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Abstract: Characterizing the land surface temperature (LST) and its diurnal cycle is important in
understanding a range of surface properties, including soil moisture status, evaporative response,
vegetation stress and ground heat flux. While remote-sensing platforms present a number of
options to retrieve this variable, there are inevitable compromises between the resolvable spatial
and temporal resolution. For instance, the spatial resolution of geostationary satellites, which can
provide sub-hourly LST, is often too coarse (3 km) for many applications. On the other hand,
higher-resolution polar orbiting satellites are generally infrequent in time, with return intervals
on the order of weeks, limiting their capacity to capture surface dynamics. With recent developments
in the application of unmanned aerial vehicles (UAVs), there is now the opportunity to collect LST
measurements on demand and at ultra-high spatial resolution. Here, we detail the collection and
analysis of a UAV-based LST dataset, with the purpose of examining the diurnal surface temperature
response: something that has not been possible from traditional satellite platforms at these scales.
Two separate campaigns were conducted over a bare desert surface in combination with either Rhodes
grass or a recently harvested maize field. In both cases, thermal imagery was collected between
0800 and 1700 local solar time. The UAV-based diurnal cycle was consistent with ground-based
measurements, with a mean correlation coefficient and root mean square error (RMSE) of 0.99 and
0.68 ◦C, respectively. LST retrieved over the grass surface presented the best results, with an RMSE
of 0.45 ◦C compared to 0.67 ◦C for the single desert site and 1.28 ◦C for the recently harvested
maize surface. Even considering the orders of magnitude difference in scale, an exploratory analysis
comparing retrievals of the UAV-based diurnal cycle with METEOSAT geostationary data yielded
pleasing results (R = 0.98; RMSE = 1.23 ◦C). Overall, our analysis revealed a diurnal range over the
desert and maize surfaces of ~20 ◦C and ~17 ◦C respectively, while the grass showed a reduced
amplitude of ~12 ◦C. Considerable heterogeneity was observed over the grass surface at the peak of
the diurnal cycle, which was likely indicative of the varying crop water status. To our knowledge,
this study presents the first spatially varying analysis of the diurnal LST captured at ultra-high
resolution, from any remote platform. Our findings highlight the considerable potential to utilize
UAV-based retrievals to enhance investigations across multi-disciplinary studies in agriculture,
hydrology and land-atmosphere investigations.
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1. Introduction

The land surface temperature (LST) provides direct insights into the physics of surface–atmosphere
interactions, and is a key variable in the mass and energy exchange processes of terrestrial surfaces [1–4].
Knowledge of the LST provides information not just on the spatial and temporal variations of the surface
equilibrium state, but is of fundamental interest across numerous Earth system science applications [5].
Apart from being recognized as an essential climate variable [6], LST is also one of the high-priority
parameters of the International Geosphere and Biosphere Program (IGBP) [7]. However, its accurate
retrieval and representation presents significant challenges, as it varies in both space and in time [8–11]
due to changes in incoming radiation, inherent surface heterogeneities, and strong links to meteorological
forcing in the atmospheric boundary layer. The accurate retrieval of LST is of considerable interest [11–14]
and the capacity to monitor it at both high spatial and temporal resolutions would provide useful
insights into a variety of land surface processes, including hydrological model evaluation [15–18],
evaporation monitoring [19–22], soil moisture estimation [23,24], vegetation stress monitoring [25–27],
estimation of ground heat fluxes [28,29], and the mapping of urban heat islands and related effects [30],
amongst many other applications.

Although LST measurements are subject to errors in sensor calibration, specification of the
surface emissivity, and potential impacts of atmospheric corrections, the impact of systematic errors
can often be reduced when diurnal changes are considered instead of single values [10]. As such,
a number of research efforts have sought to exploit knowledge of the diurnal cycle of LST to improve
process understanding and response. For example, Anderson et al. [1] developed the atmosphere-land
exchange inverse (ALEXI) model to estimate evapotranspiration, coupling a two-source land-surface
model with an atmospheric boundary layer model to routinely and robustly map daily fluxes at 5 to
10 km resolution across continental scales. Piles et al. [24] improved the spatiotemporal resolution
of the remotely sensed soil moisture based on the synergistic use of SMOS (Soil Moisture and Ocean
Salinity mission) microwave observations and geostationary LST data. Diurnal LST is also important
for predicting the ground heat flux (G) that influences the partitioning of available energy into
sensible and latent heat fluxes. Indeed, Santanello et al. [31] found considerable asymmetry in the
ratio of G and net radiation (Rn) around solar noon during daytime hours, with this asymmetry
impacting the underestimation of G in the morning and overestimation in the afternoon (by up to 50%).
While providing useful information on the land surface condition, such studies are inevitably limited
by the relatively coarse spatial resolution of available satellite imagery. Moreover, satellite-based
thermal infrared measurements are routinely impacted by the presence of clouds, limiting retrievals to
clear sky conditions.

Remote sensing-based approaches provide an effective means to overcome the spatial constraint
of ground based measurements, but remain unable to adequately capture the diurnal variability in
a spatially representative manner. While numerous approaches exploiting satellite-based thermal
infrared capabilities have been developed over the past few decades [32,33], the achievable spatial and
temporal resolutions are inevitably constrained by the orbital configuration of the particular satellite
platform. These spatiotemporal challenges are especially pertinent to those efforts seeking to capture
and describe the diurnal variability of LST at high-spatial resolutions. For example, while polar
orbiting satellites are able to resolve the surface thermal signature at scales of between several
101 to 103 m, they are unable to capture its progress through the diurnal cycle. When considering data
from the Landsat series of satellites, which offer some of the highest thermal resolutions available
(≈ 102 m), the 16-day return interval limits potential applications. With the recent launch of the
National Aeronautics and Space Administration (NASA) Venture class ECOsystem Spaceborne
Thermal Radiometer Experiment on Space Station (ECOSTRESS), which was successfully deployed
onboard the International Space Station (ISS) in July 2018, retrieval of diurnal temperature is a nascent
possibility, with imagery now being collected at different times of the day (albeit not on the same day)
at a spatial resolution of 38 × 69 m [34]. At the other end of the spatiotemporal scale, geostationary
platforms, such as the Geostationary Operational Environmental Satellites (GOES) and Meteosat
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Second Generation (MSG), offer a temporal sampling of 15 min, providing excellent insight into
diurnal variability that is only offset by their coarse spatial resolution (≈103 m).

With recent advances in near-Earth observation [35], unmanned aerial vehicles (UAVs) present
as an emerging technology to monitor a range of environmental processes at ultra-fine resolutions
(defined here as decimeter scale). In contrast to satellite or ground-based measurements, UAVs allow
researchers to obtain spatially distributed and highly geometrically resolved datasets on demand and
in a range of atmospheric conditions (i.e., they are not limited by cloud cover). Within the last few
years, there have been efforts to miniaturize sensors that can leverage these new observation platforms,
providing advanced capabilities in optical, thermal and hyperspectral sensing [36,37]. Apart from
being used to characterize the spatial and temporal variations of the surface equilibrium state and
fluxes, ultra-high resolution observations of the diurnal cycle could also be used for satellite-based
LST evaluation (e.g., ECOSTRESS). Instead of relying solely on in situ measurements for evaluation
purposes (which is based on the assumption that local ground observation are representative of a
much larger satellite footprint), UAV-based LST provide a scaling tool between the spatial extent of the
satellite retrieval and the point scale of in situ data. Recent studies have demonstrated UAV capabilities
in monitoring hydrological processes such as snow depth [38,39], flood inundation and flash-floods [40],
geomorphological features such as surface elevation, erosion hazard and deformation [41], as well as
having particular application in ecosystem studies, where they can monitor vegetation distribution,
health and stress [42–44]. In agricultural applications, UAV-based LST has been used to detect crop
disease [45], to map drought stress [46–48], to monitor evaporative fluxes [49,50], and to estimate plant
water stress [51] and stomatal conductance [52].

Despite the rapid advance of UAV-based remote-sensing and their applications across diverse
aspects of the Earth sciences, there has yet to be an assessment of their capacity to capture the diurnal
cycle of LST. In this paper, we explore the capabilities of UAV-based thermal data to estimate the cycle of
diurnal LST across a range of surface types at an unprecedented spatial resolution (approx. 0.06–0.09 m).
To this end, two separate campaigns were conducted over a center-pivot irrigation system in the arid
desert environment of Saudi Arabia. To evaluate retrievals, spatially distributed in situ measurements
were collected across a range of surface types, consisting of a bare desert, a field of Rhodes grass
and a recently harvested maize field. In an attempt to evaluate the multi-scale spatiotemporal
consistency between UAV and available high-temporal resolution satellite data, an intercomparison
against MSG-Spinning Enhanced Visible and Infrared Imager (SEVIRI) retrievals was also undertaken.
The paper represents one of the first efforts to capture the ultra-high-resolution spatially varying
diurnal cycle of LST using UAV platforms, providing unique insight and an improved characterization
of surface temperature dynamics over three distinct land cover types.

2. Materials and Methods

2.1. Description of Study Site

In order to collect the required density of UAV thermal images over a range of land cover types,
two independent campaigns were conducted on 13 December and 31 January, over the winter period
of 2016/2017. The collections were undertaken at the Tawdeehiya commercial farm in the Al Kharj
region of Saudi Arabia, approximately 200 km south-east of Riyadh (see Figure 1). The region is
characterized as a hot desert climate and is a major agricultural area in Saudi Arabia. The Tawdeehiya
farm operates 47 center pivot irrigation systems, each approximately 800 m in diameter, with a
variety of crops including alfalfa, carrots, maize, Rhodes grass, and other vegetables under cultivation.
Meteorological measurements including air temperature, wind-speed, humidity and net-radiation
have been collected on a continuous basis since April 2015, with data publicly available via
www.climaps.com. The December campaign focused on capturing a bare desert land cover in
combination with a recently harvested maize field (cropped approximately 2 weeks prior to the
survey, but retaining a mixture of weeds as ground cover). The January campaign focused on a large

www.climaps.com
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area of Rhodes grass together with an adjacent area of bare desert. In both cases, multiple flights
were conducted between 0800 and 1700, ensuring that the morning and evening transitions from a
stable nocturnal to convective boundary layer (and back again) were captured. Figure 2 shows the
net radiation and air temperature at the site when surveys were performed, reflecting the clear sky
conditions. For the two sets of surveys, sunrise occurred at 0628 and 0635, solar noon at 1150 and 1205,
and sunset at 1706 and 1737 (local time), respectively. Although wind speeds were relatively stable
within each day, the wind was stronger during the January campaign (see Tables 1 and 2).
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Figure 1. The Tawdeehiya farm and the two focus areas where unmanned aerial vehicle (UAV) surveys
were conducted on 13 December 2016 (a) and 31 January 2017 (b).

Figure 2. Diurnal variations of net radiation (blue line) and air temperature (red line) at the
meteorological station for 13 December 2016 (a) and 31 January 2017 (b).

Table 1. Flight characteristics and meteorological conditions for the 13 December 2016 campaign.

Flight Details 1 2 3 4 5 6 7 8 9 10 11 12

Time of flight 830 850 930 1015 1035 1130 1230 1330 1430 1515 1545 1645
Images Used 766 767 442 453 444 451 457 463 458 450 455 490

Air Temp (◦C) 11.3 12.7 14.5 16.4 17.1 18.8 20.5 21.5 22.2 22.1 21.9 20
Wind (m/s) 1 1.2 0.8 0.6 0.7 1.2 1.1 1.8 1.9 2.1 2.4 2.5

Direction W NW NW N NE SE SE SE S S SE SE
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Table 2. Flight characteristics and meteorological conditions for 31 January 2017 campaign.

Flight Details 1 2 3 4 5 6 7 8 9

Time of flight 900 1005 1105 1210 1315 1405 1510 1600 1640
Images Used 1208 1212 1211 1215 1212 1210 1213 1210 1205

Air Temp (◦C) 14 16.4 18.4 20.4 22.4 22.8 23.4 23.2 22.5
Wind (m/s) 3.6 4.4 4.7 5.4 6.2 6.5 5.9 5.6 4.7

Direction SE SE S S S S S S S

2.2. Unmanned Aerial Vehicle (UAV) Thermal Data Collection and Processing

Thermal images were acquired with a ThermalCapture 2.0 640 thermal camera (TeAx,
Wilnsdorf, Germany) at a nadir viewing angle. The camera, based upon a modified FLIR Tau 2,
has a resolution of 640 × 512 pixels and a 13 mm focal length, collecting thermal infrared images across
the 7.5 to 13.5 µm spectral range. Manufacturer specifications indicate a thermal accuracy of 2 ◦C
and a thermal sensitivity of 0.04 ◦C. The camera has the advantage of performing automatic flat-field
corrections (FFC) while it is recording, allowing the system to remove artifacts from 2D images that are
caused by variation in the microbolometer-to-microbolometer sensitivity of the sensor array. For the
two campaigns, the FFC was performed every 100 frames (83.3 s). The sensor also measures the internal
temperature of the camera, combined with the ambient air temperature, humidity, and emissivity
of target surface set prior to a flight, the camera continually updates the non-uniformity coefficients
(NUC) used to convert the raw 16-bit digital number (DN) to radiometric values.

The TeAx thermal camera was integrated onto a DJI Matrice 100 (M100) quadcopter (DJI,
Shenzhen, China) using a 3-axis gimbal. The UAV platform consisted of the flight controller, propulsion
system (four propellers), Global Positioning System (GPS) and a remote control. For the December
campaign, the DJI GO apps way point feature was used, which required one manual flight to mark
navigation waypoints defined by GPS and altitude. These initial waypoints were saved and repeated
for the 11 others flights collected throughout the day. Manually selecting the initial flight path
caused some overlap difference between each flight line, such that the final flight path consisted of
9 transects, each with 70–80% side overlap. The UAV flying height was maintained at an elevation
of 75 m, providing a ground resolution of approximately 0.09 m and a footprint of 62.8 × 50.2 m.
For the January campaign, the DJI M100 was controlled by Universal Ground Control software
(UgCS, Riga, Latvia), which enabled a larger surveying area and maintenance of 80% side overlap,
thereby providing 10 transects. The system was flown at an elevation of 50 m, providing a ground
resolution of approximately 0.065 m and a footprint of 41.8 × 33.5 m. In both the December and January
campaigns, flight speeds were maintained at 5 m/s, totaling 13 min of flight time. While the camera
collects thermal images at a frame frequency of 8.33 Hz, every 8 frames were used for the structure from
motion, giving an effective frontal overlap of approximately 90% and 85%, respectively (Tables 1 and 2).
Reducing the number of the images was seen to have no effect on the reconstructed thermal maps
and greatly reduced processing times. Red–green–blue (RGB) surveys were also collected purpose
of constructing a RGB orthomosaic of the survey area. These were conducted with a DJI Phantom
3 Professional multi-rotor UAV (3000 × 2250 pixels) flown at an altitude of 50 m (ground resolution
of 0.02 m), flight speed of 5 m/s, and a 60% overlap between transects (25 m between transects),
with photos taken approximately every 2 s.

Following thermal image acquisition, data were exported as video files for post-processing.
The captured raw DN frames and the manufacturer camera non-uniformity corrections were embedded
within the video header. Both raw DN and radiometrically calibrated frames were extracted as 16-bit
tagged image file format (TIFF) image files for further processing. Georeferencing and mosaicking of
the thermal imagery was undertaken using Photoscan Professional (Agisoft, St. Petersburg, Russia).
The Photoscan workflow starts with an image alignment step that uses structure from motion (SfM)
techniques to reconstruct the scene based on feature points that have been detected within and matched
across the images [53]. The image alignment step also estimates the camera positions. To recalculate the
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camera positions, the self-calibrating bundle adjustment computes three-dimensional point clouds from
which thermal orthomosaics were built, using a mean value composition. To improve the absolute spatial
accuracy of the mosaics, we manually located ground control points (GCPs) within the collected imagery.
To do this, we deployed 8 aluminum trays with a black cross taped across the center, and measured
their absolute positions using a differential GPS (Leica GS10 receiver as base station and GS15 smart
antenna as rover). The raw data logged by the base and rover were used for post processing to obtain
accurate positions of the GCP measurements in the field (horizontal accuracy of 5 mm).

The GCPs were difficult to locate in Photoscan using the radiometrically calibrated images, as
the absolute temperatures occupies a very small portion of the dynamic range in 16-bit TIFF files, and
to use these files loses precision for the temperature of each pixel. For this reason, the DN frames
were used in the Photoscan workflow. However, for our data collection, this still only represented
<2% of the dynamic range and made identifying GCPs difficult. The DN values of the raw image
files were therefore stretched to occupy a greater portion of the dynamic range of the TIFF files.
The upper and lower threshold for stretching was determined from the histogram of DN values for all
pixels of all frames used in the reconstruction. The GPS data for each frame was written to the EXIF
(EXchangeable Image File) headers of these “stretched” 16-bit TIFF files for processing in Photoscan.
The thermal orthomosaics produced from Photoscan were therefore presented with stretched 16-bit
DN values. The stretched 16-bit DN values of the thermal orthomosaic were first converted back to
the unstretched DN values. Using the relationship between radiance values and the DN values of all
frames used in the Photoscan workflow, the orthomosaic was converted to surface radiance.

2.3. Retrieving UAV-Based Land Surface Temperature

From the collected UAV-based surface radiance (Lsurf ), the surface brightness temperature Tbr (K)
was calculated using Stefan Boltzmann’s law:

Tbr =
4

√
Lsur f

σ
(1)

where σ is the Stefan Boltzmann constant of 5.67 × 10−8 W m−2 K−4. Generally, to interpret and
compare LST data with ground and satellite-based measurements, atmospheric and emissivity effects
must first be corrected [54]. For the UAV-based thermal measurements, the influence of atmospheric
parameters such as transmittance and path radiances between the surface and sensor are relatively
small given the flying height of between 50 and 75 m, and have been neglected (particularly as
the influence of surface emissivity is dominant [52]). However, if the downwelling sky irradiance
(or incoming long-wave radiation) is reflected into the sensor by the soil or canopy, the LST may be
affected. By correcting for the sky temperature (as a surrogate for the incoming longwave radiation
from the atmosphere) and the surface emissivity, the surface temperature can be estimated using the
following expression:

LST =
4

√
T4

br − (1 − ε)T4
sky

ε
− 273.15 (2)

where LST (◦C) is the land surface temperature, Tsky (K) is the downwelling sky irradiance temperature,
and ε is the surface emissivity [55]. Although there are several ways to estimate Tsky [56], we employ
the relatively common approach of using the temperature from the aluminum GCPs located in the
field [57–60]. The aluminum plate used as a thermal GCP has a diffuse surface and a low emissivity,
and the Tbr observed over the GCP is considered as Tsky with negligible errors [60]. The emissivity is
more difficult to determine, as it depends upon surface composition such as soil type, vegetation and
density, as well as the underlying roughness of the surface [12,61]. For agricultural applications,
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many studies have demonstrated that the fractional cover or proportion of vegetation (Pv) can
estimate the land surface emissivity through the following simplified equation [12,62]:

ε = εvPv + εs(1 − Pv) (3)

where εv is the vegetation emissivity (0.99) and εs is the soil/desert emissivity. For a desert area,
Ogawa and Schmugge [63] found that the emissivity can vary from 0.85 to 0.96. In this study, we set
the desert emissivity to 0.95 based on ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) observations [54]. To estimate Pv, we used the green-red vegetation index (GRVI) [12,64]
instead of the normalized difference vegetation index (NDVI), which requires the availability of both
visible and near infrared bands. GRVI was computed in a similar way to that of the NDVI, but using
green and red reflectances from RGB orthomosaics. Note that the GRVI was designed to be obtained
from remote-sensing platforms, so it also included the blue reflectivity to account for atmospheric effects.
In this study the blue reflectivity was removed from the calculation [65], with GRVI determined as:

GRVI =
ρgreen − ρred

ρgreen + ρred
(4)

For the desert surface Pv is considered equal to 0. For the vegetated surfaces, Sobrino et
al. [12] proposed a linear relation between Pv and GRVI using a benchmark over a range of crops,
including maize and grass:

Pv = 1.133 GRVI + 0.434 (5)

2.4. In Situ Measurement of Land Surface Temperature (LST)

To evaluate the UAV-LST retrieval, in situ surface temperature estimates were collected using a
number of Apogee SI-111 infrared radiometers (Apogee Instruments Inc., Logan, USA). The broadband
spectral range of these sensors spans 8 to 14 µm, with an optimal temperature range covering −40 ◦C
to 80 ◦C and a manufacturer accuracy of ±0.5 ◦C. The manufacturer recommends recalibrating the
sensors every two years. A calibration curve for each of the Apogee sensors was established using a
set of five resistance temperature detectors (RTDs) distributed on the back of the heating element of a
temperature-tunable blackbody (FLIR Tau 4 blackbody, FLIR System Inc., Wilsonville, USA). RTDs have
been calibrated and can be used as temperature references. Note that RTDs change their resistance in
proportion to their temperature. The Apogee sensor was pointed towards the blackbody in a way that
the sensor footprint was entirely within the heating area at a nadir view angle. The blackbody was
gradually heated to a temperature of 60 ◦C and left to cool to room temperature (21 ◦C) over a period
of 180 min. Temperature measurements were recorded every second for both the Apogee and the RTDs.
The relationship of each Apogee to the RTD blackbody temperature was quite linear with R2 values
above 0.98 for each of the sensors. To correct the non-calibrated temperature values of the Apogee
sensors, a least squares regression was performed to obtain a linear equation that mapped from the
Apogee values to the temperatures measured by the blackbody RTDs. The correction equations for
each sensor are shown in Table 3, showing that the sensors had a bias of approximately 3.3 ◦C relative
to the RTD values.

Table 3. Correction for Apogee infrared radiometer equations based on y = mx + b, where y is the
calibrated Apogee, m is the slope, x is the uncorrected Apogee temperature, and b is the intercept.

Apogee Sensor D1/J1 J2 J3 D2/J4 D3/J5

Slope 1.05 1.00 0.99 1.02 1.04
Intercept 2.76 3.53 3.82 3.30 3.10

The in situ temperatures over the field were recorded at three (December) and five (January)
unique locations during each campaign. For the December campaign, one Apogee sensor (D1) was
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mounted in the desert, while 2 were installed within the pivot field (D2 and D3). For the January
campaign, the 5 stations were mounted in the pivot field, but one of the stations (J4) was located
adjacent to the pivot track (i.e., capturing a within field bare soil surface). All Apogee sensors were
mounted at 1 m height and at a zenith angle of approximately 30◦. With a field of view (FOV) of
22◦, the ground sampling area from each sensor was estimated at around 0.75 m2, corresponding to
between 100 and 180 thermal pixels in the December and January campaigns respectively. At each
station, temperature was measured between 0800 and 1700 at a 1 s interval, and recorded on DataTaker
DT80M loggers (Thermofisher Scientific Inc., Waltham, MA, USA). Brightness temperatures observed
by the Apogee sensors were corrected for the downwelling sky irradiance and emissivity as described
in Section 2.3.

2.5. Satellite-Based Diurnal Land Surface Temperature

Since polar orbiting satellites are unable to provide the necessary density of diurnal measurements
required for evaluation, a coarse-scale LST cycle was derived from the SEVIRI on board the MSG
geostationary satellite. The geostationary data are provided every 15 min at a nominal 3 km spatial
resolution at the sub-satellite point. SEVIRI has 12 spectral bands, consisting of three visible and
near-infrared channels, eight infrared channels and one visible broadband channel. A generalized
split-window algorithm is used on the 10.8 and 12.0 µm channels to derive the LST product with an
accuracy below 1.5 ◦C [14,66]. Further details on this can be found on https://landsaf.ipma.pt/.

3. Results

Here we provide an analysis of UAV-based diurnal LST patterns, demonstrating the capabilities of
a commercial thermal camera and its capacity to improve understanding of both diurnal LST response
from different vegetated surface, along with an examination of some associated scaling challenges over
agricultural surfaces. In Section 3.1, UAV-LSTs were evaluated against ground measurements over a
range of surface types. In Section 3.2, the spatial pattern of the diurnal LST cycle was explored. Finally,
in Section 3.3, UAV-based LSTs were compared to satellite-based LSTs obtained from the MSG-SEVIRI
platform to investigate the potential of UAVs for improving evaluation strategies.

3.1. Comparison with Ground Surface Temperature

UAV-based LSTs were evaluated against ground-based temperature measurements from the
Apogee sensors over the three surface types. To ensure a robust comparison between UAV-LST and
in situ measurements, ground-based surface temperatures were extracted for each of the individual
collection periods throughout the day (approx. 13 min total flight time each) and then averaged to
compare in situ temperatures with the collected UAV measurements (temporal average). Given the
expected variation of temperature even within this relatively small temporal window, the standard
deviation was also calculated, with results shown in Figure 3. The high-resolution UAV-based radiance
data were extracted and then spatially averaged (prior to LST retrieval) within the Apogee sensor FOV
(approx. 0.75 m2). Because the Apogee sensors observed a large area corresponding to 100 and 180
pixels for each campaign, respectively, it is also important to assess the LST response due to the mixed
surface type within the FOV of the apogee sensors. The standard deviation of UAV-LST for 3 × 3, 5 × 5
and 9 × 9 pixel windows were calculated around the centroid of the FOV. Results for the 9 × 9 and
FOV are presented in Figure 3. For the December campaign, the station installed in the desert (D1)
indicates no significant difference when comparing window sizes, due to the homogeneous surface
observed within the FOV. Thus, the standard deviation in D1 (0.3 ◦C) is likely attributable to Apogee
measurement errors. However, for the stations D2 and D3 (Figure 3), we found a higher difference of
standard deviation (up to +1 ◦C) for a larger window (9 × 9 and apogee FOV) due to the heterogeneous
surface type within the windows. For the January campaign, the standard deviation value increases
with the temperature of the surface throughout the day. This result may be related to the variable
vegetation water status during the diurnal cycle (e.g., transpiration). Overall, we observed that the

https://landsaf.ipma.pt/
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Apogee sensors presented a temperature variation up to 1.5 ◦C within the FOV for most surfaces.
In the following analysis, we used the 9 × 9 block average of the UAV-based LST, corresponding to the
FOV of the Apogee sensor, for consistency with the in situ measurements.

To examine the potential of UAVs to capture the diurnal cycle of LST and to evaluate the retrieval
processing (e.g., georeferencing, mosaicking), we plot the retrieved temperatures for each of the
conducted flights, together with the mean absolute error (MAE), root mean square error (RMSE)
and correlation coefficient (R) of UAV-LST derived from comparison against in situ measurements
(Figure 4). High correlation was observed between UAV-based and ground-based Apogee sensors
(average of approx. 0.99 across all stations and campaigns). The MAE varied from 0.46 to 1.40 ◦C for
the grass surface and from 1.13 to 3.32 ◦C for the harvested surface, while RMSE varied from 0.28 to
0.72 ◦C for the grass and from 0.67 to 1.77 ◦C for the harvested surface (see Figure 4). Relative to the
January campaign, higher values of MAE and RMSE were found in December, particularly at Stations
D2 and D3. This is likely related to the heterogeneity of the surface type, since the harvested maize
field contains a mixed fraction of soil and vegetation observed within the Apogee FOV.

Differences between the UAV-based LST and the in situ Apogee measurements for all stations
throughout the diurnal cycle are displayed in Figure 5. Overall the January campaign (J1–J5) showed
a better agreement between the two datasets than in December (D1–D3). Differences range by up to
5 ◦C for December, while were generally less than 1.5 ◦C in January (except for Station J4, which has
a maximum difference of −2.7 ◦C around 13:15). The diurnal response at J4 is likely due to the
heterogeneity of the surface around the pivot track (location of J4), which can be considered as a mixed
fraction of soil and vegetation. Interestingly, the MAE varies independently of the surface temperature
throughout the day, demonstrating the capability of UAVs to retrieve LST with robustness across the
diurnal cycle. The improved results for the grass surface type (J1–J5) are likely attributable to the
relatively homogeneous surface within the Apogee FOV. Reinforcing this view is that the MAE and
RMSE are similar for each station in January. Indeed, the December campaign indicated relatively
high MAE compared to the January campaign. So, while results suggest that temperature differences
are independent of the diurnal cycle, they vary with the underlying surface type. Overall, the diurnal
UAV-based LST cycle shows good agreement with in situ measurements over the 8 comparisons
stations. Importantly, a low RMSE (~0.7 ◦C) relative to the thermal camera error was determined,
which improves upon the ±2 ◦C suggested by the manufacture based specifications [57,67].

Figure 3. Standard deviation of diurnal UAV-based land surface temperature (LST) within 9 × 9 pixels
(90 × 90 cm) (a,c) and Apogee field-of-view (FOV) windows (b,d) for the 3 stations (D1–D3) on
13 December 2016 and for the 5 stations (J1–J5) on 31 January 2017.
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Figure 4. Diurnal cycle of UAV-based LST (blue dashed line) versus in situ temperature as measured
by Apogee sensors (red line) for the December (D1–D3) and January (J1–J5) campaigns, along with
statistics including the in situ LST standard deviation (STD), correlation coefficient (R), mean absolute
error (MAE) and root mean square error (RMSE).

Figure 5. Diurnal temperature difference between UAV-based and in situ measurements for the
December (a) and January campaigns (b).
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3.2. Spatial Pattern of the Diurnal LST Cycle

Figures 6 and 7 show the diurnal LST maps for the desert/harvested field on 13 December (2016)
and grass field on 31 January (2017), respectively. In both cases, it can be seen that the preliminary
morning LST retrieval on each day varied only slightly across the relative surface types. However,
as the surface heats up in response to an increasing amount of incident solar radiation (Figure 2),
the LST climbs rapidly to reach the maximum temperature around solar noon. As expected, the LST
over the desert was significantly higher than the LST over both the harvested maize (with residual
weeds) and grass surfaces throughout the cycle, with a difference of approximately 4 ◦C (Figure 7),
presumably caused by evaporative cooling. The land cover-based temperature differences were even
more pronounced during the hottest periods of the day. For example, around 1 pm, the vegetation was
about 6 ◦C cooler than the desert in December and 5 ◦C in January.

The differences between surface types remain constant until the last observation of the day at
1645. As can be seen from reference to Figure 2, the LST of the desert was much higher than the air
temperature until around 1500. With no evaporative cooling process (given no moisture availability),
the desert surface can only reemit the incident solar radiation as sensible heat. The lack of any moisture
distribution within the desert reflects the greater spatially homogeneity, in contrast to the vegetation
LST which was far more heterogeneous for any given observation time. While some anomalous high
temperature pixels were observed close to the top edge of the image in several examples (0900 and
0930 in the December campaign, all of the January flights), these are the result of thermal mosaicking
artefacts [43,46], rather than reflecting actual landscape features. To avoid the impacts of these border
effects, only the central portions of the orthomosaic (visually no impacted by the border effects) are
used in the statistical comparisons undertaken herein.

Figure 6. Maps of the UAV-based LST between 0830 and 1645 on 13 December 2016.
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Figure 7. Maps of the UAV-based LST between 0900 and 1645 on 31 January 2017.

To investigate the LST variability across the studied surface combinations, the range
(maximum-minimum) of LST on a per-pixel basis were computed for both the December and January
campaigns (Figure 8). In both experiments, the diurnal range over the desert is greater than the other
surface types. For both campaigns, the maximum LST was reached around solar noon (1150 and 1205,
respectively) and was largely independent of the surface type in December. The heterogeneous surface
surveyed in January saw small differences in the time maximum LST was observed, with earlier
maximum LST observed for greater vegetation covers. Presumably, the vegetation and soil water
status contribute to increased heat capacity, slowing down the warming of the surface in response to
solar heating. Figure 8 shows the diurnal LST range is strongly related to surface type, with higher
diurnal ranges for desert and bare soil surfaces, and lower diurnal ranges for vegetated surfaces.
Within the center-pivot, differences in the diurnal range can be explained by the variable surface
water status between the harvested maize and the grass fields. While the grass field was still being
irrigated, the LST signature observed in the harvested field (no irrigation for more than 10 days) is
likely due to residual moisture in the soil and in the mixture of weeds that remained in the field after
harvesting (Figure 8). Given that surface water condition has a major influence on the morning rise of
LST, the diurnal temperature range has been used as a signature of land surface fluxes and surface soil
moisture status at daily scales [10,19].
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Figure 8. Maps of the proportion vegetation (a,b) estimated by using red–green–blue (RGB) camera
and the range of diurnal LST (c,d) for the December campaign (a,c) and January Campaign (b,d).
Grey areas are considered as desert or bare soil surfaces.

To examine any potential changes in the spatial patterns of diurnal temperature relative to
vegetation, the per-pixel LST was plotted against Pv over the course of the diurnal cycle. As can be seen
in Figure 9, distinct clusters represent the temperature distributions of the crop surface throughout the
day. As expected, the harvested maize Pv (a spread of 0.7 to 0.9) was lower than the grass (from 0.8 to 1).
However, the harvested maize Pv is relatively high considering the large part of bare soil in the field
and this reveals the limitation of RGB to retrieve Pv for this surface. In the following analysis, desert
and bare soil surfaces have been excluded. There appears to be distinct phases corresponding to
the rate of the rise and fall of the diurnal cycle presented in Figure 9. That is, the LST variability
increases throughout the day until solar noon (described by the increasing height of the clusters) and
then decreases towards sunset. The highest variability occurs around the peak of the maximum solar
forcing during the day; inherent surface heterogeneities (e.g., soil texture, albedo, and water status)
increase surface responses variability to the solar heating and thus provide larger LST variability [68].
Between 1000 and 1400, while the harvested maize presents greater variability independently of Pv,
the Rhodes grass surface presents a negative slope of LST relative to Pv. The spatial patterns of the
LST within the grass field clearly reflect the impact of evaporative cooling related to the vegetation
condition, as explained by Moran el al. [69]. The evaporation associated with soil moisture would
favor the partition of latent heat over sensible heat, and thus significantly reduce the diurnal amplitude
of the LST cycle. In other word, an increase in green vegetation is often associated with a reduction in
surface resistance to evapotranspiration, greater transpiration and a larger latent heat transfer resulting
in lower LST. After 1400, LST variability starts to decrease, but with a different rate than the morning
LST rise. The explanation for this asymmetry is possibly related to the difference in land surface
feedbacks in the afternoon (such as a more stable surface-atmosphere interaction). At the end of the
day, the distribution of LST over the grass field becomes uniform and varies independently of Pv.
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Figure 9. Diurnal cycles of pixel-based LST versus proportion of vegetation (Pv) between 830 and
1645 on 13 December 2016 (a) and 31 January 2017 (b). Distinct clusters represent the temperature
distributions for each flight.

3.3. UAV-Based LST Comparison against Meteosat Second Generation-Spinning Enhanced Visible and Infrared
Imager (MSG-SEVIRI) Retrievals

To investigate the potential of UAVs for improving evaluation strategies of coarse scale satellite
derived retrievals, UAV-based LSTs were compared to the satellite-based LSTs obtained from the
MSG-SEVIRI platform. The MSG-SEVIRI offers an independent method for analyzing the diurnal cycle
and variability at large scales. However, since the MSG-LST resolution is coarse (3 km), the comparison is
inevitably hindered by the considerable differences in scale (several orders of magnitude). In order to
better understand the mixed-pixel LST response, we classified the land use within the MSG pixel into crop
and desert using Sentinel 2 NDVI. Because each center pivot is enclosed by a surrounding desert, there is
a sharp NDVI contrast between the land use types (i.e., we classified crop as NDVI ≥ 0.12 and desert
as NDVI < 0.12). Approximately 84% of the MSG pixel was desert and/or bare soil for the December
campaign, and 89% for the January campaign (with a second well irrigated pivot within the MSG pixel).
Since NDVI was not directly retrievable from the UAV optical imagery, the surface type was classified
based on the previously calculated Pv estimates (Equation (5)). For the December campaign, 89% of
UAV pixels were classified as desert or bare soil compared with only 23% for the January campaign.
Given these values and the obvious differences in FOV between the MSG-SEVIRI and the UAV data, we
averaged the UAV-based radiances (prior to LST retrieval) for three types of comparison: all UAV-based
pixels, desert pixels only, and crop pixels only. In addition, a hypothetical LST was calculated to represent
the temperature that the UAV-based LST would be if the same surface composition of the MSG pixel was
maintained: i.e., LSThyp = LSTdesert × f ractiondesert + LSTcrop × f ractioncrop, where LSThyp is hypothetical
LST, LSTdesert is the desert LST and LSTcrop is the crop LST. This hypothetical LST allows for a consistent
comparison between MSG-based and UAV-based LST by taking into account the mixed-pixel response.

Figure 10 and Table 4 present the diurnal cycles and the statistics of the intercomparison between
UAV-based and MSG-SEVIRI based LST for all pixels, desert pixels only, vegetation pixels only, and a
hypothetical LST. As expected, given the strong diurnal variability, the UAV-based LST dynamic is
statistically consistent with the MSG-SEVIRI based LST for both campaigns, with R values generally
around 0.98–0.99. Given that the statistics are similar to those obtained in Section 3.1 and across both
campaigns, it suggests that both evaluations are robust and consistent. MAE and RMSE are low and
similar for both campaigns, with an MAE and an RMSE around 1 ◦C when excluding the results for the
harvested maize surface type only. The MAE and RMSE were higher for the harvested maize surface
type, a result of the MSG observing a much greater proportion of the desert (84%). However, the same
response is not reflected for the grass surface in the January campaign. This apparent disparity can be
explained by the MSG observing another pivot within the pixel that has a higher NDVI (approx. 0.30)
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than the NDVI observed in the UAV surveyed area (approx. 0.25). Consequently, the MSG-LST was
impacted by the vegetation condition of this pivot (well-irrigated) compared to the pivot observed
by UAV (i.e., wet vegetation appears colder than does dry vegetation). Thus, the MSG-LST appears
slightly colder, and so the MAE for the grass surface type is lower than it would be if this other pivot
was similar in vegetation conditions to the pivot being surveyed by the UAV. To assess the difference
between UAV-based and MSG-based LST throughout the diurnal cycle, the bias between MSG-LST
and the hypothetical-LST were computed across the day. The December campaign presents a bias of
1.7 ◦C, but these are again independent of the diurnal variation. The January campaign presents a
bias that is systematically positive, varying between 0–1.7 ◦C. Once again, the slight overestimation
of UAV-based LST can be explained by the second well irrigated pivot that is captured within the
MSG pixel. The inter-comparison of the diurnal LST cycle allows for an assessment of the spatial
and temporal consistency between UAV- and satellite-based LST. Regarding the agreement, it seems
that the coarse-scale MSG-LST can offer some important insights into land surface condition that are
consistent with ultra-high resolution UAV-based retrievals, at least in this particular environment.

Figure 10. Diurnal Meteosat Second Generation (MSG)-based LST, UAV-based LST for all observed
pixels (with error bars corresponding to standard deviation), UAV-based LST for desert pixels only,
UAV-based LST for pivot pixels only, and hypothetical LST during (a) the December and (b) the
January campaigns.

Table 4. An intercomparison between UAV-based and MSG-Spinning Enhanced Visible and Infrared
Imager (SEVIRI) based LST for all pixels, desert pixels only, vegetation pixels only, and a hypothetical
LST. R is the correlation coefficient, MAE is the mean bias and RMSE is the root mean square error.

Campaign Surface Type R MAE (◦C) RMSE (◦C)

December

all pixels 0.99 0.85 1.07
harvested 0.96 2.24 2.56

desert 0.99 1.04 1.25
hypothetical 0.98 0.87 1.13

January

all pixels 0.98 0.66 0.76
grass 0.98 0.88 0.97
desert 0.98 0.94 1.11

hypothetical 0.99 0.78 0.98
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4. Discussion

Recent developments in UAVs and lightweight thermal sensors have provided the capacity
to observe, at ultra-high resolution, the spatial patterns of LST throughout the day. The results
presented here indicate that these derived maps can identify the significant response differences
between harvested maize, grass and desert surfaces. As vegetation cover (and fraction) increases,
the diurnal LST variation decreases, as illustrated by the reduced heating of the grass relative to the
other surface types. The grass surface showed diverse behavior due to the changing evaporative
response throughout the day, while both the desert and harvested maize surfaces revealed similar
diurnal LST variations that were likely due to the change in LST being constrained by the available
water condition. In this latter case, any diurnal variation is likely a response to variations in solar
heating, shading, soil thermal properties, and other related surface characteristics.

In comparing UAV-based LST to in situ measurements (see Figure 4), the RMSE was generally
less than 0.7 ◦C over the grass surface and approximately 1.3 ◦C over others surfaces. LSTs have been
retrieved at an accuracy of 2 ◦C or better, suggesting they have utility for surface flux retrieval [14,32].
The differences in MAE and RMSE can likely be related to the heterogeneity of the harvested maize
surface (keeping in mind that there was only a single desert in situ station). Errors can also be
introduced by the emissivity estimates over the different surface types (between 0.2 and 0.4 ◦C) [70].
For example, the harvested maize presents as a challenging surface type to estimate emissivity when
only using vegetation fractional cover, as it is also influenced by surface features such as soil type
and roughness [12,61] which are not easily. There are also sun-surface geometry effects that have
not been included in this analysis, which may further impact the calculation of angular dependent
surface emissivity and LST values [71]. Additional investigation on the effect of using different
emissivity retrieval methods remains to be undertaken, as a relatively simple algorithm has been
employed here due to a lack of more detailed surface data. Retrieval improvements for determining
the emissivity are likely possible by incorporating near-infrared sensing (in addition to the thermal
sensor) and correcting sun-view geometry effects via use of a digital elevation model within a 3D
radiative transfer model. Cross-sensitivities between the thermal cameras retrieved temperature and
environmental variables can also introduce systematic errors to the measured thermal radiation values.
Temporal non-uniformity (i.e., a temperature-dependent drift problem) and spatial non-uniformity
(e.g., vignette effect) are likely to require consideration, although relatively little literature currently
exists on these effects [72].

Apart from errors associated with the LST retrieval and the UAV-thermal sensor itself, there are
also errors related to the underlying structure from motion process used to construct the ortho-rectified
UAV-based thermal maps. Studies have already reported that the SfM process struggles to stitch
thermal images into an accurate orthomosaic [49,73], since these contain reduced information compared
to RGB images, rendering the detection of common feature points more challenging. SfM is based
on both the images position and also the capacity to match pixels for georeferencing and correcting
image distortion. However, unlike RGB imagery, the LST can change rapidly during the course of
the flight collection (as shown here), and the same pixel can be observed with different temperature
depending on its position in the flight line (induced by the changing position of the sun and small-scale
micro-meteorological impacts). As such, this will inevitably induce an error into the estimated diurnal
LST response.

Irrespective of the numerous potential impacts on the accuracy of LST retrievals derived from
satellite, UAV or ground based sensors, the UAV-based LST diurnal analysis revealed insights into
surface response and behavior over this agricultural setting. For instance, the change in diurnal
LST can provide insight into the timing of plant water use among highly heterogeneous landscapes,
both natural and human-impacted. As mentioned by Fisher et al. [74], the deficiency of drought
predictive capabilities is due in large part to missing information on land–atmosphere coupling i.e.,
evapotranspiration, and an under-emphasis on the response of vegetation to drought. Consequently,
they recommend a need to resolve the diurnal cycle to support evapotranspiration responses and
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surface soil moisture status, and thus our knowledge on plant-water dynamics [75]. Moreover,
monitoring of plant water status is critical not only for early detection of stress, but also to detect
the diurnal irrigation deficit with the degree of precision needed [43]. Our findings highlight the
potential to utilize diurnal UAV-based retrievals to enhance investigations in precision agriculture,
detail hydrological processes at plant scale, and provide insights into coupled land–atmosphere
studies. Importantly, UAV-based LST retrievals provide a new pathway to inform upon diurnal
soil-vegetation-atmosphere processes and act as an intermediate resolution between ground
measurement and larger scale data satellite data.

What is clear from this analysis at very high resolution is that even in relatively homogeneous
conditions, LST can be quite variable in both space and time [76]. Indeed, this has made the
evaluation of satellite-based retrievals particularly difficult. In heterogeneous cases, the evaluation of
satellite products (such as MSG) requires extensive ground truthing, which is both costly and time
consuming and, in many cases, limited to specific calibration/validation areas and selected periods.
Evaluating LST from coarse-scale geostationary satellite data (or even moderate-resolution polar
orbiting platforms) remains a major challenge [11], notably due to the large mismatch between the
spatial resolution of spaceborne observations (3 km) and the representativeness scale (several cm) of
localized in situ measurements. To help address the scaling issues and to circumvent the difficulties
of direct comparison, we need approaches that bridge the gap between these incompatible scales.
The direct intercomparison with diurnal LST derived from the MSG-SEVIRI product illustrated a high
degree of consistency once the relative surface proportion within the MSG pixel were accounted for,
revealing a promising approach for improving the evaluation strategies of coarse-scale satellite-based
LST throughout the day. This analysis represents a first effort to compare diurnal satellite-based with
UAV-based LST. While illustrating promise, further intercomparison studies need to be undertaken
over more complex surfaces and for longer time periods than were examined in this preliminary
investigation. With the recent launch of the ECOSTRESS mission, UAVs may provide a potential
scaling tool to address the large disparity between the ~69 m cross-track by 38 m in-track spatial
resolution and in situ station data. The ECOSTRESS mission aims to explore the terrestrial biosphere
response (e.g., diurnal vegetation water stress) to changes in water availability by accurately measuring
the temperature of plants. UAVs, by being able to fly low and on demand, could act to bridge the
scaling gap between the fixed-point discrete ground-based observations and ECOSTRESS by providing
within-pixel estimates of spatial and temporal variability, while offering the opportunity to better
understand important scaling issues.

5. Conclusions

Rapid developments in UAV capabilities, particularly their ability to integrate miniaturized
sensors, provides a unique opportunity to observe the diurnal cycle at an unprecedented spatial and
temporal resolution. Here we present the first assessment of diurnal land surface temperature collected
from an unmanned aerial vehicle, focusing on a number of different landcovers within a dryland
agricultural setting. Analysis of the collected thermal imagery showed that the constructed LST maps
reflect a strong diurnal cycle that is consistent with expected behavior, but with considerable spatial
and temporal variability observed within and between the different landcovers. Results indicate that
UAV-based LST are consistent with both ground-based and satellite measurements, with an RMSE of
less than 1 ◦C. Numerous applications can benefit from information on the diurnal cycle of land surface
temperature, including multi-disciplinary studies in agriculture, hydrology and land–atmosphere
interactions. Furthermore, UAVs provide the opportunity for a new satellite evaluation strategy,
by overcoming the point-scale limitation of in situ sensors. However, there remain a number of
avenues requiring further examination, including: (1) sensor calibration, error characterization
and spatiotemporal non-uniformity corrections; (2) retrieval algorithm improvements for emissivity
impacts; (3) correcting LST for surface relief effects throughout the day (sun-angle geometry influence);
(4) identifying in-flight effects (i.e., wind-speed and ambient temperature) on the stability of sensors
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and retrieval accuracy; and (5) quantifying the impact of post-processing software on the georectified
surface temperature map. Overall, these results offer new insights into the dynamics of land surface
behavior in both dry and wet soil conditions and at spatiotemporal scales that are unable to be
replicated using traditional satellite platforms alone.
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