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Abstract: Leaf nitrogen concentration (LNC) is a significant indicator of crops growth status, which is
related to crop yield and photosynthetic efficiency. Laser-induced fluorescence is a promising
technology for LNC estimation and has been widely used in remote sensing. The accuracy of
LNC monitoring relies greatly on the selection of fluorescence characteristics and the number of
fluorescence characteristics. It would be useful to analyze the performance of fluorescence intensity
and ratio characteristics at different wavelengths for LNC estimation. In this study, the fluorescence
spectra of paddy rice excited by different excitation light wavelengths (355 nm, 460 nm, and 556 nm)
were acquired. The performance of the fluorescence intensity and fluorescence ratio of each band
were analyzed in detail based on back-propagation neural network (BPNN) for LNC estimation.
At 355 nm and 460 nm excitation wavelengths, the fluorescence characteristics related to LNC were
mainly located in the far-red region, and at 556 nm excitation wavelength, the red region being an
optimal band. Additionally, the effect of the number of fluorescence characteristics on the accuracy of
LNC estimation was analyzed by using principal component analysis combined with BPNN. Results
demonstrate that at least two fluorescence spectral features should be selected in the red and far-red
regions to estimate LNC and efficiently improve the accuracy of LNC estimation.

Keywords: laser-induced fluorescence; leaf nitrogen concentration; back-propagation neural network;
principal component analysis; fluorescence characteristics

1. Introduction

Chlorophyll is an essential factor in crop photosynthesis, and nitrogen (N), a main element
in chlorophyll, can favorably affect the growth and quality of crops. Leaf nitrogen concentration
(LNC) is a key indicator of the N nutrition in crops, and scientific N fertilization measurements
can be obtained by monitoring the LNC [1,2]. Thus, estimating leaf nitrogen concentration (LNC)
accurately and nondestructively is important for the accurate diagnosis and quality evaluation of plant
growth status [3,4]. The development of remote sensing has made it a significant tool for monitoring
plant growth at the leaf, canopy, and landscape levels [5–8]. Many researchers have investigated
hyperspectral remote sensing and found a certain difference among the sensitive bands of the LNC
for different crops [9–11]. Moreover, the optimal bands will vary at different growth stages of the
same crops [12]. Therefore, chlorophyll fluorescence was proposed and utilized for monitoring crop
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growth status. Chlorophyll fluorescence has shown to be a promising technology for monitoring crop
growth status.

Variable chlorophyll fluorescence (or Kautsky kinetics) posits that fluorescence intensity changes
with time at a certain wavelength. These fluorescence characteristics are mainly used to monitor the
photosynthesis of crops [13–15]. However, Kautsky kinetics are seldom utilized in the monitoring of N
status or other agricultural application due to limitations such as the requirement of a fixed distance
of measurement and the need for dark-adaption 15 min before measurement [16]. Thus, Tartachnyk
and Rademacher [17] suggested that laser-induced chlorophyll fluorescence (LICF) is more conducive
to monitoring the N status of crops compared with Kautsky kinetics. Laser-induced fluorescence
(LIF) spectra contain abundant spectral information. Fluorescence intensity will be related to different
nutrient stresses [14]. Owing to its rapid, non-destructive, and high sensitivity properties, LICF has
been widely utilized in monitoring N fertilizer levels in crops [8,18–20].

Subhash and Mohanan [21] pointed out that the fluorescence intensity ratios F690/F725nm and
F690/F705nm have great potential for remote sensing-based monitoring of the effect of nutrient
stress on paddy rice growth status. Some research analyzed the monitoring ability of LICF for
crop nutrition stress and proposed that the fluorescence ratio F685/F730 is mainly related to
foliar chlorophyll concentration when no significant reduction in chlorophyll concentration has
occurred [22,23]. Gu et al. [24] analyzed the fluorescence characteristics of rice, which has suffered
flooding and waterlogging, and demonstrated that LICF can also be used to analyze water stress in
crops. Anderson et al. attempted to estimate the cowpea (Vigna unguiculata (L.) Walp) yield based
on the LICF characteristics and found that the fluorescence characteristics were sensitive to change
in photosynthetic activity [25]. Yang et al. [26,27] discussed the performance of the LICF for LNC
estimation in paddy rice with the support vector machine and back-propagation neural network
(BPNN) models. However, studies about the performance of chlorophyll fluorescence intensity or
fluorescence ratios of each band for LNC estimation are still sparse. In addition, LIF contains large
amounts of spectral information, and studies are lacking on the correct number of fluorescence
characteristics that should be selected from the fluorescence spectrum to estimate LNC. Thus, the main
target of the present study is to analyze the performance of the fluorescence intensity and fluorescence
ratio of each band for LNC estimation in paddy rice with different excitation light wavelengths.
Additionally, the effect of the number of fluorescence characteristics on the accuracy of LNC estimation
was discussed by using principal component analysis (PCA) combined with BPNN.

2. Materials and Methods

2.1. Materials and Experimental Design

The paddy rice variety Yangliangyou 6 was cultivated in Huazhong Agricultural University,
Wuhan City in the province of Hubei, China (Figure 1). The rice was seeded on 30 April 2018,
and transplanted to the field on 27 May 2015. Four levels of urea fertilizer (0, 120, 180, 240 kg/ha) were
used and divided into three splits (60% at seeding, 20% at tillering and 20% at shooting). In addition,
the experimental field had a randomized complete block design with three replications for each
treatment under the same cultivation conditions. In each plot, nine fully expanded second leaves
from the top were gathered randomly with three replicates for each experimental field on 26 July
2018, providing a total of 324 samples. The fresh leaf samples were sealed in plastic bags, stored in ice
chests, and then transported to the laboratory for fluorescence measurement. During the fluorescence
measurement, the samples were held on a black paperboard, which is a non-fluorescent material [28].
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laser emission, optical receiver, and fluorescence signal detection [26]. Generally, the fluorescence 
is emitted in a longer wavelength region than the excitation wavelength and chlorophyll fluorescence 
is mainly located in 600–800 nm region [29]. Therefore, 355 nm (ultraviolet), 460 nm (blue), and 556 
nm (red) excitation lights were used in the present study to induce plant fluorescence. The 355 nm 
excitation light source is a neodymium-doped yttrium aluminum garnet laser. The 460 nm and 
556 nm lasers used were made by Spectra-Physics. The excitation light was irradiated on the surface 
of the samples at a near 90° angle, and the emitted fluorescence was collected using the convex lens 
at a near 90° angle on the same side. In addition, a long-pass filter (Semrock BLP01-355R-25 with 
the edge of 361 nm and the 93% transmittance at 364.9–900 nm for 355 nm excitation light; and 
LP02-633RE-25 with the edge of 633 nm and the 93% transmittance at 636.9–1427.4 nm for 460 and 
556 nm excitation light sources) was placed before the optical fiber probe and was utilized to reduce 
the reflected light from the laser entering system. Then, the fluorescence signal entered the 
spectrometer (Princeton Instrument SP2500i with the spectral resolution of 0.5 nm) by using the 
single-mode optical fiber with a diameter of 200 µm and was detected by an intensified charge-
coupled device camera. Fluorescence data was stored in a personal computer for subsequent analysis. 
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556 nm); ICCD, intensified charge-coupled device. 

Figure 1. Location of experimental fields, Huazhong Agricultural University in Wuhan, Hubei
province, China.

2.2. Measurement of Fluorescence Spectra

The system utilized for LIF measurement consists of three main parts (Figure 2), including the laser
emission, optical receiver, and fluorescence signal detection [26]. Generally, the fluorescence is emitted
in a longer wavelength region than the excitation wavelength and chlorophyll fluorescence is mainly
located in 600–800 nm region [29]. Therefore, 355 nm (ultraviolet), 460 nm (blue), and 556 nm (red)
excitation lights were used in the present study to induce plant fluorescence. The 355 nm excitation
light source is a neodymium-doped yttrium aluminum garnet laser. The 460 nm and 556 nm lasers
used were made by Spectra-Physics. The excitation light was irradiated on the surface of the samples
at a near 90◦ angle, and the emitted fluorescence was collected using the convex lens at a near 90◦ angle
on the same side. In addition, a long-pass filter (Semrock BLP01-355R-25 with the edge of 361 nm and
the 93% transmittance at 364.9–900 nm for 355 nm excitation light; and LP02-633RE-25 with the edge
of 633 nm and the 93% transmittance at 636.9–1427.4 nm for 460 and 556 nm excitation light sources)
was placed before the optical fiber probe and was utilized to reduce the reflected light from the laser
entering system. Then, the fluorescence signal entered the spectrometer (Princeton Instrument SP2500i
with the spectral resolution of 0.5 nm) by using the single-mode optical fiber with a diameter of 200 µm
and was detected by an intensified charge-coupled device camera. Fluorescence data was stored in a
personal computer for subsequent analysis.
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The fluorescence spectral regions were 360–800 nm, 640–790 nm, and 640–800 nm for the 355 nm,
460 nm and 556 nm excitation lights. The sample interval was 0.5 nm. After the fluorescence spectra
was measured, all samples were immediately carried to the Wuhan Academy of Agricultural Science
and Technology for LNC analysis. The standard Kjeldahl method was utilized to determine LNC in
the present study [3]. Firstly, these samples were cut into pieces and oven-dried at 105 ◦C for 30 min
and then at 80 ◦C until constant weight for chemical analysis. Then, those pigments soluble in organic
solvents were extracted from leaves in acetone for 12 h in the dark at room temperature. The detailed
description of standard Kjeldahl method can be found in reference [30].

2.3. Back-Propagation Neural Network

BPNN is a kind of feedforward network with the advantage of self-adaption and self-learning
with good performance and has been widely utilized in solving various nonlinear problems. A BPNN
model usually consists of three layers, namely, input, hidden, and output layers. The weight of the
neurons can be adjusted based on the errors between the target output values and measured values.
The training process of BPNN model involves updating the weights until the average sum squared
error of the training dataset is minimized within the specified tolerance. A brief introduction about
BPNN can be referred to in a previous study [31,32]. The fluorescence characteristics of each excitation
light were randomly divided into two datasets, namely, 70% as the training dataset and another 30%
as the validation set for LNC prediction [32,33]. In the BPNN model, the fluorescence characteristics
served as the input parameter to train the model, and the LNC responded to the output parameters.
The coefficient of determination (R2) between the predicted and measured LNC, the root mean square
error (RMSE), and the relative error (RE) were utilized in this study to assess the performance of
fluorescence characteristics for LNC estimation. Each characteristic setting was repeated 100 times
based on the BPNN model, and the average was obtained.

2.4. Principal Component Analysis

The fluorescence spectra contain spectral information with hundreds of bands that provide
high dimensionality that is usually much higher than the number of available training samples.
Furthermore, the high-dimensional fluorescence spectra have significant redundancy, because large
autocorrelation between adjacent variables is observed. PCA as a tool for dimensionality analysis
can efficiently extract the main characteristic variables without any notable loss of information from
hundreds or thousands spectral bands [34]. In the process of spectral analysis by using the PCA,
the eigen values and eigen vectors of covariance matrix composed of fluorescence spectra were first
calculated. Then, multi-dimensional data vectors were mapped from the spectral space to a new
orthogonal space using the principal components (PCs). The new variables were calculated based on
the combination of the original spectra [35].

wi =
k

∑
j=1

p2 (
Xj, Yi

)
(1)

where, Xj is the PC, Yi represents the original values at ith bands, wi corresponds to the sum of the kth
PC for the ith wavelength, and P is the loading weight of the latent variables. Thus, the analysis can be
efficiently simplified using fewer calculated variables than the original ones [33].

3. Results

3.1. Fluorescence Spectrum

Figure 3 shows the fluorescence spectrum of paddy rice leaf excited by 355 nm laser.
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Figure 3. Paddy rice foliar fluorescence spectrum excited by 355 nm excitation light.

The fluorescence spectrum displayed three main fluorescence peaks at 460, 685, and 740 nm, and a
peak shoulder at 525 nm (Figure 3). According to previous research works, chlorophyll fluorescence
mainly focuses on the wavelength ranges from 600 and 800 nm and peak centering at 685 and 740 nm.
The fluorescence peak at 740 nm is attributed to the antenna chlorophyll of Photosystems I and
II. Another fluorescence peak at 685 nm corresponds to Chlorophyll a, which is associated with
Photosystem II [36]. The fluorescence peak shoulder at 525 nm and the peak at 460 nm are attributed
to riboflavin and nicotinamide adenine dinucleotide, respectively [37,38]. Figure 3 also shows that the
chlorophyll fluorescence at 685 nm is lower than that at 740 nm [18,39]. As the chlorophyll fluorescence
is related to the biochemical content of the leaf, it can be applied to remote sensing monitoring and has
been identified as a promising technology in the quantitative monitoring of remote sensing.

3.2. LNC Estimation Based on Fluorescence Spectra

To analyze the predictive ability of the fluorescence spectra for monitoring LNC in paddy
rice, the BPNN algorithm was used to inversely predict LNC based on the fluorescence spectra.
The relationship between the measured and predicted LNC were established and illustrated in Figure 4.
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Figure 4. Relationship between the measured and predicted LNC by using BPNN based on fluorescence
spectra with different excitation light wavelengths. (a) 355 nm, (b) 460 nm, (c) 556 nm. The blue dotted
line is the 1:1 line. The red solid line is the linear regression.

The results of the comparison among the R2 values in Figure 4 shows that the fluorescence
spectra exhibit a promising potential for revising LNC, and the overall R2 exceeds 0.76. The red
solid line denotes the linear regression analysis results between the predicted and measured LNC.
For 355 nm (R2 = 0.832) and 556 nm (R2 = 0.821) excitation lights, the inversion results show better
predictive performance, having higher R2 and lower RMSE and RE than those for 460nm (R2 = 0.766)
excitation light.

3.3. Performance of Each Band’s Fluorescence Intensity for LNC Estimation

The sampling interval of the fluorescence spectrum is 0.5 nm for the three excitation light
wavelengths. The fluorescence spectra contain a large number of spectral bands, which may be
autocorrelated between adjacent bands. To discuss the performance of the fluorescence intensity
of each band for estimating LNC, the fluorescence characteristics of each band were used as the
input parameter to train the BPNN model to estimate LNC. Each setting was repeated 100 times
and the average of R2 was obtained for every band performance assessment in the LNC estimation.
This method can eliminate the local optimum effect of the internal parameters on the BPNN model.
The R2 between the measured and predicted LNC based on the fluorescence characteristic of a single
wavelength with different excitation light wavelengths is shown in Figure 5.
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the input parameter to train the BPNN model for different excitation light wavelengths. (a) 355 nm,
(b) 460 nm, (c) 556 nm.

As shown in Figure 5, different bands exhibited different performances in the LNC estimation.
For 355 nm excitation light, the chlorophyll fluorescence from 670 nm to 750 nm displayed better
performance (R2 > 0.70) in LNC estimation based on the BPNN model than the other bands. For 460 nm
excitation light, the optimal fluorescence bands mainly focus on the near 735 nm with the R2 more
than 0.65. For 556 nm excitation light, the optimal fluorescence bands are located near 685 nm, and the
R2 is more than 0.7. Thus, the fluorescence characteristics of paddy rice, which can be used to estimate
LNC, were mainly located in the red and far-red fluorescence spectral regions.

3.4. Performance of Fluorescence Ratio for LNC Estimation

To analyze the optimal fluorescence characteristics band ratios for estimating paddy rice LNC,
further analysis was done on the performance of fluorescence ratios for LNC estimation based on the
BPNN model by using datasets with different excitation light wavelengths (Figure 6).

Figure 6 shows the equipotential graphs of R2 between the measured and predicted LNC with
the two wavelengths on the vertical axis and the abscissa with different excitation light wavelengths.
An overview of the statistical consequence for the performance of all fluorescence ratios was also
provided. For 355 nm excitation light, the fluorescence ratio between red and blue wavelengths
displayed higher R2 than other ratios for estimating LNC. For the 460 and 556 nm excitation lights,
the fluorescence ratios between far-red and red wavelengths exhibited higher R2 than other ratios for
estimating LNC. Thus, the chlorophyll fluorescence characteristics ratio located at the red and far-red
regions showed better performance for LNC estimation than other regions.

3.5. LNC Estimation Based on PCA

3.5.1. Accumulative Variance Analysis

PCA was utilized for the analysis of the internal correlation and reduction of dimensionality of
the fluorescence spectra. The most significant characteristic variables were extracted, because the
fluorescence spectra contain large amounts of information, which may influence its performance in
the LNC estimation. The cumulative variance changes with PC are shown in Figure 7. Apparently,
the cumulative variance with additional PC was increased slightly when the number of PCs exceeded
four (Table 1).
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Table 1. Percentages of explained variance for the first four principal components (PCs) with different
excitation wavelengths.

355 nm 460 nm 556 nm

Eigen
Values

Explained
Variance

Eigen
Values

Explained
Variance

Eigen
Values

Explained
Variance

PC1 11.05 80.95% 4.08 66.24% 4.98 75.88%
PC2 1.26 15.94% 1.08 17.18% 0.52 14.24%
PC3 0.13 1.02% 0.58 9.37% 0.28 4.71%
PC4 0.08 0.61% 0.18 2.94% 0.12 1.64%

According to previous research, the first four PCs were mainly attributed to the red and far-red
regions [26]. For 355 nm excitation light, the PC3 contains the blue region, but the rate of contribution
was less than 2%. Additionally, other PCs contained less spectral information, which is related to
LNC that can be ignored and will not influence the performance of the extracted characteristics for
estimating LNC.
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3.5.2. Performance of New Variables for LNC Estimation

Then, the new variables were calculated based on each PC and used to estimate LNC based on
the BPNN model. The R2 between the measured and predicted LNC changed with the number of new
variables (Figure 8).
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As shown in Figure 8, the trend in R2 changes consistently with the number of variables at
different excitation light wavelengths. R2 first increased with increasing the number of variables,
and then decreased when the number of variables was over four or five. For 355 nm excitation light,
the variable number is four when the R2 reached maximum. For 460 nm and 556 nm excitation light,
the R2 exhibited the same tendency. Thus, the increase of explained variance with additional PC
will be reduced to less than 1%, which means that the new calculated variable contains less spectral
information than the raw variables. In addition, the results also demonstrated that the fluorescence
spectra contain a large amount of information, which will influence the LNC estimation.

3.5.3. Estimation of LNC Based on Calculated Variables

The first four PCs were utilized for further study. The new variables calculated based on PC were
provided as input parameters for training the BPNN model. The scatter plots between the measured
and predicted LNC were established via linear regression analysis (Figure 9).
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As shown in Figure 9, the performance of new variables calculated through PCA for monitoring
LNC was analyzed for different excitation light wavelengths. The solid line represents the
linear regression analysis that denotes the correlation between the predicted and measured LNC.
The inversion results demonstrated that PCA can efficiently extract the fluorescence spectral
characteristics for LNC estimation with high R2 and low RMSE, and RE values. All the R2 values
exceed 0.80 and can reach up to 0.86. Therefore, the extracted fluorescence characteristics located at
red and far-red region can be effectively utilized to estimate LNC.

4. Discussion

LNC is a significant indicator for estimating crop growth status. A large number of correlational
studies have been done by using passive and active remote sensing technologies. Plant fluorescence
emitted by the chlorophyll in the leaf, which is related to photosynthetic pigments, can be affected by
LNC. In addition, the molecular structure of chlorophyll contains a porphyrin ring structure which
is consisted of carbon©, oxygen (O), and N. Thus, fluorescence can be utilized in the estimation of
the biochemical content of the leaf [40,41]. Most recently, related studies have been conducted on the
application of LIF [42] to monitor the biochemical content of crops. In the present study, we mainly
discussed the effect of fluorescence characteristics on the LNC estimation and provided a guide for the
selection of fluorescence characteristics.

Chlorophyll fluorescence displayed two main fluorescence peaks, and the fluorescence peak at
685 nm is less intensive than that at 740 nm (Figure 3). The reason is that the fluorescence emitted
between 680 and 695 nm was more strongly reabsorbed by the chlorophyll pigment in the upper
layer leaf cells than the fluorescence emitted between 730 and 750 nm. Thus, chlorophyll pigment
had little influence on the fluorescence peak at 740 nm [39]. The fluorescence spectra excited by
different excitation light wavelengths exhibited different performance for the LNC estimation (Figure 4).
The results showed that 355 nm and 556 nm excitation lights are superior to 460 nm excitation light in
the LNC estimation. The possible interpretation may be that fluorescence spectrum excited by 355 nm
excitation light contains more fluorescence characteristics (360–800 nm), and that excited by 556 nm
excitation light can penetrate deeper in the leaf than other excitation lights [26,43]. Furthermore,
the absorption of foliar pigment may also influence the excitation light in the inner leaf influencing the
performance of fluorescence characteristics for the LNC estimation.

The fluorescence spectrum contained large amounts of spectral information, and the red and
far-red regions exhibited good performance in estimating LNC (Figure 5). This result is mainly
because a large autocorrelation between different bands exists, and the two adjacent bands carry
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similar fluorescence information. Thus, fluorescence characteristics can be selected from the near
fluorescence peaks at 685 nm and 740 nm to estimate LNC and are not just limited to the fluorescence
characteristics peaks. For 355 nm and 460 nm excitation lights, the fluorescence can be chosen from
the far-red region for LNC estimation, and for 556 nm excitation light, the red region may be the
optimal band. The results of PCA showed that the first three PCs can explain more than 90% of the
spectral information with different excitation light wavelengths (Figure 7). However, the trend of R2

changes with variable number by increasing and then decreasing when the number of fluorescence
characteristics was over four or five (Figure 8). PCA can extract significant spectral information,
and the increase of explained variance will be small with an increase of PC number. In addition,
when additional PCs cannot provide more information than raw spectral information, the performance
of the extracted fluorescence characteristics will decrease in their ability to estimate LNC. Thus, when
the number of PCs exceeded four or five, the R2 will decrease with an increase of variable number.
However, to improve the inversion accuracy of the LNC, selecting at least two fluorescence spectral
features in the red and far-red region, respectively, is necessary. Related investigation showed that the
extracted fluorescence characteristics were mainly located at the red and far-red regions, which can
be effectively applied to LNC estimation (Figure 9) [26]. In addition, the selection of fluorescence
characteristics is not just limited in the fluorescence characteristic peaks at 685 nm and 740 nm for
LNC estimation. The fluorescence characteristics, which are located in the red and far-red regions
(660–770 nm), can be also efficiently applied to LNC estimation [44].

In this study, a detailed analysis of the performance of the fluorescence spectral characteristics of
each band for LNC estimation was conducted based on BPNN. However, some limitations should
be considered for further studies. For the BPNN, although each setting was repeated one hundred
times and the average was obtained to eliminate the local optimum effect of the internal parameters of
the BPNN model, the optimal network architecture also needs to be analyzed. Furthermore, the effect
of the number of fluorescence characteristics on the reversion performance was discussed in detail.
Selecting the number of optimal fluorescence characteristics for LNC estimation also needs to be
addressed in further studies. In addition, the effect of the spectral sampling interval and the type
of crops on the performance of fluorescence characteristics for estimating LNC will be a promising
study direction.

5. Conclusions

In this study, the performance of the fluorescence characteristics and fluorescence ratio of each
band for the LNC estimation were analyzed in detail based on the BPNN model combined with PCA.
Furthermore, the effect of the number of fluorescence characteristics on the accuracy of LNC estimation
was also analyzed. The results demonstrated that the fluorescence characteristic, which is related to
the LNC, is mainly located in the red and far-red regions, and the latter is superior to the former for
LNC monitoring. For 355 nm and 460 nm excitation lights, the fluorescence characteristics can be
chosen from the far-red region for LNC estimation, and for 556 nm excitation light, the red region is
optimal. Thus, the selection of fluorescence characteristics is not just limited in the fluorescence peaks
for LNC estimation. What’s more, this study found that selecting at least two fluorescence spectral
features in the red and far-red regions is necessary for LNC estimation. Additional research will be
conducted to extend the results to different crop varieties.
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