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Abstract: High resolution (HR) hyperspectral (HS) images have found widespread applications in
terrestrial remote sensing applications, including vegetation monitoring, military surveillance and
reconnaissance, fire damage assessment, and many others. They also find applications in planetary
missions such as Mars surface characterization. However, resolutions of most HS imagers are limited
to tens of meters. Existing resolution enhancement techniques either require additional multispectral
(MS) band images or use a panchromatic (pan) band image. The former poses hardware challenges,
whereas the latter may have limited performance. In this paper, we present a new resolution
enhancement algorithm for HS images that only requires an HR color image and a low resolution
(LR) HS image cube. Our approach integrates two newly developed techniques: (1) A hybrid color
mapping (HCM) algorithm, and (2) A Plug-and-Play algorithm for single image super-resolution.
Comprehensive experiments (objective (five performance metrics), subjective (synthesized fused
images in multiple spectral ranges), and pixel clustering) using real HS images and comparative
studies with 20 representative algorithms in the literature were conducted to validate and evaluate
the proposed method. Results demonstrated that the new algorithm is very promising.

Keywords: hybrid color mapping; Hyperspectral Imaging; Plug-and-Play Alternating Direction
Method of Multipliers (PAP-ADMM); remote sensing; super-resolution

1. Introduction

The Hyperspectral Infrared Imager (HyspIRI) [1–3] is a future NASA mission to provide global
coverage with potential applications in detecting changes, mapping vegetation, identifying anomalies,
and assessing damages due to flooding, hurricanes, and earthquakes. The HyspIRI imager offers a
60-m resolution, which is typically enough for these applications. However, for particular applications
such as crop monitoring or mineral mapping, the 60-m resolution remains too coarse.

In a recent paper [4], the authors made a comprehensive comparison between more than 10 fusion
methods for hyperspectral images. We observed that some methods that incorporate the point spread
function (PSF), which is a system response of an imager that blurs the image contents, generally gave a
slightly better performance than those without using PSF. Details about PSF and its effect on image
quality can be found in the literature [5,6]. It will be a good contribution to the research community if
one can investigate on how to incorporate PSF into those fusion methods that have not yet incorporated
PSF and see the impact of those changes on those methods.

This paper presents a new resolution enhancement method for hyperspectral images that improve
the resolution by injecting information from HR color images acquired by other types of imagers,
such as satellite or airborne image sensors, to the LR HS image. High resolution color images are
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becoming less difficult to obtain nowadays, e.g., Google Map’s color images can achieve a 0.5-m
resolution. However, as we will discuss in the paper, existing fusion techniques are inadequate in
producing good quality images because the HS images suffer from serious blurs. To overcome this
challenge, we integrate an image deblurring/super-resolution algorithm known as PAP-ADMM [7]
with a fusion algorithm known as HCM [8]. HCM has been proven to perform well when the
HR bands have more correlation with the LR HS bands [8] whereas the PAP-ADMM has good
performance in enhancing the higher number bands in the LR HS image cube. The new approach in
this paper combines the merits of the above two algorithms and demonstrates superior performance
when compared to existing methods. We would like to emphasize that although the framework is a
combination of two existing techniques, the combined algorithm is easy to understand and actually
yields consistently high performance as compared to others. For instance, if one looks at results in
Section 3.7, one can notice that some methods have large performance fluctuations for different images
whereas our algorithm has consistently good performance.

In a past paper [4], the fusion methods for enhancing hyperspectral images are grouped into
component substitution, multiresolution, and Bayesian approaches. We took a different point of view
and grouped the methods based on whether they use PSF or not. The grouping is as follows:

• Group 1 [9–11]: Group 1 methods require knowledge about PSF that causes the blur in the LR HS
images. Some representative Group 1 methods include coupled non-negative matrix factorization
(CNMF) [9], Bayesian naïve (BN) [10], and Bayesian sparse (BS) [11]. Due to the incorporation of
PSF, they produce good results in some images.

• Group 2 [12–20]: Unlike Group 1 methods, which require knowledge about the PSF, Group 2
methods only require an HR pan band. As a result, Group 2 performs slightly worse than Group
1 in some cases. This group contains Principal Component Analysis (PCA) [12], Guided Filter
PCA (GFPCA) [13], Gram Schmidt (GS) [14], GS Adaptive (GSA) [15], Modulation Transfer
Function Generalized Laplacian Pyramid (MTF-GLP) [16], MTF-GLP with High Pass Modulation
(MTF-GLP-HPM) [17], Hysure [18,19], and Smoothing Filter-based Intensity Modulation
(SFIM) [20]. As can be seen in Section 3, some methods in this group have excellent performance
even without incorporating PSF.

• Group 3 [7,21–23]: This group contains single image super-resolution methods. That is, no pan
band or other HR bands are needed. The simplest method is the bicubic algorithm [22]. The key
difference between the methods in [21,22] and the Plug-and-Play Alternating Direction Method
of Multipliers (PAP-ADMM) algorithm in a past paper [7] is that it [7] uses a PSF to improve the
enhancement performance.

• Group 4 [24–28]: Similar to Group 3, this group uses single image super-resolution methods.
One key difference between methods here and those in Group 3 is that some training images and
steps are needed. For example, some dictionaries [24,25,28] and deep learning [26,27] are used to
perform the enhancement process. Moreover, no PSF is required.

It should be noted that our proposed algorithm can be considered as one of the Group 1 methods,
as we require PSF to be available.

Besides presenting our proposed algorithm, we are also interested in addressing the following
three questions:

Q1. Due to recent advances in single image super-resolution methods, will a single-image
super-resolution alone be sufficient to produce a good HR image? If so, then there is no need
for other fusion algorithms. In Sections 3.2, 3.4 and 3.5, we provide a negative answer to this
question and show that a single-image super-resolution alone is insufficient.

Q2. How much will the single-image super-resolution improve the HCM algorithm? As reported
previously in [8], the HCM algorithm already has a comparable performance to Group 1 methods
and it does not require a PSF. Thus, if the PSF is included, we might be able to obtain even better
results. In Sections 3.3 and 3.7, we will provide evidence to support this claim.
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Q3. Will a single-image super-resolution algorithm help improve Group 2’s performance? In Section 3.3,
we will demonstrate that Group 2’s performance cannot be improved with this approach.

A preliminary version of this paper was presented in 2017 ICASSP [29]. We would like to
emphasize that we have significantly expanded our earlier paper. First, five methods in Group 4 are
included in our comparative studies. Second, a new remark (Remark 3) has been added to highlight
two variants of the HCM algorithm. A detailed block diagram is included in Section 3 to elaborate the
signal flow of our proposed method. Two pictures showing the context of the two hyperspectral images
are also included. Third, four plots of objective metrics for comparison with Group 2 algorithms are
added to illustrate the performance of our proposed approach as compared to other Group 2 methods.
Another four plots of performance metrics for comparison with Group 4 are also added. Fourth, in the
subjective comparison section (Section 3.6), we include multiple synthesized color images in different
spectral ranges. The purpose is to demonstrate that the proposed algorithm can better preserve both
the spectral and spatial fidelity of the hyperspectral images than existing algorithms. Fifth, we also
include a comparative study of pixel clustering (Section 3.7) using fused images. This part was not
done in many super-resolution papers in the literature and we believe this part is important in further
demonstrating the performance of our proposed approach.

The rest of the paper is organized as follows. We present the proposed algorithm in Section 2.
The experimental results are detailed in Section 3 in which we first focus on objective evaluations
using five performance metrics. Moreover, Section 3 includes subjective evaluations of various
algorithms. The hyperspectral images are displayed in different spectral ranges. Section 3 also includes
a comparative study of pixel clustering using fused images. A short discussion section is included in
Section 4. Finally, conclusions and future directions are given in Section 5.

2. Proposed New Algorithm

Our proposed algorithm consists of two components as shown in Figure 1. The first component
is the incorporation of a single image super-resolution algorithm to enhance the LR HS image cube.
Single image super-resolution is a well-studied method in the image processing literature [7,21].
The idea is to up-sample an LR image by using internal image statistics. We chose the PAP-ADMM
method [7], which explicitly incorporates PSF into the deblurring and has better performance than other
single image super-resolution methods [7]. Our proposed method super-resolves the LR HS images and
then fuses the result using the HCM algorithm. The second component utilizes the HCM algorithm [8]
that fuses an HR color image with an enhanced HS image coming out of the first component. It should
be noted that, since the proposed method is modular in nature, other methods can be used in both
steps of the process. For example, we have used other Group 2 methods in Step 2 and found that
the results are worse than that of using HCM; reasons can be found in Section 3. Recently, HCM has
been applied to several applications, including enhancing Worldview-3 images [30], fusion of Landsat
and MODIS images [31], fusion of Worldview and Planet images [32], pansharpening of Mastcam
images in the Mars rover Curiosity [33,34], fusing of THEMIS and TES for Mars exploration [35,36],
and debayering [37].

Throughout this paper, we use C ∈ RN×3 to denote a color image of N pixels, and S ∈ RN×P to
denote a HS image of N pixels and P bands. The i-th row of C (and S) is the i-th pixel of the color (and
HS) image, and is denoted by ci ∈ R3×1 (and si ∈ RP×1). The j-th column of C (and S) is the j-th band
of the color (and HS) image, and is denoted by cj ∈ RN×1 (and sj ∈ RN×1). To differentiate the HR
and LR images, we put subscripts H and L to write CH and CL for color images, and SH and SL for HS
images. The number of pixels in an LR image is N and that of an HR image is M. The zoom factor is
defined as K = N/M.

We assume that all images have been registered/aligned. Readers interested in image registration
can refer to the literature [38,39].
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Figure 1. Outline of the proposed method. We use hybrid color mapping (HCM) to fuse low-resolution
(LR) and high-resolution (HR) images. For LR images, we use a single-image super-resolution algorithm
where PSF is incorporated to first enhance the resolution before feeding to the HCM.

2.1. Hybrid Color Mapping

Consider an LR color pixel ci ∈ R3×1 and an LR HS pixel si ∈ RP×1, we define the color mapping
as a process to determine a linear transformation T ∈ RP×3 such that

T = argmin
T

N

∑
i=1
‖si − Tci‖2

2 (1)

of which the solution is given by

T = SLCT
L

(
CLCT

L

)−1
, (2)

where CL =
[

c1, . . . , cN
]

and SL =
[

s1, . . . , sN
]
.

The minimization in (1) is generally well-posed because N >> P. In practice, the LR color image
CL can be downsampled from CH which is assumed to be given.

Equation (2) can be easily derived as follows. The two variables CL and SL are related by

SL = TCL (3)

Multiplying CT
L on both sides yields,

SLCT
L = TCLCT

L (4)

Since CL is of full-rank, CLCT
L is invertible. Multiplying

(
CLCT

L
)−1 on both sides of the above

equation yields

T = SLCT
L

(
CLCT

L

)−1
(5)

which is the least square solution shown in Equation (2).
A limitation of the color mapping in (1) is that the wavelengths of the color bands only overlap

partially with the hyperspectral bands. For example, color bands in the AVIRIS dataset cover 0.475 µm,
0.51 µm, and 0.65 µm, whereas HS bands cover 0.4–2.5 µm. The long wavelengths in the HS bands are
not covered by the color bands.

The hybrid color mapping mitigates the problem by preserving a subset of the higher bands
in the HS image. Specifically, we select a subset of HS bands

{
j1, . . . , jk

}
⊆
{

1, . . . , P
}

and define
xi =

[
ci

1, ci
2, ci

3, si
j1

, . . . , si
jk

, 1
]T

(6)

where si
jk

is the i-th pixel of the jk-th band of the HS image. Note that we also include the white pixel
with a value of 1 to adjust for the bias due to the atmospheric effects. Details for the rationale of adding
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a subset of the HS bands and white pixels can be found in a previous paper [8]. The hybrid linear
transformation T̃ ∈ RP×(4+k) is therefore

T̃ = argmin
T

N

∑
i=1
‖si − T̃xi‖2

2 (7)

whose solution has the same form as (5). We deliberately use a different notation T̃ because T̃ ∈ RP×(4+k)

and T ∈ RP×3 have different dimensions.

Remark 1. To avoid numerical instability in some situations, (1) can be formulated with a regularization of
weights. That is, we can formulate the optimization in the form

T = argmin
T

(
N

∑
i=1
‖si − Tci‖2

2 + λ‖T‖2
2

)
(8)

The solution for the above equation can be easily shown to be of the form

T = SLCT
L

(
CLCT

L + λI
)−1

(9)

where I is an identity matrix with the same dimensions as that of CLCT
L .

Remark 2. For further improvement of the hybrid color mapping, we can divide the image into overlapping
patches where each patch has its own T. This tends to improve the performance of the algorithm significantly.
Once the transformation T is obtained, the HR HS image SH can be reconstructed by

SH = TCH , (10)

where CH is the given HR color image. The reconstruction of SH using T̃ is more challenging because we need
the bands si

j1, . . . , si
jk from the HR image, which is not yet available. This leads to our next component of using

single-image super-resolution to generate those bands.

Remark 3. Other formulations of the minimization problem shown in (5) have been investigated. For example,
instead of using the L2-norm in the regularization term, we have investigated the use of L1-norm and L0-norm.
These results have been summarized and published in another paper [40].

2.2. Plug-and-Play ADMM

Plug-and-Play Alternating Direction Method of Multipliers (PAP-ADMM) is a generic
optimization algorithm for image restoration problems [7,41]. For the purpose of this paper, we describe
PAP-ADMM for recovering HR images from the LR observations. It is emphasized that the PSF is
explicitly used in PAP-ADMM to enhance the super-resolution performance.

Consider the j-th band of the hyperspectral image sj. We denote sH
j ∈ RM×1 the HR version of sj

and sL
j ∈ RN×1 the LR version of sj. These two resolutions are related by

sL
j = DAsH

j + η, (11)

where A ∈ RM×M is a convolution matrix representing the blur (i.e., the point spread function (PSF)),
D ∈ RN×M is a down-sampling matrix, and η ∼ N(0, σ2) is an independent and identically distributed
(i.i.d.) Gaussian noise vector. The problem of image super-resolution is to solve an optimization

(
sH

1 , . . . , sH
P

)
= argmin

sH
1 , . . . , sH

P

P

∑
j=1

(
‖sL

j −DAsH
j ‖

2
+ λg(sH

j )
)

(12)
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for some regularization function g(·) and parameter λ, which trades off between the error term and
the regularization function in (12).

The PAP-ADMM algorithm is a variant of the classical ADMM algorithm [42] which replaces the
regularization function g(·) by an implicit regularization function in terms of an image denoiser F.
Without going into the details of the PAP-ADMM algorithm (which can be found in a previous study),
we summarize the steps involved as follows.

First, we note that (12) is separable and so we can solve each sH
j individually. For the j-th band,

the algorithm updates iteratively the following quantities.

sH
j = argmin

sH
j

(
‖DAsH

j − sL
j ‖

2
+ ρ

2‖sH
j − (vj − uj)‖

2
)

vj = F
(

sH
j + vj,

√
λ/ρ

)
uj = uj + (sH

j − vj)

(13)

where vj and uj are intermediate variables defined by the PAPADMM algorithm, and F(·, σ) is an
image denoiser which denoises the input argument with a noise level σ. In this paper, the image
denoiser we use is the Block-Matching and 3D (BM3D) filtering [43], although other denoisers can also
be used. The internal parameter ρ is a design parameter and chosen to be 1 based on simulation results.

2.3. Performance Metrics

We evaluate the performance of image reconstruction algorithms using the following objective
metrics. Moreover, computational times in seconds are also used in our comparative studies.

• RMSE (Root Mean Squared Error). The RMSE of two HR HS images S ∈ RM×P and Ŝ ∈ RM×P is
defined as

RMSE(S, Ŝ) =

√√√√ 1
P

P

∑
j=1

(
1
M
‖sj − ŝj‖2

2

)
. (14)

The ideal value of RMSE is 0 if the image reconstruction is perfect. Since RMSE is a scalar, it does
not reveal the RMSE values at different bands. Therefore, we also used RMSE(λ), which is the RMSE
value between SH and ŜH for each band λ, to evaluate the performance of different algorithms across
individual bands.

• CC (Cross-Correlation). The cross-correlation between S and Ŝ is defined as

CC(S, Ŝ) =
1
P

P

∑
j=1

 ∑M
i=1

(
si

j − µj

)(
ŝi

j − µ̂j

)
√

∑M
i=1

(
si

j − µj

)2
∑M

i=1

(
ŝi

j − µ̂j

)2

 (15)

with µj and µ̂j being the mean of the vector sj and ŝj. The ideal value of CC is 1 if perfect
reconstruction is accomplished. We also used CCλ, which is the CC value between SH and ŜH for
each band, to evaluate the performance of different algorithms across individual bands.

• SAM (Spectral Angle Mapper). The spectral angle mapper is

SAM(S, Ŝ) =
1
M

M

∑
i=1

(
cos−1

{ 〈
si, ŝi〉

‖si‖2‖ŝi‖2

})
. (16)

The ideal value of SAM is 0 for perfect reconstruction. Note that M is the total number of pixels in
the image.
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• ERGAS (Erreur Relative Globale Adimensionnelle de Synthese). The ERGAS is defined as

ERGAS(S, Ŝ) = 100d

√√√√ 1
P

P

∑
j=1

(
RMSEj

µj

)2

(17)

for a constant d, which is the ratio of the HR to LR spatial resolutions. The ideal value of ERGAS
is 0 if a pansharpening algorithm flawlessly reconstructs the hyperspectral bands.

3. Results

3.1. Data

In this section, we present experimental results along with the conclusions for questions Q1–Q3.
We use two hyperspectral image datasets: (1) AF data from the Air Force [44] and (2) AVIRIS data from
NASA [45]. The AF image has a size of 267 × 342 × 124, ranging from 0.461 µm to 0.901 µm, meaning
that the AF images cover up to the visible and near infrared ranges. The AVIRIS image has a size of
300 × 300 × 213, ranging from 0.38 µm to 2.5 µm. The AVIRIS images cover up to the short-wave
infrared (SWIR) range.

To simulate the low-resolution hyperspectral images, we follow the method of a previous paper [4]
by downsampling the images spatially with a factor of K = 9 (3 × 3) using a 5 × 5 Gaussian point
spread function. The color image RGB channels are taken from the appropriate bands of the HR
HS images.

Figure 2 shows a sample band of both datasets.
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Figure 2. (a) is a sample band from AF data and (b) is a sample band from AVIRIS data.

3.2. Comparison between HCM and PAP-ADMM

Figure 3 illustrates the detailed signal flow of our method. First, given an LR HS image cube,
we use PAP-ADMM to generate super-resolution (SR) HS images. Although other single image
super-resolution could be used here, we chose PAP-ADMM because it explicitly incorporates PSF
and has better performance [7] than other state-of-the-art single resolution methods in the literature.
Detailed studies can be found in a previous paper [7]. Second, a subsampling of the SR image and
the HR color image is performed. The subsampling is needed in order to allow the compatibility of
dimensions between the LR HS image and the LR color image. Third, a mapping T is learned by
using the LR color image and the improved LR HS image. This mapping is obtained by minimizing
mean square error and an analytical solution can be found. Fourth, an HR hyperspectral image
is obtained by multiplying the T matrix with an HR color image. The mapping is done pixel by
pixel. Finally, lower bands from the HR hyperspectral image are merged with higher bands in the SR
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hyperspectral generated by the PAP-ADMM. The reason for this fusion is based on our observation
that the higher bands (>0.73 µm for the AF data and >1.88 µm for the AVIRIS data) in the SR image
generated by PAP-ADMM have slightly better performance than that of the HCM and the lower bands
from HCM that have better performance than those corresponding bands generated by PAP-ADMM.
As a result of the fusion, all the bands in the final fused HR HS image are of high quality. For ease of
understanding, we also include Algorithm 1 below:

Algorithm 1

Input: LR HS data, PSF for the hyperspectral imager, and HR color image
Output: HR HS data cube
Procedures:

1. Apply PAP-ADMM to deblur the LR HS data using the available PSF
2. Downsample HR color image that is also the deblurred HS image from Step 1
3. Compute the transformation matrix T
4. Generate HR HS image using HCM
5. Fuse higher band images from Step 1 and lower bands from Step 4 to generate the HR HS data cube.
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We include an experiment aiming to address the question of why we need both HCM and
Plug-and-Play ADMM. The result is shown in Table 1 and Figure 4, where we observe that the
integrated approach “PAP-ADMM + HCM” achieves the best performance overall. More results
can be found in Table 2 and Figures 5 and 6. The fused approach yielded better values in RMSE,
CC, and ERGAS. In terms of subjective performance, one can see from Figure 4 that the fused
algorithm achieved high spectral (almost no color distortion) and spatial performance. Such a result
is not surprising because PAP-ADMM alone does not utilize the rich information in the color band,
whereas the HCM method without an appropriate HR input does not generate a good transformation
T. This answers Q1 and Q2.

We should also point out an interesting observation if we look at the RMSE of individual bands.
As shown in the plots of Figure 5, the proposed algorithm actually performs well for lower bands
(the visible and the near infrared bands). However, for higher bands such as the short wave infrared,
PAP-ADMM alone produces the best result (Figure 5). A reason for this is that the color band has
diminishing correlation to the higher spectral bands.
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Table 1. Comparison of various methods of HCM and PAP-ADMM on AVIRIS. Bold numbers indicate
the best algorithm for each metric.

Methods RMSE CC SAM ERGAS

PAP-ADMM [7] 66.2481 0.9531 0.7848 1.9783

HCM [8] 44.3475 0.9492 0.9906 2.0302

Proposed 30.1907 0.9672 0.9008 1.7205
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3.3. Comparison with Group 2 Methods

We now compare the proposed algorithm with Group 2 methods. In addition to the proposed
algorithm, we also include the basic HCM without deblurring and the HCM results with a conventional
deblurring method (Richardson–Lucy [46]). Since our proposed method assumes knowledge about
the point spread function (PSF) and a specific image super-resolution algorithm, for fair comparison,
we downsample the PAP-ADMM results to simulate a deblurred but downsampled hyperspectral
image. Then, we feed the results to Group 2 methods to see if Group 2 methods are improved.
The result of this experiment is shown in Table 2. As we can see, this step is detrimental to the
performance of Group 2. One reason is that Group 2 methods are already injecting high frequency
contents into the hyperspectral images through the pan band. This can be seen from the general
formulation of Group 2 methods:

sH
j = B(sL

j ) + α(sH
pan − s̃H

pan), (18)

where B(·) is the bicubic interpolation, α is a gain factor, sH
pan is the HR pan image, and s̃H

pan is a low
passed HR pan image. The pan band in this experiment is the average of the 3 color bands from the
input image for both the AF and AVIRIS datasets. The reason why Group 2 methods do not benefit
from PAP-ADMM is that the residue (sH

pan − s̃H
pan) is the high frequency content injected by the pan

band. An additional deblurring step on these Group 2 results tends to overcompensate the effects of
the high frequency injection. Therefore, having a strong super-resolution step for Group 2 does not
help, and this answers Q3. For completeness, we also include pansharpening results, denoted as 2*
in Table 2, of Group 2 methods without deblurring the LR HS images. From those metrics in Table 2,
it can be seen that the metrics are indeed better for Group 2 methods if no deblurring is implemented.

In contrast to Group 2 methods, the proposed HCM method benefits significantly from the
PAP-ADMM step. One reason is that HCM is using T to generate the HR image and no explicit high
frequency contents have been injected yet. This finding also validates the importance of both HCM
and PAP-ADMM.

In this experiment, we performed deblurring before we applied the Group 2 methods. As shown
in Figure 3, the subsampled image is a deblurred version of the original LR HS image, which we then
feed to the Group 2 methods. This will ensure a fair comparison of our method with other Group 2
methods, as all methods will include the preprocessing step of using PAP-ADMM.
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From Figure 5, it can be seen that our method performed consistently well across all bands
as compared to other methods in Group 2 for the AF data. In fact, our method yielded the best
performance for the AF image in both RMSE and CC as shown in Figure 5a,b and very close to the
best performers for the AVIRIS image as shown in Figure 5c,d. Also from Figure 5c,d, it can be seen
that our method performed much better in the low bands (<100 or <0.68 µm) as compared to the best
performers for the AVIRIS data.

We also notice that Group 2 is inferior to Group 2* because of overcompensation of Group 2
methods due to the deblurring step.

Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 28 

 

we then feed to the Group 2 methods. This will ensure a fair comparison of our method with other 
Group 2 methods, as all methods will include the preprocessing step of using PAP-ADMM. 

From Figure 5, it can be seen that our method performed consistently well across all bands as 
compared to other methods in Group 2 for the AF data. In fact, our method yielded the best 
performance for the AF image in both RMSE and CC as shown in Figure 5a,b and very close to the 
best performers for the AVIRIS image as shown in Figure 5c,d. Also from Figure 5c,d, it can be seen 
that our method performed much better in the low bands (<100 or <0.68 mμ ) as compared to the best 
performers for the AVIRIS data. 

We also notice that Group 2 is inferior to Group 2* because of overcompensation of Group 2 
methods due to the deblurring step. 

 
(a) Root mean squared error (RMSE) vs. wavelength for the AF image. 

 
(b) Cross-correlation (CC) vs. wavelength for the AF image. 

Figure 5. Cont.



Remote Sens. 2018, 10, 1416 11 of 28

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 28 

 

 
(c) RMSE vs. wavelength for the AVIRIS image. 

 
(d) CC vs. wavelength for the AVIRIS image. 

Figure 5. Comparison of RMSE and CC between our method and methods from Group 2. Figure 5. Comparison of RMSE and CC between our method and methods from Group 2.



Remote Sens. 2018, 10, 1416 12 of 28

Table 2. Comparison of our methods with various pansharpening methods on AF and AVIRIS. Bold numbers indicate best performers for each metric. Red numbers
indicate second best methods.

AF AVIRIS

Group Methods Time RMSE CC SAM ERGAS Time RMSE CC SAM ERGAS

1
CNMF [9] 12.5225 0.5992 0.9922 1.4351 1.7229 23.7472 32.2868 0.9456 0.9590 2.1225

Bayes Naïve [10] 0.5757 0.4357 0.9881 1.2141 1.6588 0.8607 67.2879 0.9474 0.8137 2.1078
Bayes Sparse [11] 208.8200 0.4133 0.9900 1.2395 1.5529 235.4995 51.7010 0.9619 0.7635 1.8657

2

SFIM [20] 0.9862 0.7176 0.9846 1.5014 2.2252 1.5615 63.7443 0.9469 0.9317 2.0790
MTF GLP [16] 1.3806 0.8220 0.9829 1.6173 2.4702 2.2464 57.5260 0.9524 0.9254 2.0103

MTF GLP HPM [17] 1.3982 0.8096 0.9833 1.5540 2.4387 2.2250 57.5618 0.9524 0.9201 2.0119
GS [14] 1.0496 2.1787 0.8578 2.4462 7.0827 1.8252 54.9411 0.9554 0.9420 1.9609

GSA [15] 1.2079 0.7485 0.9875 1.5212 2.1898 1.9784 32.4501 0.9695 0.8608 1.6660
PCA [12] 2.3697 2.3819 0.8382 2.6398 7.7194 2.9788 48.9916 0.9603 0.9246 1.8706

GFPCA [13] 1.1724 0.6478 0.9862 1.5370 2.0573 2.1686 61.9038 0.9391 1.1720 2.2480
Hysure [18,19] 117.0571 0.8683 0.9810 1.7741 2.6102 62.4685 38.8667 0.9590 1.0240 1.8667

2*

SFIM [20] 0.9743 0.6324 0.9901 1.3449 1.8881 1.5327 37.0572 0.9737 0.7205 1.5931
MTF GLP [16] 1.3482 0.7420 0.9882 1.4738 2.1628 2.1313 26.4199 0.9772 0.6975 1.5132

MTF GLP HPM [17] 1.4132 0.7255 0.9887 1.4020 2.1171 2.1364 26.5246 0.9772 0.6969 1.5159
GS [14] 1.0689 2.1660 0.8590 2.3500 7.0568 1.6384 54.1610 0.9624 0.8324 1.8748

GSA [15] 1.2013 0.6572 0.9896 1.3541 1.9617 2.0012 42.8342 0.9698 0.7686 1.6734
PCA [12] 2.3945 2.3755 0.8387 2.5490 7.7105 2.9703 48.0821 0.9680 0.8109 1.7678

GFPCA [13] 1.1923 0.6754 0.9837 1.5688 2.1893 1.9354 73.6587 0.9362 1.2344 2.4518
Hysure [18,19] 119.4377 0.8101 0.9832 1.6748 2.4467 66.0869 38.8677 0.9544 1.0355 1.9516

3
PAP-ADMM [7] 21,440.000 0.4308 0.9889 1.1622 1.6149 3368.0000 66.2481 0.9531 0.7848 1.9783

Super Resolution [21] 279.1789 0.5232 0.9839 1.3215 1.9584 1329.5920 86.7154 0.9263 0.9970 2.4110
Bicubic [22] 0.0412 0.5852 0.9807 1.3554 2.1560 0.1038 92.2143 0.9118 1.0369 2.5728

FPM [23] 23.7484 .5851 0.9804 1.3551 2.1555 52.63799 92.2141 0.9117 1.0369 2.5728

4

SRCNN [26] 503.1755 1.5649 0.9663 2.8086 4.7609 4897.0460 303.9198 0.8291 1.5628 7.4368
FSRCNN [27] 470.0645 0.6637 0.9814 1.4091 2.3852 836.1380 109.2260 0.9052 1.0936 2.8898
NE+ LLE [25] 27,848.000 0.6130 0.9779 1.4018 2.2859 44,722.000 92.3977 0.9106 1.0423 2.5791

A+ [24] 40.5783 0.6872 0.9733 1.4156 2.5288 65.9070 100.9513 0.8925 1.0473 2.7643
RAISR [28] 1287.2375 1.2830 0.8611 3.6061 6.0723 2341.1421 373.7005 0.3947 1.4193 13.0819

Ours
HCM no deblur [8] 0.5900 0.5812 0.9908 1.4223 1.7510 1.5000 44.3474 0.9492 0.9906 2.0302

HCM Lucy [46] 1.2000 0.6009 0.9879 1.3950 1.9308 1.5000 37.2436 0.9518 0.9683 1.9720
Our method 0.5900 0.4151 0.9956 1.1442 1.2514 1.5000 30.1907 0.9672 0.9008 1.7205
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3.4. Comparison with Group 1 and Group 3

We then compare the performance of the proposed algorithm with Group 1 and Group 3 methods.
Table 2 shows the performance metrics. The average RMSE of our method is very close to that
of Bayesian Sparse for the AF data and much better for the AVIRIS data. However, if we inspect
Figure 6a,c closely, we see that our method actually has a lower RMSE for a majority of the low bands.
Moreover, if we look at the AVIRIS’s RMSE in Figure 6c, we observe that even at higher bands our
performance is comparable to those Group 1 methods. The performance in AF’s CC plot shown in
Figure 6b is even more dramatic, as our results in red achieved near or above 0.995 for all bands.
Therefore, if multispectral images with some bands in the high bands could be used, our proposed
method can possibly achieve even better results.
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3.5. Comparison with Group 4

As mentioned earlier, Group 4 methods also are single image super-resolution methods, except
that they utilize some additional dictionaries and training images. In particular, the methods in the
literature [24,25] use training images to build dictionaries and the methods in other past papers [26,27]
use many training images and deep learning algorithms to train models. Table 2 and Figure 7
summarize the comparison between our approach and those Group 4 methods. It can be seen that
our approach outperformed all the Group 4 methods. There are several explanations. First, Group
4 methods do not incorporate PSF information. Second, all these Group 4 methods require a lot of
training images that are relevant to the dataset being tested, which we do not have. The training images
commonly used for these methods, specifically SRCNN and FSRCNN, do not necessarily provide
relevant information to improving the quality of hyperspectral images. We should also mention that
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the deep learning based methods are extremely time consuming (applicable datasets can take hundreds
of hours on an average PC) in training, which may prohibit practical applications.
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3.6. Visualization of Fused Images Using Different Methods

Here, we present a subjective comparison of fused images using our method and all methods
mentioned in Groups 1 to 4. Figure 8 shows the synthesized color images from the fused AF
hyperspectral image in visible range using bands (0.47 µm, 0.51 µm, and 0.65 µm) and VNIR
(visible near infrared) range using bands (0.70 µm, 0.77 µm, and 0.85 µm), respectively. In order
to compare the performance of different methods, we selected only ten images for display in Figure 8.
Other images can be requested by contacting us. Our method can be seen to preserve the spectral
fidelity quite well. For example, one can look at the color of the grass and tree areas between our fused
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image and the reference image. There is almost no color distortion between our results and the reference
image. In contrast, some methods such as CNMF, GSA, RAISR, etc. clearly have strong spectral/color
distortions in the VNIR range. For completeness, we also include the synthesized color images in
three spectral ranges of the fused AVIRIS image in Figure 9. Similar to the AF images, we selected ten
images for display and the rest can be requested by contacting us. However, it is somewhat hard to
see the subtle differences between different methods. Nevertheless, results from some methods such
as GFPCA and single image super-resolution obviously have large spectral distortions. For AVIRIS
data, the visible, VNIR (visible near infrared) and SWIR (short wave infrared) images were formed by
using bands (0.47 µm, 0.57 µm, and 0.66 µm), (0.89 µm, 1.08 µm, and 1.28 µm), and (1.58 µm, 1.98 µm,
and 2.37 µm), respectively.
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3.7. Performance Comparison of Different Algorithms Using Pixel Clustering

In addition to the objective and subjective evaluations discussed in Sections 3.3–3.6,
pixel clustering was performed to further validate our previous results. Pixel clustering was not
performed in any of the competitive approaches [9–27].

We would like to emphasize the following points:
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• This study is for pixel clustering, not for land cover classification. In land cover classification, it is
normally required to have reflectance signatures of different land covers and the raw radiance
images need to be atmospherically compensated to eliminate atmospheric effects.

• Because our goal is for pixel clustering, we worked directly in the radiance domain without any
atmospheric compensation. We carried out the clustering using k-means algorithm. The number
of clusters selected was eight in both the AF and the AVIRIS data sets. Although other numbers
could be chosen, we felt that eight clusters would adequately represent the variation of pixels
in these images. The eight signatures or cluster means of AF and AVIRIS data sets are shown in
Figures 10 and 11, respectively. It can be seen that the clusters are quite distinct.

• Moreover, since our focus is on pixel clustering performance of different pansharpening
algorithms, the physical meaning or type of material in each cluster is not the concern of our study.

• A pixel is considered to belong to a particular cluster if its distance to that cluster center is the
shortest. Here, distance is defined as the Euclidean distance between two pixel vectors. The main
reason is that some of the cluster means in Figures 10 and 11 have similar spectral shapes. If we
use spectral angle difference, then there will be many incorrect results.

• It is our belief that if a pansharpening algorithm can preserve the spatial and spectral integrity in
terms of RMSE, CC, ERGAS, SAM, and can also achieve a high clustering accuracy, it should be
regarded as a high performing algorithm.
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Figures 12–15 show the clustering results from different pansharpening methods based on cluster
centers extracted from ground truth AF and AVIRIS hyperspectral images, respectively. We used
K-means endmember extraction technique to determine the cluster centers. It can be seen that
our method, together with several others, produced the best clustering performance as shown in
Figures 12–15. Compared with the best method in Group 1 for the AVIRIS data, which is PAP-ADMM,
our method was 20% more accurate to the ground truth. The best Group 2 method is GFPCA for
the AF data and MTF-GLP for the AVIRIS. Our method is better than GFPCA for the AF data and
is comparable to MTF-GLP for the AVIRIS data. Comparing with the methods of Groups 3 and 4,
our proposed method yielded better performance. From a previous study [4], it was observed that the
Bayesian sparse (BS) algorithm performed consistently well for all the data sets in [4]. However, this is
not the case for the AVIRIS data because CNMF has better performance than those Bayesian methods.
Moreover, our method yielded more than 2 to 3% better performance than that of the best Group
1 method (CNMF) for the AVIRIS data. This means that the performance of pansharpening is data
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dependent and it is worth experimenting with different algorithms for a new application. The cluster
maps of all the algorithms are shown in Figures 13 and 15. It can be seen from Figure 13 that cluster
maps from the top performers (BS, our proposed method, and PAP-ADMM) are more comparable to
the reference map (ground truth). GS, PCA, and SRCNN had a lot of misclassifications. GFPCA tends
to lump small clusters into big clusters. Others seem to have comparable performance. Looking at
Figure 15, we can observe that the methods of Groups 3 and 4 do not perform well. The high performing
ones are CNMF, GSA, and our method. We also notice that in both Figures 13 and 15, the bicubic,
SR, and GFPCA do not yield fine clusters, as compared to others. Finally, the clustering performance
of different methods in the two images can vary quite a lot. For example, CNMF performed well
for AVIRIS image but not the AF image; BS worked well for the AF image, but not the AVIRIS
image. This indicates the necessity of having different algorithms to meet different applications.
The consistent ones in both images are the proposed method and some of the Group 2 methods
(GSA, MTF, and MTF-HPM).
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4. Discussion

Fusion of an HR color image with an LR HS image can yield an HR HS image. Although there are
quite a few algorithms in the literature in recent years to address problems similar to the above, there is
still room for further improvement. Our paper presents a new fusion algorithm that can generate HR
HS images with help from HR color images. We have thoroughly compared our algorithm with more
than 15 algorithms, divided into four groups, in the literature.

It should be noted that the methods of Group 1 have explicitly incorporated PSF into their
algorithms, but not for directly deblurring of the hyperspectral bands. Our approach is to explicitly
use PSF to perform deblurring.

We would like to mention that HCM and PAP-ADMM are complementary to each other. HCM can
achieve high performance in the low number bands, as there is more correlation between the color
bands and those low number bands. In fact, we have two ways to incorporate additional information
from the higher spectral bands to improve the HCM. One is to include some hyperspectral bands
in our mapping; see Equation (3) in our paper. Another way is to utilize deblurred results by
using PAP-ADMM.

It is also interesting to see that the methods of Group 2 cannot benefit from the proposed
approach. This is because the methods of Group 2 have an inherent mechanism to inject high frequency
spectral information to enhance the LR HS images. Additional deblurring overcompensates for the



Remote Sens. 2018, 10, 1416 26 of 28

enhancement process and is hence detrimental to the image quality. In contrast, HCM can benefit from
deblurring from PAP-ADMM.

In terms of objective evaluations, we have used five performance metrics, which are widely
used in the literature, to compare the results of each algorithm. It was observed that our algorithm
performed better than the methods of Group 3 from Table 2 and Figure 6. Our method also performed
better than most of the Group 1 methods for the AF image (Figure 5) and is comparable to the best
Group 2 methods for the AVIRIS image (Figure 5). Comparing with Group 1 methods, our algorithm
yielded a consistently high performance for all bands (Figure 6). For example, for the results related to
AF image in Figure 6a, our performance is much better than CNMF in almost all bands. Comparing
with Group 4 methods, our algorithm performed better in all cases (Figure 7).

In terms of subjective visualization, one can see that our results are comparable or better than
others. In particular, if one looks at the VNIR bands in the AF image (Figure 8b), it can be clearly seen
that our results preserve the spectral integrity better than almost all the others. Some well-known
methods such as GS, GSA, and CNMF have large spectral distortions in the VNIR bands.

In terms of pixel clustering performance, one can see from Figures 12 and 14 that our method,
together with several other methods, yielded the highest accuracy for both the AF and AVIRIS data.

5. Conclusions

A new fusion based algorithm to enhance the resolution of hyperspectral images is presented.
In addition to the LR HS image, an HR color image is needed. Our new algorithm is an integration
of a hybrid color mapping algorithm and a single image super-resolution algorithm. Although the
new approach is simple, the performance is promising based on a comparative study with 20 existing
algorithms using five objective metrics, subjective visualization in multiple spectral ranges (visible,
VNIR, SWIR), and pixel clustering accuracy on real image datasets.
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