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Abstract: In paddy soils in the Mekong Delta, soil archaea emit substantial amounts of
methane. Reproducing ground flux data using only satellite-observable explanatory variables is a
highly transparent method for evaluating regional emissions. We hypothesized that PALSAR-2
(Phased Array type L-band Synthetic Aperture RADAR) can distinguish inundated soil from
noninundated soil even if the soil is covered by rice plants. Then, we verified the reproducibility
of the ground flux data with satellite-observable variables (soil inundation and cropping calendar)
and with hierarchical Bayesian models. Furthermore, inundated/noninundated soils were classified
with PALSAR-2. The model parameters were successfully converged using the Hamiltonian–Monte
Carlo method. The cross-validation of PALSAR-2 land surface water coverage (LSWC) with several
inundation indices of MODIS (Moderate Resolution Imaging Spectroradiometer) and AMSR-2
(Advanced Microwave Scanning Radiometer-2) data showed that (1) high PALSAR-2-LSWC values
were detected even when MODIS and AMSR-2 inundation index values (MODIS-NDWI and
AMSR-2-NDFI) were low and (2) low values of PALSAR-2-LSWC tended to be less frequently
detected as the MODIS-NDWI and AMSR-2-NDFI increased. These findings indicate the potential of
PALSAR-2 to detect inundated soils covered by rice plants even when MODIS and AMSR-2 cannot,
and show the similarity between PALSAR-2-LSWC and the other two indices for nonvegetated areas.

Keywords: methane; rice paddies; greenhouse gas; ALOS-2/PALSAR-2; L-band synthetic aperture
RADAR; inundation; phenology; Mekong Delta

1. Introduction

Methane (CH4) is an important greenhouse gas (GHG); its global warming potential on a 100-year
horizon is 34 times higher than that of carbon dioxide (CO2) [1]. In 2011, the concentration of CH4 was
1803 ppb, which is 150% higher than pre-industrial levels, and a predominantly biogenic post-2006
increase has been reported [2]. Although the specific biogenic source driving the increased CH4

has not been specified with certainty, agricultural emissions are a likely cause. It is estimated that
approximately 52% of CH4 is emitted from agricultural activities [3]. Rice is a staple food for more than
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half of the world’s population, and the global demand for rice is projected to increase from 644 million
tons in 2007 to 827 million tons in 2050 [4]; therefore, further exacerbation of the anthropogenic GHG
emissions must be curtailed, and a responsible mitigation policy is required.

The Mekong Delta is one of the world’s most important regions for rice production and
international commerce. Vietnam has been the world’s 5th largest producer of rice since 1992 (44.0 and
45.0 Mt of rough rice in 2013 and 2014, respectively (hereafter, rice production/yield indicates that
of rough rice). Vietnam was the world’s 2nd and 3rd largest exporter of rice from 2008 to 2012
(8.0 Mt in 2012) and in 2013 (3.9 Mt), respectively [5]. The Mekong Delta has played a central role in
sustaining this high level of rice production. The delta, which accounts for only 11% (4.06 M ha) of
Vietnam’s area, yields more than half (25.0 Mt in 2013) of the national rice production [6]. The delta’s
rice-planted area reached 4.34 M ha in 2013 (General Statistics Office 2015), and 57.4% of the area
in 2012 was estimated to have been triple cropped [7]. Studies [8,9] have reported that a farmer’s
triple-cropped rice paddy field in the delta was actually submerged nearly year-round, and this field
supplied substantial amounts of rice stubble-derived fresh organic carbon [10,11]. This environment
may produce strongly reductive conditions in paddy soils, causing anaerobic soil archaea to emit
substantial amounts of CH4. Although the importance of agricultural mitigation has been affirmed
by the Vietnamese government, which aims to reduce GHG emissions by 20% and promote water
management with increased drainage periods, integrated research and decision support tools are still
needed to quantify emission baselines and evaluate the mitigation potential with a scientifically robust,
transparent, and scalable approach [12].

To regionally assess the CH4 emissions from rice paddies, Tier 1 methods [13] for calculating
emissions with emission factors (kg CH4 ha−1 day−1) and scaling factors (e.g., differences in water
regimes during the cultivation period, differences in water regimes in the pre-season before the
cultivation period, organic matter (rice straw) application rate/timing, and soil types) have been
widely employed [12,14,15]. Additionally, the development of country-specific emission factors is
ongoing for a Tier 2 method based on ground flux measurement data (e.g., the specific emission
factor in the Philippines [16]). The modeling approach for Tier 3 methods in which the scaling factors
are substituted with transparent satellite data or GIS data (such as soil type classification maps) as
explanatory variables is expected to improve the transparency and scalability of the method while
maintaining its robustness. Ideally, local parameters that are difficult to precisely monitor on a regional
scale (e.g., fertilizer/pesticide types and their application rate/timing/methods, carbon/nitrogen
ratios of straw, specific rice physiological parameters, electron accepters in soils, and the distribution of
rice stubble) should be avoided to maintain the high transparency of the method and to evaluate each
parameter’s uncertainty. GHG fluxes from agricultural soils are spatiotemporally highly heterogeneous,
even at the plot scale [17,18]. The spatial distributions of rice stubble incorporated into soils and the soil
surface produce highly heterogeneous CH4 fluxes from rice paddy soils at the plot scale. To establish
a transparent method, it is necessary to confirm the reproducibility of ground-measured flux data
without the regionally non-observable parameters that explain the heterogeneity and to verify the
accuracy of the satellite observations of the variables.

To differentiate rice cropping/fallow periods, classify rice growth stages, and estimate cropping
calendars (e.g., sowing dates), several studies have been conducted with satellite remote sensing
technology (e.g., Fourier transform analysis of the Normalized Difference Vegetation Index (NDVI) of
Moderate Resolution Imaging Spectroradiometer (MODIS) data [19,20], X-band Synthetic Aperture
RADAR (SAR) data from the COnstellation of small Satellites for the Mediterranean basin Observation
(COSMO-SkyMed) [21], C-band SAR data from Sentinel-1 [22], and L-band SAR data from Japanese
Earth Resources Satellite-1 (JERS-1) [23], PALSAR [24], and PARSAR-2 [12]). However, the soil
hydrological status must be monitored continuously not only during the rice cropping period but
also throughout the fallow season, even if the soil is covered by rice plants. For this purpose,
the Land Surface Water Index (LSWI) is determine based on the satellites’ optical sensors (e.g., MODIS,
Landsat series [25]) and the passive microwave radar of microwave satellites (e.g., Normalized
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Difference Frequent Index/Normalized Difference Polarization Index (NDFI/NDPI) of Advanced
Microwave Scanning Radiometer for the Earth observation system (AMSR-E) [26]). Although L-band
SARs have been widely used (e.g., JERS-1 [27] and PALSAR [26]), few studies have assessed the
hydrological status of large rice paddies from the maximum tiller number stage (approximately
30 days after sowing) to the rice harvest date. To regionalize field observation datasets of CH4

fluxes from wetlands with satellite remote sensing data by overcoming this vegetation cover
disturbance, new advanced satellite remote sensing approaches, such as Global Navigation Satellite
System-Reflectometry (GNSS-R) with future satellite capabilities (e.g., the Cyclone Global Navigation
Satellite System (CYGNSS), whose nominal spatial resolution of 25 km × 25 km (centered on the
specular reflection point)) is in development [28]. Although GNSS-R measurements over wetlands
are predominantly coherent, with a potential spatial resolution of ~1 km2 depending on the geometry
and satellite altitude, another method with a higher spatial resolution is desirable for observing rice
paddies. This method must be able to detect the spatial heterogeneity derived from the differences
in farmers’ irrigation practices and cropping calendars. To this end, PALSAR-2, the L-band SAR
with a relatively “transparent” microwave (24-cm wavelength), high spatial resolution (high spatial
resolution observation mode: 3–10 m; ScanSAR mode: 25–100 m depending on the incidence angle
difference between sub-swathes), and improved signal-to-noise (S/N) ratio compared with PALSAR
(e.g., the S/N ratio of the high spatial resolution observation mode is increased for approximately
5 dB [29]), is expected to detect different scattering characteristics of the inundated water-vegetation
state and noninundated soil-vegetation state.

The objectives of this study are to (1) demonstrate the reproducibility of ground CH4 flux
observation data in triple-cropped rice paddies of the Mekong Delta with satellite-observable
variables, including the soil inundation status; (2) characterize the differences in the L-band SAR’s
microwave backscattering between inundated soils and noninundated soils at different rice growth
stages, including the fallow period; and (3) propose an adequate soil inundation method with
L-band ScanSAR data considering the bias derived from the local incidence angle differences on the
microwave backscattering characteristics and clarify the difference between our method’s inundation
detection result and the results obtained from the other types of satellite sensors commonly used for
inundation/flooding detection (e.g., optical sensors and passive microwave radiometers).

2. Materials and Methods

This study consists of (1) a demonstration of the reproducibility of ground CH4 flux observation
data in triple-cropped rice paddies of the Mekong Delta with satellite-observable variables according
to the hierarchical Bayesian modeling method; (2) a characterization of PALSAR-2’s microwave
backscattering in inundated/noninundated paddy soils with different rice growth stages, including the
fallow period; and (3) a validation of the PALSAR-2-LSWC with LSWIs computed from long-term
consistent datasets of high-temporal resolution satellites (optical sensors: MODIS-NDVI/NDWI;
passive microwave radiometer on GCOM-W: AMSR-2-NDFI; 1-day temporal resolution each).
A flowchart of this study is illustrated in Figure 1.

2.1. Sites Along with the Collection of Field Data and HIERARCHICAl Bayesian Modeling of CH4 Emissions

We prepared ground observation datasets obtained at six sites (A–E) located in six different
districts: Site A: Thot Not, Can Tho (10◦10′ N, 105◦33′ E [8–11]); Site B: Chau Thanh (10◦16′ N,
105◦08′ E [30,31]); Site C: Cho Moi (10◦25′ N, 105◦27′ E [31]); Site D: Thoai Son (10◦16′ N, 105◦08′ E [31]);
and Site E: Tri Ton, An Giang (10◦23′ N, 105◦06′ E [31]). The soil in sites A–C is classified as silty
clay fluvisol (a type of alluvial soil [26–29]), while the soil in sites D and E is classified as sulfuric
humaquepts (a type of alluvial soil [31]). The flux observation frequency, number of observation plots
and observation periods for each flux observation site are described in Appendix A (Table A1).
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Figure 1. Flowchart of the study outlining the data, processing, and analysis. PALSAR-2, AMSR-2,
MODIS, and HH HV σ0 refer to the Phased Array type L-band Synthetic Aperture Radar,
Advanced Microwave Scanning Radiometer-2, MODerate resolution Imaging Spectroradiometer,
and the backscattering coefficient of HH/HV microwaves, respectively.

In Can Tho and An Giang, 50 farmers’ rice paddies (30 in site A, five each in sites B–E) were
chosen as regions of interest (ROIs). At the center of each ROI, field water-level data for the
supervised classification of satellite remote sensing data were collected with a water-level gauge (daily,
10:00 a.m.–12:00 p.m., at site A) or with a HOBO CO-U20L-04 water-level data logger (Onset Computer
Corporation, United States; collected every 4 h at sites B–E) from November 2015 to February 2017.
At the same time, we collected information about the history of the field operations (e.g., fertilization
and land preparation/sowing/harvesting dates) for each ROI throughout the observation period.
The numbers of ROIs in the inundated/noninundated rice paddies are described in Appendix A
(Table A2).

The methane flux observation data collected once every 1 to 7 days at each paddy with
closed-chamber methods and field water levels collected once every 4 to 24 h from each paddy
as the explanatory variables were monitored from representative farmers’ paddy fields (6–18 paddies
at each site, with different water management methods and straw management methods from
2012–2017), and prepared (total number of cumulative emissions through a rice cropping (“Cum.Emi”,
g C m−2 cropping−1): n = 588; total number of flux data (“flux”, mg C m−2 h−1): n = 16,551).
Further details such as air sample collection methods are described in multiple past studies [8,9,30,31].
As the response variable, the daily flux values and cumulative emission values computed from the
flux data with the trapezoid rule [32] were log-transformed because they did not follow a normal
distribution according to the Shapiro test (p < 0.001 each), and they fit well with the log-normal
distribution. Using the hierarchical Bayesian modeling analyzes, these logarithm values were
applied via fixed effects (explanatory variables) derived from satellite remote sensing and GIS data,
e.g., whether soil is inundated (i.e., soil surface ≤ field-water level), number of days after sowing,
length of the adjacent fallow season, straw management, and soil classification map. The model for
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the cumulative emissions is expressed as Equations (1), (5)–(7), and the model for the daily flux is
expressed as Equations (2)–(7):

Ln(Cum.Emi.) ∼
Normal(α[LID[n]]+β[LID[n]]× inun.crop[n]− γ[LID[n]]× noninun. f allow[n]−
δ[LID[n]]× inun. f allow[n] + ε[LID[n]]× straw[n]− ζ[LID[n]]× sul f ate[n],σ1,

n = 1, . . . , N),

(1)

where LID is the ID of the flux measurement location; N is the number of cumulative emission
data (N = 588); α (~Normal(1≤)) is the intercept parameter; β (~Normal(0, 1)) is the coefficient
parameter of “inun.crop” (days of soil inundation (i.e., soil surface ≤ field-water level) during the
cropping period (from sowing date to the harvest)); γ (~Normal(1, 10)) and δ (~Normal(0≤)) are the
coefficient parameters of “noninun.fallow”/“inun.fallow” (days of soil noninundation/soil inundation
during the fallow season just before the cropping period), respectively; and ε (~Normal(0≤)) is the
coefficient parameter of straw incorporation (the value of “straw” is 0 or 1; this value is 0 if the
straw incorporation is after the carbon emission management, i.e., straw removal or straw burning,
as described previously [8–11]), into the soil, and the value is 1 if all of the straw is directly incorporated
into soil without the carbon emission management). The parameter ζ (~Normal(0≤)) is the coefficient
parameter of relatively sulfate-rich soils (the value of “sulfate” is 0 or 1; this value is 0 if the flux data are
collected from alluvial soil, and the value becomes 1 if the flux data are collected from acid sulfate soils),
and σ1 is the parameter related to the variance and shape of the variability in the cumulative emissions.

Ln( f lux) ∼
Normal(Ln(η[LID[m]]) + subs.kine.− ox.cap. + ν× inun.crop.10d + ξ[LID[m]]

×straw− o[LID[m]]× sul f ate− π[LID[m]]× inun. f allow,σ2, m = 1, . . . , M),
(2)

subs.kine. = Ln(exp(−1 × θ[LID[m]] × DAS) − exp(−1 × (θ[LID[m]] + ι[LID[m]])
× DAS) + κ[LID[m]]),

(3)

ox.cap. = Ln(1 + exp(−1 × λ[LID[m]] × (DAS − µ[LID[m]] × noninun.fallow))), (4)

where LID is the ID of the flux measurement location and M is the number of flux data (M = 16,551);
η (~Normal (1≤)) is the intercept parameter; the “subs.kine.” function represents Michaelis–Menten
kinetics (i.e., the CH4 production rate is not regulated by the concentration when the fresh substrate
concentration is high; however, the CH4 production rate becomes constrained by the remaining
substrate days after sowing has passed, and the amount of available substrate remaining becomes
limited), and it is designed referring to the N fertilizer response function component of a N2O flux
model reported in [17]. This model demonstrates the rapid CH4 production/emission increase at
the sowing date (i.e., immediately after the plowing/straw incorporation) due to the promotion
of methanogenic enzyme activity and the gradual inhibition over time after the sowing following
substrate depletion. The parameters θ and ι (~Normal(0, 1), each) are the coefficient parameters of
“DAS” (days after sowing), and κ (~Normal(0, 1)) is the intercept parameter of the “subs.kine.” function.
Here, “ox.cap.” is the oxidation capacity sigmoid function as an index of soil drought intensity in the
precropping season of the Tier 1 method’s scaling factor. The oxidation capacity is enhanced by dry
soil conditions during the fallow season to inhibit methane production by decomposing the substrate
into CO2 by oxidized electron acceptors (e.g., oxygen, nitrate, ferric iron oxide, manganese oxide,
and sulfate [8,9,33]). The parameter λ (~Normal (0, 1)) is the coefficient of the “DAS”; µ (~Normal(0≤))
is the coefficient parameter of “noninun.fallow” (days of soil noninundation during the fallow season
just before the cropping period); ν (~Normal (0≤)) is the coefficient parameter of “inun.crop.10d”
(how many days the soil has been inundated during the 10 days just before the target date (i.e., the sum
of inundation days among x − 9 day, x − 8 day, . . . , x − 1 day, x day; x as the target date)); ξ and
o (~Normal (0≤), each) are the coefficient parameters of straw incorporation and acid sulfate soils,
respectively, (the value of “straw” and “sulfate” are 0 or 1, as described in the above description for
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Equation (1); π (~Normal(0, 0.001)) is the coefficient parameter of “inun.fallow” (days of soil inundation
during the fallow season just before the cropping period); and σ2 is the parameter related to the
variance and shape of the variability in the flux.

(α,β,γ, δ, ε, ζ,η, θ, ι, κ, λ,µ,ν, ξ, o,π)year_mean[y] ∼
Normal

(
(α,β,γ, δ, ε, ζ,η, θ, ι, κ, λ,µ,ν, ξ, o,π)total_mean, σ(α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)y, y = 1, . . . , Y

)
,

(5)

Here, (α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)year_mean is each mean value of α-π in each observation year,
(α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)total_mean are the whole mean values of α-π that are common in all
observation years, σ(α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)y is the difference among the observation years of each
α-π, and Y is the number of observation years (Y = 6).

(α,β,γ, δ, ε, ζ,η, θ, ι, κ, λ,µ,ν, ξ, o,π)season_mean[s] ∼
Normal

(
(α,β,γ, δ, ε, ζ,η, θ, ι, κ, λ,µ,ν, ξ, o,π)year_mean[StoY[ s

]
], σ(α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)s,

s = 1, . . . , S),

(6)

Here, (α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)season_mean is each mean value of α-π in each observation
season, σ(α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π)s is the difference among the observation seasons of each α-π,
StoY[s] is the ID of the observation season(s) in the observation year to which the observation season
(s) belongs, and S is the number of observation seasons (S = 16).

(α,β,γ, δ, ε, ζ,η, θ, ι, κ, λ,µ,ν, ξ, o,π)[l] ∼
Normal

(
(α,β,γ, δ, ε, ζ,η, θ, ι, κ, λ,µ,ν, ξ, o,π)season_mean[LtoS[ l

]
], σα,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π,

l = 1, . . . , L),
(7)

Here, (α,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π) [l] is each location mean value of α-π,
σα,β,γ,δ,ε,ζ,η,θ,ι,κ,λ,µ,ν,ξ,o,π is the difference among the observation location of each α-π, LtoS [l] is
the ID of the observation location (l) in the observation season to which the observation location (l)
belongs, and l is the number of observation seasons (L = 46). The posterior distribution was calculated
using the Hamiltonian–Monte Carlo method [34] implemented in RStan (Stan version 2.15.1 [35,36]).
For the daily flux data, there were 2000 iterations, including 1000 warm-up periods and three chains.
For the cumulative emissions, there were 5500 iterations, including 500 warm-up periods and four
chains. The thinning had a value of five for both models.

2.2. Earth Observation Datasets and Their Preprocessing Methods

PALSAR-2’s quadruple observation datasets (Lv. 1.1; 40–50 km observation width, 70 km
observation length; 23 scenes; November 2015–October 2016) and the ScanSAR datasets (Lv. 1.1;
350.5 km observation width, 355 km observation length; 105 scenes; October 2014–December 2017)
observing the Mekong Delta were prepared after the update of the radiometric and polarimetric
calibration factors for the PALSAR-2 standard product (24 March 2017 [37], Supplemental A, Table S1).
The quadruple data with a high spatial resolution (4.3 m azimuth resolution and 5.1 m range resolution
at a 37 degree incidence angle) were decomposed to characterize the microwave scattering pattern in
inundated paddy soil and noninundated paddy soil under different rice growth stages. The phase
and polarimetry data of PALSAR-2’s quadruple observation datasets were converted to a coherency
matrix, applied to a refined Lee filter (7 × 7 window) to ease speckle noise, and then decomposed with
three Freeman–Durden components [38] using PolSARpro version 4.0 software [39]. Simultaneously,
the amplitude data of the HH and HV microwaves on the quadruple datasets were calibrated to
a backscattering coefficient (σ0) following Equation (8) [40] and then applied to the enhanced Lee
filter [41]:

σ0 = 10 · Log10 < I2 + Q2 > −105.0, (8)
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where σ0 is the backscattering coefficient, I is the value of the imaginary component, and Q is the value
of the quadrature component. The value of −105 is the calibration factor noted previously [40].

In addition to the quadruple data, ScanSAR data were preprocessed from Lv. 1.1 data
(CEOS format) to obtain its cross-dual polarimetric backscattering information and local incidence
angles of each pixel. Based on the characteristics obtained from the analysis of PALSAR-2’s
quadruple-high spatial resolution data, the threshold dividing inundated/noninundated paddy soils
was modeled numerically considering the effect of local incidence angles. The model’s inundated
paddy soil detection result was compared with the results obtained from optical sensors and a passive
microwave radiometer as the cross-validation. During the preprocessing procedure, all ScanSAR
datasets were imported into SARscape software, version 5.4.0, from SARMAP (in both range and
azimuth directions) to generate the single look complex (SLC) datasets. The SLC datasets were
transformed into a terrain geocoded backscatter coefficient and local incidence angles with (1) a
strip mosaicking and multilooking step (25 m pixel spacing); (2) DEM-based orbital correction with
SRTM3 version 4; (3) coregistration; (4) De Grandi time-series filtering (a balance of differences in
reflectivity between images at different times was achieved using an optimum weighting filter [42]);
and (5) terrain geocoding and radiometric calibration. The conversion of backscatter elements into
slant range image coordinates was carried out using a DEM as a backward solution. Range-Doppler
equations [43] were used in the transformation of two-dimensional coordinates of the slant range image
to three-dimensional object coordinates in a cartographic reference system. Radiometric calibration was
performed using a radar equation [44], which takes into consideration the scattering area, antenna gain
patterns, and range spread loss to compute ortho-rectified and slope-collected dimensionless values.
The corresponding σ0 value in dB (10 × log10 of the value) was additionally calibrated without
radiometric normalization to further analyze the classification threshold considering the local incidence
angle. Further details of each process were described previously [45].

For the cross-validation of PALSAR-2-LSWC, AMSR-2 data (brightness temperatures observed
from ascending orbit, Level 3), and MODIS (MOD13Q1) data were preprocessed. AMSR-2-NDFI was
calculated using Equation (9):

NDFI =
BT23.8V − BT18.7V
BT23.8V + BT18.7V

, (9)

where BT23.8V and BT18.7V are the vertical (V) polarization brightness temperatures at 23.8 GHz and
18.7 GHz, respectively, obtained from AMSR-2 on the ascending orbit. MODIS-NDWI was calculated
using Equation (10):

NDWI =
VIS− SWIR
VIS + SWIR

, (10)

where VIS represents the reflectance value of the visible channel (Channel 1 of MODIS) and SWIR
is the short-wave infrared channel (channel 7 of MODIS). The computed NDWI and NDVI values
contained in MOD13Q1 were prepared from the beginning of 2001 to the end of 2017 and then applied
to a temporal local maximum fitting-Kalman filter (LMF-KF [46,47]).

All of the MOD13Q1-NDVI pixel values from the beginning of 2001 to the end of 2017 for
the Mekong Delta were cumulatively collected and applied to Otsu’s method [48] to compute the
NDVI-threshold value (i.e., NDVI 3.32%), which classifies the data into vegetation-covered pixels
and nonvegetation covered pixels. The ratio of total pixel numbers of MODIS-NDVI pixels (1 km
resolution) whose NDVI value is higher than the NDVI-threshold in AMSR-2 (10 km resolution)
grid/total pixel numbers of MODIS-NDVI pixels in the AMSR-2 grid was calculated as land-surface
vegetation coverage (LSVC) for the validation comparison among PALSAR-2-LSWC, AMSR-2-NDFI,
and MODIS-LSVC.

2.3. Inundation/Noninundation Classification Methods on Paddy Soils Covered by Rice Plants

From each ROI of each scene of the quadruple data, the values of 25–30 pixels were collected
and averaged for the supervised classification with a hard-margin support vector machine (SVM)
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to distinguish inundated paddies and noninundated paddies. For ground-truth training data,
we employed the abovementioned field observation data (i.e., field water levels and days after
sowing/harvesting). The SVM-supervised classification was conducted with the statistical package
R [35] and a kernlab library. Furthermore, the HH/HV σ0 values were collected and visualized
using a 2D scatter plot method and then used as reference information to design the threshold line of
inundated/noninundated soils with ScanSAR datasets.

The values of HH σ0 computed from the preprocessing of the ScanSAR datasets were analyzed
to mask the rice paddies for further processing. First, we prepared datasets obtained from the same
observation frames (i.e., the data coregistered with each other at the preprocessing step) with different
observation dates. For the index of rice paddies observed in the frame, we calculated the differential
of the sum of squared (DSS) values of each pixel using Equation (11) considering the rapid temporal
dynamics of PALSAR’s HH σ0 in rice paddies (e.g., low HH σ0 values due to the specular reflection
caused by flooded field water at the sowing stage and high HH σ0 values due to the double bounce
from the flooded soil–rice plant state [24,49]):

DSS = ∑n−1
i=1 ((HHσ0

i+1 − HHσ0
i )× 1000)

2
(11)

where DSS is the differential of the sum of squared values of each pixel, n is the total number of
all scenes obtained in the same observation frame on different observation dates, HH σ0 represents
the HH σ0 values of PALSAR-2, and I is the time-series order of the PALSAR-2 scene in the frame
(i.e., HH σ0

I+1 − HH σ0
I indicates the temporal difference of PALSAR-2’s HH σ0 values of each pixel

between two adjacent observation times).
After the DSS of each pixel was calculated, the frequency distribution in each observation frame

was computed. The frequency distribution was fast Fourier transformed and differentiated to compute
its 2nd derivative value. For the threshold of rice paddies/non-rice paddies, we employed the value of
DSS where the distribution is downward convex and its 2nd derivative value became 0. A sample of
our masks of a PALSAR-2 observation frame, which is compared with a paddy mask reported in [22],
is illustrated in Appendix B, Figure A1.

Using the rice paddy mask, we collected the local incidence angles, HH and HV σ0, of each
rice paddy pixel from all of the scenes and then sorted them by every local incidence angle value.
The three characteristics of inundated/noninundated rice paddies detected by the quadruple datasets
are illustrated in Figure 2 as follows. (A) The values of HHσ0 + HVσ0 were smaller in inundated
paddies than in noninundated paddies. (B) Even if the value of HHσ0 was at the same level between
the inundated and noninundated paddies, the HVσ0 value was lower in inundated paddies than in
noninundated paddies. (C) Even if the value of HVσ0 was at the same level between the inundated
and noninundated paddies, the HHσ0 values were higher in inundated paddies than in noninundated
paddies. Figure 2a) illustrates the three thresholds A–C (Equations (12)–(14)), as follows.
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Figure 2. Scatter plot of ALOS-2/PALSAR-2-quadruple polarimetric high spatial resolution (3 m)
data of the backscattering coefficients of HH and HV microwave (n = 313, (a)), a sample of the
2D histogram of ScanSAR data illustrated with contours (b), and the noncontour histogram with
three thresholds A–C (c). The horizontal axes in the subfigures (a–c) indicate HHσ0 values, and the
vertical axes indicate HVσ0 values. The lightest/smallest closed blue circles (n = 48) in subfigure (a)
indicate the mean value among 25–30 pixels of an inundated paddy ROI (up to 20 days after sowing).
The second lightest/smallest dotted blue circles (n = 30) represent 21–40 days after sowing. The third
lightest/smallest closed blue circles (n = 40) represent 41–60 days after sowing. The darkest hatched
blue circles (n = 32) represent 61–100 days after sowing. The black open circles (n = 16) represent the
fallow period, just after plowing, or inundated fallow. The smallest red open triangles (n = 36) in the
subfigure (a) indicate the mean value among 25–30 pixels of a noninundated paddy ROI (0–20 days
after sowing). The second lightest/smallest dotted red triangles (n = 28) represent 21–40 days after
sowing; the third lightest/smallest closed red triangles (n = 26) represent 41–60 days after sowing;
the darkest hatched red triangles (n = 30) represent 61–100 days after sowing; and the open green
triangles (n = 27) represent dry soil and rice stubble during the fallow seasons. All values plotted in
subfigures (b,c) were collected from all pixels whose incidence angles ranged from 34.5 to 35.4 degrees.
The green dotted line, light-blue dotted line and pink broken line in subfigure (c) indicate threshold
A, threshold B, and threshold C, respectively. The equations for thresholds A–C are described in
Equations (12)–(14). The color bars of subfigures (b,c) indicate the pixel count density of each plot
(25 m spatial resolution).

The values of HHσ0 + HVσ0 collected from all PALSAR-2 scene rice-paddy pixels
(i.e., pixels detected as rice paddies by the mask computed by DSS (a sample of the masks is illustrated
in Appendix B, Figure A1)) were sorted into every local incidence angle. The frequency distribution of
the sorted values was fast Fourier transformed and then differentiated to compute the 2nd derivative
value (e.g., Figure 3c). Threshold A is the value of HHσ0 + HVσ0 located between 2 peaks (low HHσ0

+ HVσ0 values’ peak: inundated paddies; high HHσ0 + HVσ0 values’ peak: noninundated paddies) in
the histogram of the HHσ0 + HVσ0 value (e.g., the histogram of pixels with a local incidence angle
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of 35 degrees, see Figure 3b). The 2nd derivative value shows the highest peak, e.g., the histogram
of the 2nd derivative values with a local incidence angle of 35 degrees (see Figure 3c). The collected
threshold A in every local incidence angle is plotted as Figure 3a. Considering the local incidence
angle difference, threshold A was normalized via Equation (12) with the least squares method:

Threshold A (HHσ0 + HVσ0) = 243 × cosine(LIA)2 − 361 × cosine(LIA) + 77.7 (12)

where Threshold A (HHσ0 + HVσ0) is the threshold A of inundated/noninundated paddies and LIA is
the local incidence angle of each pixel of the PALSAR-2 data.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 27 
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Figure 3. Scatter plot of the threshold A values from ALOS-2/PALSAR-2-ScanSAR data (sum of the
backscattering coefficients of HH and HV microwave on a dB basis; hereafter, HHσ0 + HVσ0, n = 22)
(a), which is one of three thresholds (A–C) discriminating the inundated paddy soils and noninundated
paddy soils in the Mekong Delta, and a sample of the histograms of the HHσ0 + HVσ0 values of
pixels (b), and its second derivative values (c). Each threshold A value was obtained from every local
incidence angle from 26 to 49 degrees, except for 2 plots from the 37 and 42 incidence degrees, where the
thresholds were not clearly detected. The values illustrated in subfigures (b,c) were obtained based on
all the pixels with the 35 degree local incidence angle. The horizontal axis of subfigure (a) indicates the
cosine values of every local incidence angle. The horizontal axis of the subfigures (b,c) indicates the
values of HHσ0 + HVσ0.

The values of HHσ0 collected from all PALSAR-2 scene rice-paddy pixels, i.e., pixels detected
as rice paddies by the mask computed by DSS were sorted into every local incidence angle and
every HVσ0-value (a sample of the masks is illustrated in Appendix B, Figure A1). The frequency
distribution of the sorted values was fast Fourier transformed and then differentiated to compute the
2nd derivative value. The thresholds B and C are the values of HHσ0 located between two peaks
(low HHσ0 value peak: noninundated paddies; high HHσ0 value peak: inundated paddies) that
appeared in the histogram of the HHσ0 + HVσ0 value, where the 2nd derivative value shows the
highest peak. Considering the 2D plot distribution of HHσ0 + HVσ0 values on every local incidence
angle (e.g., Figure 3c), we built two thresholds of HHσ0 (i.e., thresholds B and C) with respect to
the values of HV σ0 and the local incidence angle values following Equations (13) and (14) with
the Hamiltonian–Monte Carlo method [34] implemented in RStan version 2.15.1 [35,36]. There were
9000 iterations, including 1000 warm-up periods, 10 thinnings, and four chains for both thresholds
(B and C calculations). The difference in the data sorting group by the local incidence angle was
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considered as the random effect (e.g., group 1 as the pixels with the local incidence angle from 24.5 to
25.4 and group 2 as the pixels with the local incidence angle from 25.5 to 26.4, Figure 4).

If HVσ0 > −31.5 dB
Threshold B (HHσ0) = 0.550× (HVσ0) + 12.9 × cosine(LIA) − 11.2

(13)

If HVσ0 ≤ −31.5 dB
Threshold C (HHσ0) = 1.036× (HVσ0)− 22.8× sine(LIA) + 27.4

(14)

where Threshold B, C (HHσ0) is threshold B, C of the inundated/noninundated paddies and LIA is the
local incidence angle of each pixel of the PALSAR-2 data.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 27 
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Figure 4. A sample of scatter plots of the threshold B values from ALOS-2/PALSAR-2-ScanSAR data
(backscattering coefficients of HH microwave on a dB basis) obtained from every local incidence angle
from 25 to 50 degrees (n = 26) whose pixel values of the HV microwave backscattering coefficient
(hereafter HVσ0) range from −24.5 to −25.4 (a). The relationship between the threshold B estimated by
the hierarchical Bayesian model and the observed threshold B collected at every incidence angle from
25 to 50 degrees and every HVσ0 value from −31 to −19 dB (n = 338 (26 × 13)) (b). A sample of scatter
plots of threshold C obtained from every local incidence angle from 25 to 50 degrees (n = 26) whose
pixel values of HVσ0 range from−34.5 to−35.4 (c). The relationship between the threshold C estimated
by the hierarchical Bayesian model and the observed threshold C collected at every incidence angle
from 25 to 50 degrees and every HVσ0 value from −36 to −32 dB (n = 130 (26 × 5)) (d). The horizontal
axis of the histogram of subfigures (a,c) indicates cosine/sine values of every local incidence angle.
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Using the SSD-derived rice paddy mask and thresholds A–C, the inundated/noninundated soils
were classified as shown in Figure 5. The number of pixels classified as inundated soil was calculated
as LSWC, and the LSWC maps (inundated soil pixel value = 1, noninundated soil pixel value = 0)
were prepared. The LSWC maps from different observation frames were resampled at a 250 m
resolution and coregistered. The validation of PALSAR-2-LSWC was conducted by a comparison with
preprocessed AMSR-2-NDFI and MODIS-NDVI, NDWI and LSVC. The ratio between the cumulative
ALOS-2/PALSAR-2 LSWC divided by the cumulative ALOS-2/PALSAR-2 observation times of all
105 scenes of PALSAR-2 ScanSAR data was mapped as a floodability map (Appendix C, Figure A2).Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 27 
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Figure 5. Algorithm of the inundated/noninundated classification.

3. Results

3.1. Hierarchical Bayesian Models of CH4 Emissions Based on Satellite-Sensed Phenology/Inundation Variables

The results of sampling with the Hamiltonian–Monte Carlo method to compute the parameters
for hierarchical Bayesian models were successfully converged (Equations (1), (5)–(7): cumulative
CH4 emissions (g C m−2 cropping−1, Table 1) and Equations (2)–(7): CH4 fluxes (mg C m−2 h−1,
Table 2)). The Bayesian model of the cumulative CH4 emissions in Equation (1), whose coefficients
were substituted with their own posterior distribution mean values as described in Table 1, showed a
positive linear relationship with the observed values (R2 = 0.61, n = 588, Figure 6a). Regarding the
daily flux, the Bayesian model of CH4 fluxes in Equations (2)–(4), whose coefficients were substituted
with their own posterior distribution mean values as described in Table 2, also showed a positive linear
relationship with the observed values (R2 = 0.34, n = 16,551, Figure 6b).



Remote Sens. 2018, 10, 1438 13 of 28

Table 1. Posterior distributions of parameters (α, β, γ, δ, ε, and ζ) in Equation (1) Ln(cum.Emi.) = α
+ β × inun.crop − γ×noninun.fallow − δ × inun.fallow + ε×straw − ζ × sulfate fitted by hierarchical
Bayesian analysis, where “cum.Emi.” is the cumulative methane emission (g C m−2 cropping−1),
“inun.crop” is the number of days of soil inundation (i.e., soil surface ≤ field-water level) during the
cropping period (from sowing date to the harvest), “noninun.fallow”/“inun.fallow” are the days of soil
noninundation/soil inundation during the fallow season just before the cropping period, “straw” is the
value 0 or 1 (0 if the straw is removed or burned as described previously [8–11] after the carbon-emitting
management is incorporated into the soil and 1 if all of the straw is directly incorporated into the
soil without the carbon-emitting management), and “sulfate” is 0 or 1 (0 if the flux data are collected
from alluvial soil and 1 if the flux data are collected from acid sulfate soils). All of the values are the
mean ± standard deviation or the median.

α β γ δ ε ζ

Mean ± Standard deviation 2.91 ± 0.83 0.027 ± 0.012 0.083 ± 0.043 0.012 ± 0.008 0.43 ± 0.16 1.50 ± 1.14
Median 2.93 0.027 0.076 0.011 0.43 1.31

Table 2. Posterior distributions of parameters (η, θ, ι, κ, λ, µ, ν, ξ, o, and π) in Equations (2)–(4) (Ln(flux)
= Ln(η) + Ln(exp(−1 × θ × DAS) − exp(−1 × (θ + ι) × DAS) + κ) − Ln(1 + exp(−1 × λ × (DAS
− µ×noninun.fallow))) + ν×inun.crop.10d + ξ × straw − o × sulfate − π × inun.fallow) fitted by the
hierarchical Bayesian analysis, where “flux” is the methane flux (mg C m−2 h−1), “DAS” is the number
of days after sowing, “noninun.fallow” is the number of days of soil noninundation during the fallow
season just before the cropping period, “inun.crop.10d” is the number of inundated days during the
10 days just before the target date (i.e., the sum of inundation days among x − 9 day, x − 8 day, . . . ,
x−1 day, x day; x as the target date), “straw” is 0 or 1 (0 if the straw is removed or burned, as described
in multiple past papers [8–11], after the carbon-emitting management is incorporated into the soil and
1 if all of the straw is directly incorporated into the soil without the carbon-emitting management),
and “sulfate” is 0 or 1 (0 if the flux data are collected from alluvial soil and 1 if the flux data are collected
from acid sulfate soils). All of the values represent the mean ± standard deviation or the median.

η Θ ι κ λ µ ν ξ o π

Mean ±
Standard
deviation

47.7 ±
36.0

0.099 ±
0.074

0.43 ±
0.26

0.019 ±
0.021

0.23 ±
0.22

1.03 ±
0.75

0.20 ±
0.10

0.28 ±
0.14

1.63 ±
1.57

0.00051 ±
0.00021

Median 42.0 0.073 0.45 0.011 0.16 0.88 0.188 0.27 1.39 0.00051
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Figure 6. Scatter plots of model-simulated cumulative CH4 emission values (g C m−2 cropping−1,
n = 558, Equation (1), whose parameters were substituted with their own posterior distribution mean
values described in Table 1) and field-observed cumulative CH4 emission values (a); model-simulated
methane (CH4) flux values (mg C m−2 h−1, n = 16,551, Equations (2)–(4), whose parameters were
substituted with their own posterior distribution median values described in Table 2) and field-observed
CH4 flux values (b). The horizontal axis shows the model-simulated values computed with a
hierarchical Bayesian analysis. The vertical axis shows the field-observed values. The blue closed circles
illustrate rice paddies in a short dry fallow period (<7 days/cropping, noninundated during the fallow
period), where rice straw is fully incorporated into the soil; the blue open circles illustrate rice paddies
in a short dry fallow period, where straw is burnt off or removed for rice-mushroom cultivation;
the green open square plots illustrate rice paddies in a long dry fallow period (≥7 days/cropping,
noninundated during the fallow period); and the orange triangular plots illustrate rice paddies in acid
sulfate soils in the subfigure (a).

3.2. Characteristics of PALSAR-2 Quadruple Microwave Scattering in Inundated/Noninundated Rice Paddies

Inundated paddies whose soil surface is covered by field water were classified as either
double-bounce dominant or volume-diffusion dominant groups (Figure 7). Single scattering and
double bounce became negligible in the inundated flat-paddy soil, i.e., rice paddies up to 20 days after
plowing or relatively small, inundated fallow paddies just after plowing. Even in the noninundated
paddies, double-bounce dominance among the three scattering components tended to become more
apparent in the days after sowing as the rice plant biomass increased. However, this trend was more
apparent in the inundated paddies than in the noninundated paddies (Figure 7). Inundated paddies
within 61–100 days after sowing showed a relatively wide distribution. On a dB basis, the inundated
and noninundated paddies were classified without error, irrespective of their rice growth stage or the
difference between their cropping and/or fallow seasons, by using the SVM-supervised classification
(SVM-hyperplane: 0.281 × single scattering (dB) + 0.205 × volume diffusion (dB) − 0.233 × double
bounce (dB) + 4.03, Figure 8).
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Figure 7. Ternary plot of the intensity of three components (single scattering, volume diffusion,
and double bounce) produced by the Freeman–Durden decomposition. The lightest/smallest closed
blue circles (n = 48) indicate the mean value among 25–30 pixels of an inundated paddy ROI (up to
20 days after sowing). The second lightest/smallest dotted blue circles (n = 30) represent 21–40 days
after sowing. The third lightest/smallest closed blue circles (n = 40) represent 41–60 days after sowing.
The darkest hatched blue circles (n = 32) represent 61–100 days after sowing. The black open circles
(n = 16) represent the fallow period just after plowing or an inundated fallow period. The smallest red
open triangles (n = 36) indicate the mean value among 25–30 pixels of a noninundated paddy ROI
(0–20 days after sowing). The second lightest/smallest dotted red triangles (n = 28) indicate 21–40 days
after sowing. The third lightest/smallest closed red triangles (n = 26) indicate 41–60 days after sowing.
The darkest hatched red triangles (n = 33) indicate 61–100 days after sowing. The open green triangles
(n = 27) indicate dry soil and rice stumps during the fallow seasons.

3.3. Inundation/Noninundation Classification with PALSAR-2-ScanSAR Data and Its Validation

The HHσ0 values of the rice paddies in the entire Mekong Delta tended to slightly increase
in the dry season (approximately January to June) over the values in the rainy/flooding seasons
(approximately July to December) (Figure 9). However, certain specific rice cropping paddies
(e.g., areas enclosed with yellow open boxes in Figure 9) showed significantly higher HHσ0 values
in the rainy/flooding season than in the dry season (Figure 10). Similar results were also obtained in
the high spatial resolution (6 m) quadruple PALSAR-2 data (e.g., inundated rice paddies within 61 to
105 days after sowing in Figure 2a).
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Figure 8. Backscattering coefficient (dB) of three components (single scattering, volume diffusion,
and double bounce) produced by the Freeman–Durden decomposition. Each dot indicates the mean
value among 25–30 pixels of an ROI. The blue dots (n = 150) indicate inundated paddies during
the rice cropping periods. The black dots (n = 16) indicate fallow paddies just after plowing or
inundated fallow periods. The red dots (n = 120) indicate noninundated paddies during rice cropping
periods. The green dots (n = 27) indicate dry soils during the fallow seasons. The yellow line indicates
the hyperplane of the support-vector machine between the inundated and noninundated paddies
(0.281 × single scattering (dB) + 0.205 × volume diffusion (dB) − 0.233 × double bounce (dB) + 4.03).
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Figure 9. Two samples of ALOS-2/PALSAR-2-ScanSAR data of the HH microwave backscattering
coefficient showing the Mekong Delta on 10 April 2015 (dry season) (a) and 23 October 2015
(flooding season) (b). One of the areas where the intense backscattering was detected during the
flooding season is enclosed with a yellow open box.
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Figure 10. Seasonal dynamics of ALOS-2/PALSAR-2-ScanSAR data’s HH microwave backscattering
coefficient ((a) 10 April, (b) 3 July, and (c) 23 October) showing an area of the Mekong Delta enclosed
with the yellow box shown in Figure 9. The data obtained on 23 October 2015 (c) are compared with
the spatially consistent data of LANDSAT-8 on 30 October 2015 (d).

The AMSR-2 pixels, where the NDFI values were relatively high, tended to show only relatively
high values of PALSAR-2 LSWC, and relatively low PALSAR-2 values became detectable as the
AMSR-2-NDFI values decreased (Figure 11a). Similarly, the MODIS pixels, where the NDWI value
is higher than 4%, tended to show low PALSAR-2-LSWC values less frequently as the NDWI value
increased (Figure 11b). However, the high PALSAR-2-LSWC values were relatively frequently detected,
and even the AMSR-2-NDFI values or MODIS-NDWI values were relatively low (Figure 11a,b). As the
MODIS-LSVC/NDVI values increased, the PALSAR-2-LSWC values tended to be distributed widely
(Figure 12c,d).
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Figure 11. The relationships between the AMSR-2 Normalized Difference Frequency Index
(NDFI), (a) calculated from 18.7 and 23.8 GHz vertically polarized microwaves (Equation (9)),
the MODIS-normalization water index (NDWI, Equation (10); (b) the MODIS Land surface
vegetation coverage (LSVC); (c) the MODIS normalization vegetation index (NDVI, (d)), and the
ALOS-2/PALSAR-2-LSWC). The MODIS-LSVC was compared with the ALOS-2/PALSAR-2 LSWC by
down-sampling them to the AMSR-2 pixel size (10 km). The color bars indicate the pixel counts of each
plot (collected at a 1 km spatial resolution).
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Figure 12. The relationship between the ALOS-2/PALSAR-2 floodability (ratio between cumulative
ALOS-2/PALSAR-2 LSWC divided by the cumulative ALOS-2/PALSAR-2 observation times) and the
ALOS-2/PALSAR-2-LSWC. The color bar indicates the pixel counts of each plot (collected at a 1 km
spatial resolution).
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The PALSAR-2 floodability values (Appendix C, Figure A2) of the pixels tended to show a
one-to-one relationship with the PALSAR-2-LSWC (Figure 12). However, certain pixels showed a
slightly greater LSWC than the floodability values. In contrast, the pixels whose LSWC value is
approximately 0 were densely detected in certain pixels, although the floodability values ranged from
0 to 60%.

4. Discussion

4.1. Hierarchical Bayesian Models of CH4 Emissions Based on Satellite-Sensed Phenology/Inundation Variables

The successful convergence of the model parameters (Tables 1 and 2) demonstrated the
advantages of satellite-based rice phenology and soil-inundation/noninundation data in reproducing
ground-observed CH4 flux/emission data to a certain degree while maintaining high transparency
of the entire methodology. Like the denitrification and decomposition (DNDC) biophysical process
model [12], our model was designed considering the major microbial processes controlling the emission,
i.e., Michaelis–Menten kinetics in which the CH4 production rate is not regulated by the concentration
when the fresh substrate concentration is high. However, the CH4 production rate starts to become
constrained by the remaining substrate days after sowing has passed and the amount of available
substrate remaining becomes limited. Our model also considered the soil oxidation capacity by the
electron acceptors. Then, the long-term and multipoint field observation data were parameterized with
the Hamiltonian–Monte Carlo method. All of our model’s explanatory parameters were remote-sensed
by satellites, the nonremote sensible parameters were omitted, e.g., fertilization rate/species/timing,
statistical data, soil bio-physicochemical parameters, and rice physiological parameters, and the
multipoint ground observation flux data were reproduced; therefore, the representative values of CH4

fluxes/emissions could be computed with only the transparent satellite data, despite the high spatial
heterogeneity of the fluxes and environmental factors, e.g., electron accepters and organic matter in the
soil at the field-plot scale [17,18,50,51]. Furthermore, since our model requires only satellite data and
soil GIS maps as the data input, a high spatial resolution map is applicable by inputting high spatial
resolution satellite data. In addition, the emission status could be estimated in any target year if the
satellite data are available. However, the parameters ζ and o that were coefficients for the acid sulfate
soil type had a large uncertainty and tended to underestimate the cumulative CH4 emission from acid
sulfate soil areas (Figure 6). The reason for this underestimation may have been the lack of observation
site data to illustrate the variation in the spatial sulfate distribution, which inhibits methane production
in soils by causing acetic acid and hydrogen to compete between methane formation and sulfate
reduction [52,53]. Further observation of CH4 emissions from more sites with different sulfate acidities
is required to improve the parameters ζ and o for a more accurate CH4 emission from acid sulfate soil
areas. Regarding the scalability of this methodology in another region, the indigenous CH4 observation
data should be used to reparameterize our model to confirm the reliability of the coefficient and to
modify it for the target region.

Since unnecessarily increasing the number of parameters and explanatory variables risks altering
the local optimization of each parameter, thus sacrificing their predictability and making it difficult
to converge in statistical models, the models proposed in this study substituted certain scaling
factors in the Tier1 IPCC guideline methodology [13] with only the transparent satellite-observable
explanatory variables. To improve the accuracy of the models/methodology (i.e., higher determination
coefficients, lower standard deviation of each parameter) while maintaining as much as possible the
transparency of the entire methodology and its spatial resolution, the treatment of these heterogeneous
and nonremote-sensed factors to reproduce the field observation data must be researched for the
precise implementation of biophysical process models (e.g., the DNDC model [12]).
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4.2. Characteristics of PALSAR-2 Quadruple Microwave Scattering in Inundated/Noninundated Rice Paddies

As described above, the satellite-based rice phenology and soil-inundation/noninundation data
have the potential to reproduce the representative CH4 flux/emission on a pixel basis with a high
spatiotemporal resolution. However, few studies have addressed the inundation/noninundation
classification of soils covered by vegetation without sacrificing the spatial resolution, unlike the
satellite-based rice phenology study [19–24]. Although [54] reported lower C-band SAR
(Environmental Satellite (ENVISAT)/Advanced SAR (ASAR), 5.6 cm wavelength) HH σ0 values
in inundated paddies than those in noninundated paddies during the young stage (0–20 days after
sowing), no such difference was detected during the later growing stages due to the saturation of the
backscattering intensity in the rice plant canopy, which does not allow the microwave to penetrate
the canopy and reach the soil surface. However, the present study demonstrated the ability to
distinguish the inundated/noninundated paddy soils even when they were covered by large rice
plants by employing the PALSAR-2 data. The results of the 6 m resolution quadruple data indicate
that the intense double bounce occurs in inundated paddy soils that have a relatively large rice plant
biomass, and the dominance of the double bounce tended to become greater with the number of
days after sowing (Figure 7). The microwaves that bounced off the flat surface of the paddy water
from the specular reflection would have also bounced off the rice plants’ biomass, which is called the
“water–rice canopy interaction” [55], and similar results have been widely reported from SAR-based
rice paddy monitoring studies (e.g., [12,23,24]). The reason inundated paddies within 61 to 100 days
after sowing showed relatively wide distribution in Figure 7 may have been the difference in the
rice lodging intensity. In contrast, the double bounce was relatively weak, with single scattering and
volume diffusion becoming dominant in noninundated soils, particularly drained paddy soils in fallow
seasons. These results indicate that rough soil surfaces cause dominant single-scattering characteristics
in noninundated paddies. The apparent dominance of volume diffusion in the dry soil of the drained
paddies during fallow seasons indicates that the microwaves penetrated soil or rice-stubble vegetation
to cause a volume-diffusion-dominant backscatter (Figure 7).

4.3. Inundation/Noninundation Classification with PALSAR-2-ScanSAR Data

Referring to the characteristics of the 6-m-resolution PALSAR-2-HH&HV σ0 values, whose pixels
had been classified as inundation/noninundation based on the 3-components’ decomposition
results, we developed the inundation/noninundation rice paddy classification method (Figure 2).
This method considers the bias derived from the difference in local incidence angles on the threshold
(Figures 3 and 4). To distinguish the inundated/noninundated areas, pixels with relatively low σ0

values are simply considered as inundated areas, while pixels with relatively high σ0 values are
treated as noninundated areas regarding the specular reflection in inundated areas in related SAR
studies [22,56]. The majority of the rice paddies monitored in this study also showed a similar tendency
(i.e., slightly higher values of HH σ0 in the dry season than in the rainy/flooding seasons, Figure 9).
However, significantly high HH σ0 values were detected in certain rice paddies, especially in the
rainy/flooding seasons, in this study from ScanSAR data (Figures 9 and 10). This result is consistent
with the results of the 6-m-resolution data (i.e., the pixels of inundated rice paddies within 61 to
100 days after sowing with the high contribution double bounce (Figures 2 and 7). These results
indicated the need to treat the pixels with the HH σ0 values in a certain level as inundated rice
paddies. As a similar scheme to our threshold calculation methodology, a past paper [57] also treated
the pixels with HH σ0 values as “forest always flooded” to differentiate them from the pixels with
lower HH σ0 values or “forest never flooded”. In this study, we also considered the difference of the
local incidence angles of pixels in the threshold calculations. In most SAR studies, the backscattering
coefficients of each microwaves (such as HH σ0) are normalized to correct the bias derived from local
incidence angles with various methods (e.g., cosine correction methods [58,59] and semi-empirical
correction methods [60,61]), and then thresholds are calculated based on the normalized backscattering
coefficients. However, the values of HH σ0 consist of both single-scattering and double-bounce
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components, and each of the scattering components require a different normalization method or
equation with different correction coefficients. Since the scattering components of the rice paddies
widely varied, as illustrated in Figure 7, the intensity of the bias derived from the local incidence
angle difference in the HH&HV σ0 values might also be different due to the difference in scattering
components. Particularly for L-band SAR observation studies targeting the characterization of rice
paddies, Bragg scattering-derived noise that occurred at specific local incidence angles needs to be
considered [23,62,63]. Therefore, in this study, we normalized the threshold directly instead of the
HH&HV σ0 values. To obtain representative thresholds that do not depend on the specificity of the
image or observation frames, we employed 105 scenes of PALSAR-2 ScanSAR data with five different
observation frames. Although clear linear relationships between threshold values and local incidence
angles were observed for thresholds B and C (single scattering vs. double bounce), a nonlinear
relationship was observed for threshold A (specular reflection vs. single scattering). As a result,
the threshold A value reached its minimum at a local incidence angle of approximately 42 degrees.
Consistent with this result, from their theoretical characterization results of Airborne SAR (Pi-SAR-L2)
observations, the authors of a past paper [63] reported that backscattering reached a local minimum
when the incidence angle was approximately 40 degrees in Japanese rice paddies due to Bragg
scattering. Hence, our result might have appropriately classified inundated paddies and noninundated
paddies by considering local incidence angle differences. Since the values of thresholds B and C clearly
showed a linear relationship with the local incidence angles, in contrast to threshold A, the Bragg
scattering might not have a significant effect on the difference between single scattering and double
bounce compared with the difference between specular reflection and single scattering. Regarding
the rice plant’s allocation in our targeted rice paddies, the rice plant density is significantly dense and
heterogeneous due to the broadcasting direct sowing conventionally practiced in the area with a large
sowing rate (196–223 kg ha−1 [8,11]). To implement this methodology in the rice paddies of other
countries, the model parameter may have to be recomputed empirically to consider the differences in
the conventional rice planting practices (e.g., transplanting vs. direct sowing).

4.4. Comparison of PALSAR-2-ScanSAR LSWC with the Other Satellite Sensors

The validation results of AMSR-2-NDFI on PALSAR-2 LSWC showed a consistent inundation
detection (i.e., few pixels with relatively low PALSAR-2-LSWC when the AMSR-2-NDFI or
MODIS-NDWI values were relatively high). These results indicated the advantage of the
PALSAR-2-LSWC that detects inundated pixels consistently with AMSR-2-NDFI and MODIS-NDWI if
the inundated soil is not covered by rice plants. However, an inconsistency was also found, in which
pixels with relatively high PALSAR-2-LSWC were frequently detected even when the values of
AMSR-2-NDFI or MODIS-NDWI were low. These results indicated that the PALSAR-2-LSWC may be
able to detect inundated soils covered by rice plants, although the AMSR-2-NDFI of MODIS-NDWI
could not detect them due to the rice plant canopy disturbance. Notably, as the MODIS-NDVI/LSVC
values increased, the PALSAR-2-LSWC values tended toward a wide distribution, and a dense pixel
distribution was allocated where the MODIS-LSVC was approximately 100% or the NDVI values
were approximately 6–9%. These results indicated that a large part of the inundated soil is covered
by rice plants and that a method to classify inundated soils and noninundated soils that cannot be
classified by AMSR-2 or MODIS is essential for the regional CH4 emissions. As further validation,
the employment of the GNSS-R technique [28] or the other new L-Band SARs (e.g., ALOS-4 and
NASA-ISRO-SAR) is desirable for improving the methodology with a higher spatiotemporal resolution.
Although the one-to-one relationship between the PALSAR-2-LSWC and the floodability indicated
a consistent water body (e.g., Mekong River, subcanals, and ponds), inconsistencies between the
PALSAR-2-LSWC and floodability were also found, particularly in pixels with approximately 0–50%
floodability. Higher values of the LSWC than the floodability indicate inundation due to rainfall or
irrigation in rice paddies, and lower values may indicate the drainage of rice paddies or drought.
Since the pixels with approximately 0% PALSAR-2-LSWC were frequently found irrespective of
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floodability, it was considered that the drainage practice or drought may control the LSWC more rapidly
than irrigation or rainfall. Regarding the floodability map (Appendix C, Figure A2), relatively high
floodability values were detected in acid sulfate soil regions [64] of the Mekong Delta located in the
northeast region (Dong Thap Province and Long An Province), the western-middle region (border
between southeastern Kieng Giang Province and Western Can Tho City), and the south-middle
region (northern area of Bac Rieu Province and the south area of Hau Giang Province) but not the
western-north region of the delta (northern area of the Kieng Giang Province and western area of the
An Giang Province). Notably, alluvial soil regions located in An Giang and Can Tho City, where a study
of the water-saving intermittent irrigation practice called alternate wetting and drying (AWD) has been
underway [8,9,24,30,31], tended to show relatively low values of floodability, even though triple rice
cropping is widely practiced in the area. Although further validation is required, it appears that the
spatial distribution of floodability can indicate the differences in the regional AWD dissemination status
over recent years, the infrastructure of the irrigation or dyke system, and the regional CH4 emission
intensities. A similar study on AWD dissemination [65] assessed the suitability of the AWD based on
satellite climate data and field data of the water percolation rate. Although this type of index, such as
the Keeth–Byram Drought Index (KBDI), which is used for groundwater estimation in tropical peatland
and soil organic matter decomposition (i.e., CO2 emissions from soil) [66], can also be considered as
another validation tool in this study, the water level in the subcanals diurnally fluctuates drastically
and is regionally different due to the tidal movement in the whole delta, which would intensely
affect the field/groundwater levels [8–11]. In addition, artificial impacts, such as the application of
pumping irrigation in each rice paddy, and drainage or irrigation gate operation on each dyke system,
would also lead to heterogeneous inundation. Considering these factors affecting the heterogeneity
of the field inundation status, our methodology, with a high spatial resolution, has the advantage of
precisely monitoring a heterogeneous field inundation status.

5. Conclusions

This study demonstrated the potential for a satellite data-based transparent methodology to
reproduce field-observed CH4 emissions by substituting certain major scaling factors of the IPCC-Tier
1 methodology and the potential for PALSAR-2 data to be used to monitor the field inundation status
with a high spatial resolution, even when the paddy fields are covered by clouds or rice plants. We also
proposed an inundated/noninundated paddy classification methodology considering the intense
double bounce that occurs in inundated paddies with a high rice plant biomass, which considers the
effects of bias derived from local differences in incidence angle on the backscattering coefficients due
to the differences in scattering components.
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Appendix A

Table A1. Flux observation frequency, number of observation plots and observation period at each flux
observation site.

Site Name Flux Observation
Frequency Number of Observation Plots Observation Period

Thot Not once per 1–7 days 18 plots/cropping 2012–2017 (16 cropping)

Chau Thanh once per 1 week 27 plots/cropping (2013–2014)
6 plots/cropping (2015–2016)

2013–2014 (6 cropping)
2015–2016 (6 cropping)

Cho Moi once per 1 week 6 plots/cropping (2015–2016) 2015–2016 (6 cropping)
Thoai Son once per 1 week 6 plots/cropping 2015–2016 (6 cropping)

Tri Ton once per 1 week 6 plots/cropping 2015–2016 (5 cropping)

Table A2. Number of regions of interests (i.e., farmers’ rice paddies with training data).

0–20 Days after
Sowing

21–40 Daysafter
Sowing

41–60 Daysafter
Sowing

61–105 Daysafter
Sowing FallowPaddies Total

Inundated
Paddies 48 30 40 32 16 166

Noninundated
Paddies 36 28 26 30 27 147
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