar. This supports the hypothesis that in large and heterogeneous areas, a single TP may
be inadequate, as it is simply an average expression of several non-stationary processes. The results
confirm prior analysis in another Sub-Saharan city of Dakar, where a semi-automated local approach
outperformed classical optimization methods [54]. Moreover, several other studies have described how
regionalized approaches can be of merit for urban, semi-rural, and agricultural environments [35,43,44].
Nonetheless, an important facet that has been neglected so far is how to partition the landscape in
geographically large areas in conjunction with VHR imagery, and in the absence of reference data
such as parcels or blocks. For a continuous LULC map, an appropriate delineation of the image
is important, as it must be as adjustable to landscape patterns, such as streets or roofs, as much as
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possible to avoid/reduce edge effects. Although all local approaches showed they can be of merit, the
cutline-based partition helped to specifically address these issues. Undertaking SPUSPO, produced
higher classification accuracy than using a traditional global optimization method (+1.5% increase in
OA). The results are confirmed further using AFI as a segmentation goodness metric, which showed
that building segments from applying SPUSPO are less oversegmented than their global counterparts,
with mean values of 0.28 and 0.36 for SPUSPO and global USPO, respectively. The analysis validated
our initial hypothesis that the way we look at the data can produce significantly different results, and is
related to the importance of appropriate spatial scale selection in geography, which was largely signified
through the work of Woodcock and Strahler [66] and Fotheringham et al. [67]. Additionally, a local
segmentation optimization approach is not only linked to traditional GEOBIA analysis, but might
be needed in large scale applications where deep learning classification is coupled with segments to
achieve better object delineation/extraction as demonstrated recently in References [68–70]. Another
important piece of information that we can extract from these methods is the ability to map intermediate
and final results, which can be enlightening both as a general understanding of how spatial processes
operate in the local scale, but also how to calibrate segmentation parameters in further processing if
an unsupervised multi-scale framework is selected [18]. The LULC products in SSA cities are often
used as inputs for fine scale population modelling, land use, and spatial planning, and consequently,
effective policy making, given the extreme scarcity of reference information [2,71,72]. This is significant
for the outcome of our analyses because there was better prediction of most classes by the SPUSPO
approach; it presents an additional motivation to partake of a local method to reduce error propagation
in secondary models.

The main limitation of SPUSPO is the increased computational time and experimentation to
detect a satisfactory spatial level to analyze image information, which can vary depending on
the image resolution and study area, leading to a trade-off between computational requirements
and performance. Therefore, more sophisticated methods are needed to help establish an efficient
framework to fully exploit the benefits of local optimization. Ideally, in large and heterogeneous areas,
a spatial partition should not suffer from edge effects and should meaningfully delineate the landscape
with a certain degree of intra-homogeneity. Cutline partitioning satisfies both criteria to some extent,
but its effectiveness can only be determined post-hoc, which increases the computational and time
demands as several cutline partitions may need to be evaluated. More adequate methods that can
focus in a priori determination of a suitable scale using image statistics, such as spatial dependency
among regions [73], could be of benefit to achieve this, particularly in a multi-scale context. Other
research should explore the potential of multi-resolution imagery to define operational partitions using
top down approaches. For instance, a low-medium resolution LULC product can define homogeneous
regions to apply SPUSPO using finer resolution imagery. Moreover, noise additive models could
help in better establishing a comparative framework among different segmentation approaches,
particularly for SAR or hyperspectral data [74]. A lot of the limitations that come with involving
local methods, can be significantly reduced (i) by utilizing GRASS GIS, which is highly parallelized
in the USPO optimization module and more notably, performs all the operations in a raster format
and does not require vector conversion at any moment, dramatically boosting its effectiveness for
large-scale computing; and (ii) invoking state-of-the-art segmentation algorithms, with respect to their
computational efficiency, as recently shown by Gu et al. [75].

5. Conclusions

In this study, the optimization of a region-growing segmentation algorithm was attempted
using a spatially varying parameter model, named SPUSPO. The whole framework was developed
with a focus on automation and large-scale analysis of VHR imagery. The results validated our
hypothesis that in large and heterogeneous areas, using only a single set of parameters to optimize
the region-growing algorithm was inadequate. Employing as a case study, the city of Ouagadougou,
it was demonstrated that undertaking local optimization methods was of merit and led to significantly
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better LULC classification results (+1.5% increase in OA), validated by a McNemar’s test of similarity.
Moreover, at the segmentation level, building delineation was improved with a mean Area Fit Index
of 0.28 and 0.36 for SPUSPO and global USPO, respectively. Moreover, the feature importance of
geometrical covariates is recommended as an indirect measure to assess the quality of a segmentation.
We demonstrated that geometrical features were more important and predictive when using local
approaches. Finally, GRASS GIS was heavily utilized and is promoted as an open source tool to handle
large volumes of data with advanced analysis techniques.
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