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Abstract: A new algorithm for the estimation of atmospheric temperature (T) and water vapor
(WV) vertical profiles in nonprecipitating conditions is presented. The microwave random forest
temperature and water vapor (MiRTaW) profiling algorithm is based on the random forest (RF)
technique and it uses microwave (MW) sounding from the Advanced Technology Microwave Sounder
(ATMS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. Three different
data sources were chosen for both training and validation purposes, namely, the ERA-Interim from
the European Centre for Medium-Range Weather Forecasts (ECMWF), the Infrared Atmospheric
Sounding Interferometer Atmospheric Temperature Water Vapour and Surface Skin Temperature
(IASI L2 v6) from the Meteorological Operational satellites of the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT), and the radiosonde observations from the
Integrated Global Radiosonde Archive (IGRA). The period from 2012 to 2016 was considered in the
training dataset; particular attention was paid to the instance selection procedure, in order to reduce
the full training dataset with negligible information loss. The out-of-bag (OOB) error was computed
and used to select the optimal RF parameters. Different RFs were trained, one for each vertical level:
32 levels for T (within 10–1000 hPa) and 23 levels for WV (200–1000 hPa). The validation of the
MiRTaW profiling algorithm was conducted on a dataset from 2017. The mean bias error (MBE) of
T vertical profiles ranges within about (−0.4–0.4) K, while for the WV mixing ratio, the MBE starts at
~0.5 g/kg near the surface and decreases to ~0 g/kg at 200 hPa level, in line with the expectations.

Keywords: microwave; sounding; vertical profile; temperature; water vapor; random forest; OOB;
ERA-Interim; IASI; IGRA
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1. Introduction

The Advanced Technology Microwave Sounder (ATMS) is a cross-track scanning microwave (MW)
radiometer currently flying onboard the Suomi National Polar-orbiting Partnership (SNPP) and the
National Oceanic and Atmospheric Administration NOAA-20 satellite missions. ATMS provides MW
passive observations, useful to retrieve temperature (T) and water vapor (WV) atmospheric vertical
profiles [1,2], among other products. These profiles play an important role in atmosphere monitoring
and they are routinely used for climate applications and operational weather prediction [3,4]. The WV
is the dominant greenhouse gas and it can amplify the climate sensitivity to external forcing [5,6],
while the T long-term variability helps to identify and to quantify global warming and climate
change [7]. Although profiles are not commonly assimilated into numerical weather prediction
models—as direct assimilation of satellite radiances is preferred nowadays [8]—sounding retrievals
have been successfully exploited in weather monitoring, e.g., to characterize the stability and boundary
layer structure [9], or in nowcasting applications to improve hurricane and typhoon forecasting [10–12].

The retrieval of T and WV vertical profiles from passive MW observations is an inverse problem,
highly nonlinear and ill-posed [13], whose solution has led to the development of several methods.
The first algorithms developed in the 1980s were based on statistical multivariate regression methods
and were applied to simulated data [14,15]. In the following two decades, the most efficient neural
network-based techniques were developed by using both simulations [16] and remote sensing
data [17–19]. At the same time, optimal estimation methods were proposed, which estimate the vertical
profiles with an iterative scheme starting from an a priori state of the atmosphere and varying it at
each iteration, until convergence between observed brightness temperature (BT) and forward model
simulations is reached [20–23].

It must be noted that the spatial resolution of T and WV atmospheric profiles obtained from
satellite remote sensing at MW frequencies is much coarser than that obtained from infrared (IR)
frequencies [24]. However, MW profiling is particularly useful because it is less cloud-sensitive
than IR, allowing for retrievals below cloud tops, at least in nonprecipitating conditions. Indeed,
IR radiation is not able to penetrate the cloud cover [25,26] due to scattering by cloud droplets, whereas
MW is significantly affected only by large raindrops and ice particles [27,28], and thus can observe
through nonprecipitating clouds. On the other hand, IR profiling allows higher horizontal and vertical
resolution; for this reason, the combined use of IR frequencies in clear sky and MW frequencies in
nearly-all-weather conditions is in general a good strategy to retrieve the best T and WV atmospheric
profiles globally [29].

In this paper, we propose a new algorithm, based on a random forests (RF) regression
technique [30,31] and ATMS BT observations; it exploits the relatively small data dimensions of
MW soundings and their ability to penetrate the cloud cover to provide T and WV vertical profiles in
reasonable time and nearly-all-weather conditions. The microwave random forest temperature and water
vapor (MiRTaW) profiling algorithm is meant for near-real-time purposes, where fast estimations are
required, or for intensive applications such as climatological estimations, algorithm validations, or for
any other circumstance where vertical profiles are required on large areas and for extended periods of
time. Particular attention has been paid to the robustness of the algorithm, by considering different
data sources for the training database and extending it to cover as many physical conditions as possible,
while keeping an acceptable computational cost. In detail, the following sources were considered
for training purposes: (i) global atmospheric reanalysis from the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim [32,33], (ii) the Infrared Atmospheric Sounding Interferometer
(IASI) Atmospheric Temperature Water Vapour and Surface Skin Temperature (IASI L2 v6 product) from
the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological
Operational satellites [34,35], and (iii) the radiosonde observations from the Integrated Global Radiosonde
Archive (IGRA) Version 2 [36,37]. ERA-Interim is a simulation dataset that provides regular and
global coverage; conversely, IASI L2 v6 is based on satellite retrieval, offering a wide coverage only
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in clear-sky conditions; finally, IGRA offers the strength of radiosonde direct measurement, though
sparsely distributed with coarse temporal and spatial resolutions.

The paper is organized as follows. Section 2 describes the ATMS instrument and the different
sources of T and WV vertical profiles; it also introduces the basic concept of the RF algorithm. Section 3
explains the rationale of the MiRTaW profiling algorithm, paying particular attention to the strategies
adopted for the training database sampling. Section 3 also describes the approach used to select the
optimal RF inputs and parameters. Section 4 shows the results of the proposed retrieval algorithm,
Section 5 discuss these results, and Section 6 draws conclusions and provides hints for future work.

2. Materials and Methods

This paper presents a random forest approach to profiling atmospheric temperature and water
vapor by MW passive observations. Random forest is a machine learning technique and as such is
sensitive to the error of the training dataset. In order to mitigate this effect, three different sources
of data, ERA-Interim, IASI L2 v6, and IGRA, were used simultaneously in the training procedure.
In the lack of a priori knowledge stating the best reliability of one source with respect to others,
Appendix A provides a detailed intercomparison among the adopted datasets, properly colocated in
time and space, showing non-negligible differences, but no evidence of trends or biases. On the other
hand, the simultaneous use of three different sources sets an upper limit for the performances that
can be expected from the developed algorithm, which will likely not exceed those exhibited by the
datasets among themselves.

2.1. ERA-Interim Simulation

ERA-Interim is a global atmospheric reanalysis produced by ECMWF [32,33]; it covers the period
from 1 January 1979 onwards, with four analyses per day at 00:00, 06:00, 12:00, and 18:00 UTC.
With regard to the horizontal resolution, some parameters are archived as spherical harmonic spectral
coefficients with a triangular truncation at wave-number 255, while the others are archived on the N128
reduced Gaussian grid [38], which consist of 256 latitude intervals spaced of about 0.7◦, and variable
longitude intervals spaced of about 70 km for |latitude| < 80◦ which decrease down to ~20 km in the
highest latitudes, in order to have an equivalent horizontal resolution ranging from ~20 to ~80 km
for both representations. With regard to the vertical levels, ECMWF stores ERA-Interim “upper air”
parameters on 60 full model levels and/or 37 standard pressure levels, from the surface up to 0.1
hPa and 1 hPa, respectively. Using the ECMWF Meteorological Archival and Retrieval System, both T
and WV vertical profiles are obtained at (0.75 × 0.75)◦ (latitude × longitude) spatial resolution, as
recommended by ECMWF. All the four analyses per day in the period 2012–2017 were downloaded,
amounting to approximately 0.5 Tb of data.

2.2. IASI L2 v6 Product

EUMETSAT produces and provides T and WV vertical profiles obtained using the IASI
sounder with the colocated microwave measurements from Advanced Microwave Sounding Unit-A
and Microwave Humidity Sounder, when available (http://eoportal.eumetsat.int/discovery/Start/
DirectSearch/Extended.do?f(r0)=EO:EUM:DAT:METOP:IASIL2TWT, last access August 2018). IASI is
a cross-track spectrometer, with an angular span of ±48.33◦ relative to nadir and a swath of 2200 km,
composed of 30 elementary field of view, sampled every (3.3 × 3.3)◦, each of them composed of 2 × 2
instantaneous field of view (IFOV) with 12 km nadir resolution at sub-satellite point (s.s.p.) and about
(39 × 20) km resolution (cross-track × along-track) at the edge of the scan line [35,39]. Since the end of
2014, the IASI L2 v6 version provides T and WV vertical profiles at 101 pressure levels for single IASI
IFOV horizontal resolution. For this study, all the available soundings in the range 2015–2017 were
considered and downloaded, a size of approximately 2 Tb of data stored in more than 3·× 104 Network
Common Data Form (NetCDF) files.

http://eoportal.eumetsat.int/discovery/Start/DirectSearch/Extended.do?f(r0)=EO:EUM:DAT:METOP:IASIL2TWT
http://eoportal.eumetsat.int/discovery/Start/DirectSearch/Extended.do?f(r0)=EO:EUM:DAT:METOP:IASIL2TWT
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2.3. IGRA Observations

The IGRA database consists of radiosonde and pilot balloon observations from about 2700 globally
distributed stations since 1905. In the last 6 years (2012–2017), atmospheric variables such as pressure,
temperature, and relative humidity, at both standard and variable pressure levels, have been measured
in about 800 stations. The vertical extent and resolution vary among stations and over time. Even if
the temporal resolution is variable, about 95% of the soundings are recorded at 00:00 and 12:00 UTC.
Figure 1 shows the location of all the stations used in this study, for which all the available soundings
in the period 2012–2017 were considered and downloaded, for about 20 Gb of data stored in about
5·103 ASCII files.
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Figure 1. Location of the stations considered in the Integrated Global Radiosonde Archive (IGRA) database
and involved in the training procedures.

2.4. ATMS Instrument

The ATMS is one of the most advanced MW cross-track scanner radiometers. It operates at
22 channels, providing passive observations in the oxygen absorption band at 50–58 GHz—ranging
from the surface to the upper stratosphere (∼1 hPa, ∼45 km)—and in the water vapor absorption
bands at 23 GHz and 183 GHz—from the surface to the upper troposphere (∼200 hPa, ∼15 km)—as
well as in three atmospheric window frequencies [40–43]. Each scanline is composed of 96 FOVs,
sampled every 1.11◦, with an angular span of ±52.77◦ relative to nadir and a swath of 2600 km.
Channels 1–2 (23.8 and 31.4 GHz) have a 5.2◦ beamwidth and channels 3–16 (50.3–57.29 and 88.2 GHz)
have a 2.2◦ beamwidth, while channels 17–22 (165.5–183.3 GHz) have the highest spatial resolution,
with a beamwidth of 1.1◦. As it results from the scan geometry, the corresponding resolutions are
respectively about 75, 32, and 16 km at sub-satellite point, while about 323 × 142 km, 137 × 60 km,
and 68 × 30 km (cross-track × along-track) at the scan boundary. Table 1 shows the frequencies of all
the channels with their main characteristics, including the pressure level where the weighting function
(WF) peaks at U.S. standard atmospheric conditions [44]. In this study, BTs observed by the ATMS
onboard the SNPP satellite mission are considered, available since November 2011. The ATMS is also
flying aboard NOAA-20, but only since November 2017, so these observations are not considered here.
Using the www.class.noaa.govwebsite (last access August 2018), all the ATMS geolocated sensor data
records for the years 2012–2017 were downloaded, making a total of about 1 Tb of data stored in more
than 4·105 Hierarchical Data Format (HDF) files.

www.class.noaa.gov website
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Table 1. ATMS (1) channel characteristics.

Channel Central Frequency [GHz] Beam Width [deg] Resolution at s.s.p. (2) [km] NE∆T (3) [K] Peak WF (4) [mb]

1 23.8 5.2 ∼75 0.5 1085.394
2 31.4 5.2 ∼75 0.6 1085.394
3 50.3 2.2 ∼32 0.7 1085.394
4 51.76 2.2 ∼32 0.5 1085.394
5 52.8 2.2 ∼32 0.5 891.7679
6 53.596 ± 0.115 2.2 ∼32 0.5 606.847
7 54.4 2.2 ∼32 0.5 351.237
8 54.94 2.2 ∼32 0.5 253.637
9 55.5 2.2 ∼32 0.5 165.241

10 57.2903 2.2 ∼32 0.75 86.337
11 57.2903 ± 0.217 2.2 ∼32 1.0 49.326
12 57.2903 ± 0.322 ± 0.048 2.2 ∼32 1.0 24.793
13 57.2903 ± 0.322 ± 0.022 2.2 ∼32 1.5 10.240
14 57.2903 ± 0.322 ± 0.010 2.2 ∼32 2.2 5.385
15 57.2903 ± 0.322 ± 0.004 2.2 ∼32 3.6 3.010
16 88.2 2.2 ∼32 0.3 1085.394
17 165.5 1.1 ∼16 0.6 1085.394
18 183.31 ± 7 1.1 ∼16 0.8 790.017
19 183.31 ± 4.5 1.1 ∼16 0.8 695.847
20 183.31 ± 3 1.1 ∼16 0.8 606.847
21 183.31 ± 1.8 1.1 ∼16 0.8 506.115
22 183.31 ± 1 1.1 ∼16 0.9 450.738

Note: (1) Advanced Technology Microwave Sounder; (2) Sub-satellite point; (3) Noise equivalent ∆T;
(4) Weighting function.

2.5. Periods Involved in This Study

In order to build the database to be as representative as possible, all data available in the period
2012–2016 were used for the training process, while all the 2017 data was used for validation purposes.
This is because the ATMS has been onboard the SNPP since the end of 2011, and only whole years were
considered for both the training and validation phase, to have a balanced distribution of data between
the four seasons. Since IASI L2 v6 was available at the end of 2014, only the biennium 2015–2016 was
considered for the training process. Table 2 summarizes the main characteristics of the data used in
this study.

Table 2. Main characteristics of the data considered in this study.

Name Size Format Period Spatial Resolution Temporal Resolutions # Profile per Year

ERA-Interim ~500 Gb GRIB 2012–2017 (0.75 × 0.75)◦ 4 simulation per day ~1.6 × 108

IASI L2 v6 ~2 Tb NetCDF 2015–2017 12 km (s.s.p.) ~28 orbits per day ~8.5 × 108

IGRA ~5 Kb ASCII 2012–2017 punctual 2 or 4 measures per day ~4.7 × 105

ATMS ~1 Tb HDF 2012–2017 16 km (s.s.p.) ~14 orbits per day ~1.1 × 109

2.6. WV Representation

ERA-Interim and IGRA datasets provide the WV in terms of relative humidity (RH) [%], while
IASI L2 v6 provides the WV mixing ratio (Q) [g/kg]. In order to have a homogeneous training dataset,
ERA-Interim and IGRA RH were converted into Q, following the most common meteorological
convention. Appendix B shows the equations used to obtain Q from RH and T.

2.7. Pressure Levels

The MiRTaW algorithm is characterized by one RF for each vertical level and separately for T and
WV. For this reason, the above-described three datasets must contain T and WV values referred to the
same pressure levels. Considering that the ERA-Interim dataset is the most numerous, its 37 model
levels were selected, while the IGRA and IASI L2 v6 T and WV values were linearly interpolated
on these vertical levels. The ERA-Interim levels were preferred also because the IGRA levels are
highly variable in number and position, while the 101 IASI L2 v6 levels are more closely spaced than
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the ERA-Interim ones. This implies that the vertical resampling of the IASI L2 v6 T and WV on the
ERA-Interim levels features a smaller error compared to the one that would be obtained if ERA-Interim
values were interpolated on IASI L2 v6 levels. Furthermore, the high vertical resolution of the IASI
L2 v6 dataset is highly redundant with respect to the number of the ATMS sounding frequencies,
which are 13 for T in the 50–58 GHz band and 6 for WV in the 23 GHz and 183 GHz bands. Taking
into account that ATMS channels are not sensitive to T above ~10 hPa and WV above ~200 hPa, the 32
ERA-Interim pressure levels in the range (10–1000) hPa for T and the 23 ERA-Interim levels in the
range (200–1000) hPa for WV were considered for the MiRTaW algorithm.

2.8. Random Forest

Random forest is a machine learning technique [45] hinged on an ensemble of classification and
regression trees (CART) [46], based on the idea that a classification or regression obtained by using
a whole set of trees is more accurate than using a single tree [47]. The two main characteristics of the
RF are the bagging or bag (contraction of bootstrap-aggregation) and the random subspace selection.
In the bagging technique, each tree in the forest is grown by randomly drawing, through replacement,
N samples of the full training dataset, where N is the size of the training dataset itself. By means of
the random subspace selection in the growing tree process, only a subset of all the input variables p
(hereinafter “predictors”) are randomly selected at each node to choose the best cut-point. This double
approach is used to improve the performance of weak or unstable learns [48] and to reduce the
overfitting risk.

In detail, the following steps were performed to train the RF with respect to the regression purpose:

1. set the number of trees in the forest (Nt parameter);
2. set the number of randomly selected predictors (Np parameter);
3. set the minimum size (Ms parameter) of the terminal node (hereinafter “leaf”) for each tree;
4. grow each tree with a different bootstrap sampling [49], by means of the following substeps:

a. draw Np predictors;
b. find the best cut-point to split the output variable (hereinafter “response”) in two subsets,

among all possible Np predictors and all possible splits;
c. reiterate the substeps a) and b), starting from the root node, until each leaf reaches the

Ms size;

In order to find the best split in the substep c), the training algorithm in the split process searches
the predictor and its value that maximizes the reduction of the heterogeneity H, in terms of the residual
sum of squares:

Hnode = ∑node(yi − y)2 (1)

∆H = Hparent − Hle f t−child + Hright−child (2)

where Hnode is the heterogeneity of the node, yi and y the response values and its average inside the
node, while parent, left-child, and right-child denote the parent node and its child nodes obtained after
the split, respectively. Once all the trees in the forest are grown, the RF could be used to predict the
response of a given set of predictors by averaging the prediction responses of all the trees. These are
obtained by averaging, in turn, the prediction responses in the leaf, selected by starting from the root
node and following the subsequent decision node until the terminal node is identified.

In the training phase, the RF could also be used to infer the predictor importance with respect to
the response:

Ip =

〈
∑tree ∆Hp

Mbranches f orest

〉
(3)
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where Ip is the importance of p predictor, ∆Hp is as in Equation (2) but specific for p predictor, Mbranches
is the total number of nodes in the tree that are not terminal (hereinafter “branch”), i.e., the nodes that
are split in two other child nodes, and finally, 〈·〉 f orest denotes the average across the entire ensemble of
grown trees. The simple idea behind Equation (3) is that the most used predictors with the greatest ∆H
are the most important, while those used in fewer splits and with low ∆H are the less important ones.

Finally, for the aim of this study, the out-of-bag (OOB) concept should also be introduced. Using
the bagging method for each tree, a subset of data remains a stranger to the training process, often
referred to as the OOB samples, which could otherwise be used to obtain an unbiased estimate of the
true prediction error [30,50]. In bootstrap sampling with replacement, considering a large population
size N, the probability of a particular sample not being picked is:

p =

(
1− 1

N

)N
≈ e−1 ≈ 0.368 (4)

where e is the base of the natural logarithm. It means that each tree is grown with about 63.2% of the
dataset, while the remaining fraction of 36.8% forms the OOB samples. It also means that each sample
is used to grow about 63.2% of the trees, and consequently, it could be used in the remaining 36.8% of
the trees to calculate the OOB error for the assessment of the RF performance.

In this study, the OOB error was used only to choose the predictors and to evaluate the Nt, Np,
and Ms parameter variations with respect to the RF response; for validation purposes, a completely
independent database was used, as explained in the following section.

3. Random Forest-Based Algorithm

To make the algorithm as robust as possible, all the coincidences between ATMS observations and
the profiles from the three data sources should have been considered. However, the resulting dataset
would be too large for both training and subsequent retrieving purposes, considering one RF for each
vertical level and separately for T and WV. Furthermore, the RFs were used not only to train and to
estimate the final T and WV values, but also to select the predictors and to tune the Np, Ms, and Nt
parameters, by evaluating the OOB error through the steps described below. For this reason, the use of
the full dataset was deemed impractical, and two different reductions were adopted. The preliminary
reduction was the strongest; it reduced the dataset to ~104 samples for each T and WV vertical levels,
and it was finalized to compute the predictors and to tune the Np, Ms, and Nt parameters. The second
reduction was the most refined, resulting in ~1.2·106 samples, which is intended for final RF trainings.
Both reductions use an instance selection approach, which removes the most similar samples—and,
in turn, it decreases the sample density—without reducing the worldwide spatial distribution. In order
to reduce the dataset, to select the optimal predictors, to tune the RF parameters, and to achieve the
final RFs, the following steps were analyzed:

1. Building of the full training dataset;
2. Definition of the predictors;
3. Analysis of the predictor importance;
4. Preliminary dataset reduction via instance selection;
5. Predictors selection and Np parameter tuning;
6. Nt parameter tuning;
7. Ms parameter tuning;
8. Final dataset reduction via instance selection;
9. Training of the RFs.

Figure 2 shows the flowchart of the algorithm development, as better explained in the
following subsections.
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Figure 2. Flowchart of the action performed to develop the algorithm detailed in Section 3. Q: Water
vapor mixing ratio, T: Temperature, RF: random forest, Nt: number of trees in the forest, Np: number of
randomly selected predictors, Ms: minimum size of the terminal node.

3.1. Building the Full Training Dataset

Spatial and temporal coincidences between ATMS BT and the ERA-Interim, IASI L2 v6, and
IGRA vertical profiles were considered and stored in three different datasets, separately for T and
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WV, in order to obtain the dataset for the training purpose. To colocate the three sources of data
with the ATMS overpass, the IGRA, IASI L2 v6, and ERA-Interim vertical profiles were considered
spatially and temporally coincident with ATMS BT when, respectively, the IGRA station, the IASI
IFOV center, or any fraction of the (0.75◦ × 0.75◦) box around the ERA-Interim grid point were inside
the ATMS FOV for all the ATMS frequencies, with a delay tolerance of 1 min for ERA-Interim and
IASI L2 v6 and 10 min for IGRA. The different delay tolerances are due to the relatively infrequent
ATMS coincidences with IGRA, when compared to the coincidences with ERA-Interim and IASI L2 v6.
When different profiles of the same dataset were coincident with the same ATMS IFOV, the respective
T or WV values were averaged by using the weights equal to the inverse distance between the location
on the surface of the vertical profile and the center of the ATMS IFOV. All the available vertical profiles
in the range 2012–2016 for ERA-Interim and IGRA were considered for the training purpose, while
only the biennium 2015–2016 was considered for IASI L2 v6, due to the lack of IASI L2 v6 product
data before 2015. In this way, more than 3·107, 6·105, and 6·104 coincidences were found for T and WV
separately, between ATMS and ERA-Interim, IASI L2 v6, and IGRA, respectively. While ERA-Interim
and IGRA coincidences are globally distributed, IASI–ATMS coincidences are found only for latitudes
greater than about 50◦N or less than about 50◦S, because IASI and ATMS instruments are onboard
near-polar-orbiting satellites with different Local Time Ascending Node. Finally, rainy profiles—about 7%
of the total—were removed due to the characteristic of the passive MW observations from the satellite,
which are affected by large raindrops and ice particles. To this end, the screening based on the TBs
at 183.31 ± 7, 183.31 ± 3, and 53.6 GHz was used [51,52] and about 2·106 rainy coincidences were
removed, leaving about 3·107 coincidences for the training process.

3.2. Definition of Predictors

In this preliminary approach, the RF ability to discard the less important variables was exploited,
because at each node split in the tree growing process, only the best predictors were selected among
all possible Np predictors. For this reason, all 22 ATMS channels were selected for each pressure
level, for both T and WV. In addition to the BT, also satellite scan angle, latitude, longitude, land/sea
flag, day-of-year (DOY), and solar zenith angle were chosen as predictors. To take into account the
RF mechanism described in the previous section, for which RF uses a binary split at each branch by
choosing the best cutting point for the selected predictor, the longitude and DOY must be transformed
from cyclic to linear variables [53,54]. This is because the CART algorithm is fundamentally developed
to use linear variables, e.g., the longitudes −170◦ and 170◦ seem very distant despite their difference
being 20◦. Similarly, the DOYs 1 and 365 appear to be very distant in linear scale, but are adjacent for
the calendar. For this reason, the sine and cosine of longitude and the sine and cosine of (2π·DOY/365),
or (2π·DOY/366) for bissextile years, are considered separately as predictors. In this way, a total of
30 predictors were obtained, as listed in Table 3.

Table 3. Predictors definition for the RF training purpose.

Short Name Predictor

p1–p22 ATMS BT ch. 1–22 [K]
p23 ATMS scan angle [deg]
p24 latitude [deg]
p25 sin(longitude)
p26 cos(longitude)
p27 land/sea flag
p28 sin(2p·DOY (1)/365)
p29 cos(2p·DOY/365)
p30 solar zenith angle [deg]

Note: (1) day-of-year.
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3.3. Analysis of the Predictor Importance

In order to analyze the predictor importance, 32 RFs for each of the 32 T pressure levels and
23 RFs for each of the 23 WV pressure levels were trained, by using all the p = 30 predictors defined
in the previous section, with a random subselection of the training dataset of about 104 samples.
For this step, the RFs were trained using Nt = 500, Np = p/3 = 10, and Ms = 5, as suggested in many
references [55–58]. As result, a preliminary predictor importance analysis was conducted for each
vertical level and for both T and WV. Figure 3 shows the results obtained for three representative
levels at 200, 500, and 900 hPa for both T and Q. The results are in line with expectations; for example,
the predictors p8 and p9, corresponding to ATMS BT at 54.94 GHz and 55.5 GHz respectively, are
the most important at 200 hPa for T, while the BT at 52.8 GHz is the most important at both 500 and
900 hPa, followed by the channels at 53.596 ± 0.115 and 51.76 GHz, respectively. For Q, the analysis of
the results appears less evident, due to the combined influence of Q and T on BT. Nevertheless, it is
still possible to appreciate the great importance of the ATMS BT at (183.31 ± 1) GHz at 200 hPa, the
importance of all the channels in the 183 GHz band, corresponding to predictors p18 ÷ p22 for the
500 hPa level, and the importance of transparent channels at 88.2 GHz and 165.5 GHz for the 900 hPa
level. The importance of some oxygen absorption channels for the WV analysis is strictly related to
the dependency of Q on T, while the high importance of p24 points out the relationship of WV with
latitude. The results obtained in this section were used in the following section to obtain a reduced
and more representative database than that obtained with random selection.
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3.4. Preliminary Dataset Reduction via Instance Selection

In order to optimize the predictors selection and to tune the RF parameters, several instance
selections were performed. We follow an approach similar to that explained in [59], which removes
the most similar profiles, preserving the most different ones, to obtain one different dataset for each
T and Q vertical level, of about 104 samples. The 104 size was chosen as a compromise between the
extension of the dataset and the computational time, which was, for the steps described in the sections
3.5, 3.6, and 3.7, about 400 h by using a 3.7 GHz Quad-Core Intel Xeon E5. This computational effort
was due to the presence of about 2.7·104 RFs, trained to select the predictors and to tune the Np, Nt,
and Ms parameters. Since the computational time increases with N·log(N) [60], where N is the number
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of the samples, the use of a larger dataset was deemed not workable. The adopted sampling strategy
was an iterative method that started with the random drawing of a single set of the 30 predictors (S1)
with a relative T or Q value that was archived in the reduced dataset R. At the ith iteration, the set Si
was randomly drawn and its distance D(Si,R) from the reduced dataset R was computed as:

D(Si, R ) = min
j∈R

√√√√ 30

∑
p=1

wp
(

pi − pj
)2 (5)

where pi is the value of the pth predictor of set Si, normalized on its standard deviation:

pi =
pi

σ(p)
(6)

and wp is the weight of each predictor, computed by using the predictor importance obtained in the
previous section, normalized on its sum:

wp =
I(p)

∑p I(p)
(7)

If the distance D(Si, R) of Si was larger than a predefined threshold Dt, the set Si was different
enough from the already archived set Sj in R, and thus it was added to the reduced dataset R. The idea
behind weighing the square difference with the predictor importance wp in Equation (5) was to build
different datasets that were as large and representative as possible of each vertical level, separately for T
and WV, compatibly with the computational time. In such a way, by observing the predictor importance
of Figure 3 for T at 200 hPa, we notice that its reduced dataset contains several representative cases of
ATMS BTs at 54.94 GHz and 55.5 GHz, which were otherwise nearly negligible at 500 hPa, where the
BT at 52.8 GHz was the most important.

The threshold Dt does not have a physical meaning, but it simply determines the density of the
samples in the space of the predictors and its variation defines the number of the set S in the reduced
dataset. To choose Dt, different dataset reductions were performed, by ranging Dt between 0.10 and
0.40 in steps of 0.01, aiming to obtain a reduced dataset of about 104 samples. In order to preserve
the contemporary presence of the ERA-Interim, IASI L2 v6, and IGRA in these datasets, the instance
selection described in this section was applied separately to the three sources of data and the three
reduced datasets were subsequently merged together. The final datasets of about 104 samples consist
of about 7·× 103–8·× 103 samples of ERA-Interim and 103–2·× 103 samples of both IGRA and IASI
L2 v6, where the small variations depend on the pressure level and on T or WV. Despite the different
size of the three sources of data, this procedure allows to have, where available, the same density of
profiles in the space of the predictors for ERA-Interim, IASI L2 v6, and IGRA.

3.5. Predictors Selection and Np Parameter Tuning

Although the RF algorithm discards less important predictors, since only the best predictor
is selected at each split in the tree growing process, it may happen that some predictors that are
highly uncorrelated with the response could introduce noise and consequently a slight decrease of
the performance. For this reason, a predictor selection analysis was conducted for each pressure level
and for T and WV separately. The strict relationship between the predictors and the Np parameter
(i.e., the number of randomly selected predictors at each node split) required a joint analysis of the
predictors importance and the Np value. Thus, a grid search approach was used by training various
RFs with the reduced dataset made of ~104 samples. For each RF, different set of predictors were used,
starting with all the 30 predictors listed in Table 3 and removing the less important ones iteratively,
by using the predictor importance results obtained in the previous step. For each set of predictors,
Np ranged between 1 and the number of predictors. For each couple of predictors set and Np value,
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a RF was trained by using Nt = 500, Ms = 5, and finally the OOB root mean square error (RMSE) was
computed. Figure 4 shows the results of this study for the three representative levels at 200, 500,
and 900 hPa for both T and WV. In order to reduce the stochastic fluctuations intrinsic with this
approach, the OOB RMSE was smoothed with a 3 × 3 average filter and subsequently rounded to
third significant figures. Subsequently, the couple of predictors set and Np value was selected at the
minimum value of the RMSE. If more than one minimum value was found, as shown by the white
cross markers in Figure 4, the value corresponding to the highest number of predictors was chosen
preliminarily, followed by the lowest value of Np, as shown by the white circle markers in Figure 4.
This is a conservative choice, due to the RF ability to discard the less important predictors, followed by
the characteristic of low Np values to reduce the overfitting risk. The complete list of the predictors and
Np values for all the pressure levels and for both T and WV is shown in Table 4. It is interesting to note
that all the proposed predictors were selected below 350hPa, while above this pressure level, the most
transparent channels at 23.8 GHz, 31.4 GHz, 50.3 GHz, and 88.2 GHz (p1 ÷ p3), as well as the land/sea
flag (p27), were neglected. This confirms what was expected, i.e., the ability of the RF to discard the less
important predictors, at least those largely unrelated to the response. It is also interesting to observe
that the suggested choice of Np = p/3 = 10 would have led only to a small increase in the RMSE.
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Figure 4. Predictor selection and Np parameter analysis for T (top) and Q (bottom) at three
representative levels: 200 hPa (left), 500 hPa (center), and 900 hPa (right). The panels also show
the out-of-bag (OOB) root mean square error (RMSE) minimum values found (white crosses) and the
chosen OOB RMSE minimum, corresponding to the lowest value of Np (white circle).

3.6. Nt Parameter Tuning

The Nt parameter represents the number of the trees in the forest, and its value is not particularly
critical, but it is supposed to be sufficiently large to settle down the error. In order to find this value,
the variation of OOB RMSE was computed by training different RFs for all the vertical levels and
for both T and WV, using the reduced dataset with ~104 samples and the couples of predictors–Np
obtained in the previous step, and finally varying Nt in the range 1–1000. Generally, the RMSE trend
is characterized by a strong decrease in the first 20–30 trees, followed by an asymptotic decrease for
Nt greater than 200–300. To select the optimal values of this parameter for each level and variable,
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the 5-point moving average, RMSEAV5, of the OOB RMSE was computed and Nt was set to the
minimum value that satisfies the following condition, rounded to the higher tenth:

dRMSEAV5

dNt
< C·RMSEAV5 (8)

where C is an arbitrary threshold set to 10−4 to obtain a compromise between the forest size and the
algorithm performance. Figure 5 shows the OOB RMSE versus Nt for the three representative levels at
200, 500, and 900 hPa for both T and WV, with the cross-circle markers indicating the selected values
of the Nt parameter. Table 4 reports the Nt values obtained for each vertical level and variable. It is
worth to observe that the suggested choice of Nt = 500 would not have resulted in an increase in
RMSE or in a significant variation of the computational time, and consequently, it would have been
a reasonable choice.

Table 4. Summary of predictors and parameters used to train the RFs. T profiles are defined within
10–1000 hPa, while WV profiles are defined within 200–1000 hPa.

Level T WV

Predictors Np Nt Ms Predictors Np Nt Ms
10 hPa p5 ÷ p15, p23 ÷ p24, p28 ÷ p29 12 190 2
20 hPa p5 ÷ p15, p17, p23 ÷ p24, p28, p29 11 280 1
30 hPa p4 ÷ p15, p17 ÷ p18, p23 ÷ p24, p28 ÷ p30 11 320 1
50 hPa p4 ÷ p15, p17 ÷ p18, p23 ÷ p24, p28 ÷ p29 10 260 1
70 hPa p3 ÷ p15, p17 ÷ p21, p23 ÷ p26, p28 ÷ p30 17 250 1

100 hPa p3 ÷ p15, p17 ÷ p21, p23 ÷ p26, p28 ÷ p30 16 230 2
125 hPa p4 ÷ p15, p17 ÷ p19, p21 ÷ p24, p26, p28 ÷ p29 14 320 1
150 hPa p4 ÷ p15, p17 ÷ p19, p22 ÷ p25, p28 ÷ p29 17 260 1
175 hPa p5 ÷ p14, p23 ÷ p24, p28 9 170 2
200 hPa p5 ÷ p13, p23 ÷ p24, p28 8 330 1 p1 ÷ p30 11 200 3
225 hPa p4 ÷ p15, p17, p22 ÷ p26, p28 ÷ p29 16 250 2 p1 ÷ p30 18 320 2
250 hPa p4 ÷ p14, p17 ÷ p18, p21 ÷ p26, p28, p29 15 250 1 p1 ÷ p30 19 440 2
300 hPa p1 ÷ p30 20 380 1 p1 ÷ p30 21 390 2
350 hPa p1 ÷ p30 20 380 1 p1 ÷ p30 17 310 1
400 hPa p1 ÷ p30 20 220 1 p1 ÷ p30 13 310 1
450 hPa p1 ÷ p30 20 460 1 p1 ÷ p30 17 400 1
500 hPa p1 ÷ p30 20 410 2 p1 ÷ p30 16 380 1
550 hPa p1 ÷ p30 18 310 1 p1 ÷ p30 16 220 2
600 hPa p1 ÷ p30 18 330 1 p1 ÷ p30 17 270 1
650 hPa p1 ÷ p30 21 330 1 p1 ÷ p30 18 210 2
700 hPa p1 ÷ p30 17 290 1 p1 ÷ p30 17 380 1
750 hPa p1 ÷ p30 14 440 1 p1 ÷ p30 12 360 2
775 hPa p1 ÷ p30 18 270 1 p1 ÷ p30 13 220 1
800 hPa p1 ÷ p30 18 260 2 p1 ÷ p30 17 260 1
825 hPa p1 ÷ p30 16 370 1 p1 ÷ p30 13 320 1
850 hPa p1 ÷ p30 13 350 1 p1 ÷ p30 17 360 2
875 hPa p1 ÷ p30 15 270 1 p1 ÷ p30 16 270 1
900 hPa p1 ÷ p30 18 320 1 p1 ÷ p30 18 330 1
925 hPa p1 ÷ p30 16 290 1 p1 ÷ p30 18 620 1
950 hPa p1 ÷ p30 21 370 1 p1 ÷ p30 16 600 1
975 hPa p1 ÷ p30 16 250 1 p1 ÷ p30 15 340 1

1000 hPa p1 ÷ p30 22 250 1 p1 ÷ p30 21 350 2
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3.7. Ms Parameter Tuning

The best values for the Ms parameter, representing the minimum size for the leaves, was selected
by analyzing the OOB RMSE for many RFs trained with the predictors Np and Nt computed in the
previous steps, by varying Ms in the range 1–20. This is shown in Figure 6, for the three representative
levels at 200, 500, and 900 hPa and for both T and Q. The minimum value of the RMSE, represented by
the cross-circle markers, occurs for small values of Ms, which varies in the range 1–3 for all the vertical
levels and variables. This result means that the T or WV values in the leaves are not too different,
and this is a consequence of the fact that the training dataset contains sets of predictors with relative
T or Q values, consistent among them. Indeed, the Ms parameter represents the number of the T or
Q values that must be averaged in the terminal node to obtain the final estimate. If these values are
quite different among them, a large Ms parameter could reduce the error estimate, while in this case,
the best results are achieved for small Ms values, because a large Ms would smooth the estimates too
much. The results obtained in this section are an indirect confirmation of the validity of the training
dataset. Table 4 reports the Ms values obtained for each vertical level and variable. For this parameter,
as well as for the previous ones, it is interesting to observe that the suggested choice of Ms = 5 would
have implied only a small increase in the RMSE (<5%).
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3.8. Final Dataset Reduction via Instance Selection

In analogy to Section 3.3, a refined predictor importance analysis was conducted by means of the
results obtained in the previous steps, in terms of selected predictors and Np, Nt, and Ms parameters.
This further analysis was performed to calculate a more accurate set of the weights wp (see Equation (5))
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and to build the more numerous reduced datasets, of about 1.2·106 samples for each pressure level and
separately for T and WV, in analogy to Section 3.4. The final training datasets consisted on average of
about 106 ERA-Interim samples, 1.2·105 IASI L2 v6 samples, and 5·104 IGRA samples, corresponding
to about 86%, 10%, and 4%, respectively. It is worth highlighting that the number of samples was
reduced from 3·107 to 1·106 for ERA-Interim, from 6·105 to 1.2·105 for IASI L2 v6, and from 6·104 to
5·104 for IGRA, corresponding to a reduction of 97%, 80%, and 17% of their initial values, respectively.

3.9. Training of the RFs

Table 4 sums up the results obtained in this section, which were used with the reduced datasets of
the ~1.2·106 samples obtained in the previous steps, in order to train one RF for each pressure level
and separately for T and WV, for a total of 55 trainings—32 RFs for T and 23 RFs for WV—as explained
in Section 2.6. Each training required between 2 and 6 h, using a 3.7 GHz Quad-Core Intel Xeon E5
with about 16 Gb of RAM, and stored about 500 Mb of RF coefficients.

4. Results

The validation dataset was built using the method explained in Section 3.1, obtaining ~6 × 106,
~1.2 × 105, and ~1.2 × 104 samples from the 2017 coincidence dataset between ATMS BT and
ERA-Interim, IASI L2 v6, and IGRA, respectively. By using the RFs trained as detailed in the previous
section, all the samples in the validation dataset were used to estimate the vertical profiles, which were
subsequently compared against the vertical profiles from the three data sources. Figure 7 shows the
mean T of the estimated vertical profile; it also shows the corresponding mean bias error (MBE) and
RMSE [61] compared with the standard deviation (STD) with respect to ERA-Interim, IASI L2 v6,
and IGRA, separately and to their average. The average profile was calculated by using the same
weight for each of ERA-Interim, IASI L2 v6, and IGRA, in order to obtain a general evaluation of the
performance of the algorithm that did not take into account the different size of the three sources of
data. The average of MBE exhibits bias of ~0.4 K below the 200 hPa level, which decreases down to
−0.4 K in the highest levels. Generally, the MBE remains approximately constant up to the 200 hPa
level, and then it decreases in the highest levels. The RMSE is about 2.5 K near the surface and
decreases with the altitude to its minimum value of ~1.3 K around 125 hPa.
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Figure 7. Left: Estimated profile of T mean (solid) and standard deviation (STD) (shaded) for 2017.
Center: profiles of the corresponding mean bias error (MBE). Right: profiles of the corresponding
RMSE (dashed lines) compared with STD (solid lines).
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Figure 8 shows the detailed analysis of the MBE and RMSE for each data source and in different
physical conditions. In the top panels, the MBE and standard deviation show a similar trend among
ERA-Interim, IASI L2 v6, and IGRA; however, ERA-Interim exhibits the best and more regular
results, featuring a MBE close to 0.1 K up to 300 hPa and around ±0.4 K above this pressure level,
with a standard deviation of about 2 K. The boxplot [62] of the estimated values minus coincident
dataset values are shown in the top panels. In the boxplot, the central mark of each box shows
the median of the differences, the left and right edges show the 25th (q1) and 75th (q3) percentiles,
while the whiskers (red marks) delimit the most extreme data points that could be considered as
outliers, since being greater than q3 + u(q3–q1) or less than q1-u(q3–q1), with the u parameter set to 1.5.
The boxplot for ERA-Interim analysis shows an error associated with the 25th and 75th percentiles of
about ±1.5 K, with the most extreme data points delimited from the whiskers around ±5 K. The IASI
L2 v6 behavior is similar to ERA-Interim, but less regular and a little higher in absolute value, with the
MBE ranging between −0.2 K and 0.5 K. The IGRA validation shows the largest errors: the MBE lies
between −0.5 K and 1.8 K, the standard deviation ranges between 2 K and 3 K, the error associated
with the 25th and 75th percentiles is about ±2 K, and the whiskers are around 6 K and 7.5 K.
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Figure 8. Top panels: T MBE with the STD and error boxplots for ERA-Interim (left), IASI L2 v6 (center),
and IGRA (right) separately. Middle and bottom panels show MBE (solid lines) and RMSE (dashed
lines) for land/sea surface, high/middle/low latitude, day/night, and the four seasons. The 2017
validation dataset is used to compute the statistics.

The second and third rows in Figure 8 show the MBE and RMSE for different subsets separately,
i.e., land/sea, day/nighttime, four seasons, and low, middle, and high latitude (|lat| ≤ 30◦,
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30◦ < |lat| ≤ 60◦, and |lat| > 60◦). The largest errors are for land near the surface, where the MBE
reaches 1.2 K for IASI L2 v6 and IGRA, and RMSE reaches 3.2 K for both ERA-Interim and IGRA.
The latitudinal analysis shows increasing errors as we go from low to high latitudes. The ERA-Interim
MBE does not show significant differences for the different latitudes, whereas the RMSE reaches 3.2 K
near the surface for |lat| > 60◦ and it does not exceed 2 K for |lat| ≤ 30◦. While for IASI L2 v6,
no effect is evident, IGRA shows similar behavior to ERA-Interim, with the RMSE and MBE reaching
~4 K and 1 K, respectively, near the surface at high latitude. The day/night effect is not evident in
any of the three datasets. The seasonal effect is evident mostly for ERA-Interim and IGRA, where the
worst performances are for winter, with the RMSE reaching ~3 K and 4 K and MBE reaching ~0.5 K
and 1.5 K, respectively. The best performances are for summer, where the RMSE and MBE reach ~2.1 K
and ~-0.4 K for ERA-Interim, and ~2.5 K and ~0.8 K for IGRA.

Similarly to Figure 7, Figure 9 shows the estimated mean Q profiles with the STD, the relative MBE,
and RMSE compared with the STD. The trend of the estimated Q mean vertical profile is characterized
by the maximum values near the surface, of about 5 g/kg, which decrease as the altitude increases
up to ~0 g/kg near 200 hPa. Generally, the MBE is lower than ~0.2 g/kg, while the RMSE is about
1 g/kg up to the 800 hPa level, and then it decreases until it reaches values very close to zero around
200 hPa. ERA-Interim shows the best MBE of about 0.1 g/kg, while IASI L2 v6 exhibits the best RMSE,
not exceeding 0.5 g/kg.Remote Sens. 2018, 10, x FOR PEER REVIEW  17 of 27 
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Figure 9. Left: Estimated profile of Q mean (solid) and STD (shaded) for 2017. Center: profiles of the
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Similarly to Figure 9 for T, Figure 10 shows the detailed analysis of Q vertical profiles error for
different physical conditions. In the top panels, the MBE with its STD shows a similar trend for
ERA-Interim and IGRA, while IASI L2 v6 shows a lower STD. The ERA-Interim MBE is close to zero
for all altitudes, and IASI L2 v6 shows a positive bias that reaches its maximum value of about 0.2 g/kg
around the 925 hPa level, while IGRA reveals its worst MBE of about 0.5 g/kg close to the surface,
which then decreases as altitude increases. The boxplot of the ERA-Interim differences shows an
error associated with the 25th and 75th percentiles of about ±0.5 g/kg and the most extreme data
points delimited from the whiskers are around ±2 g/kg. The IASI L2 v6 error associated to the 25th
and 75th percentiles is about ±0.2 g/kg around its median value, and the most extreme data points
delimited from the whiskers are about ±0.75 g/kg around its median. The error using IGRA is the
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largest, with the 25th and 75th percentiles at about −0.2 g/kg and 1.2 g/kg and the most extreme data
points at about −2 g/kg and 3 g/kg.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 27 
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Figure 10. Top panels: Q MBE with the standard deviations and errors boxplot for ERA-Interim (left),
IASI L2 v6 (center), and IGRA (right) separately. Middle and bottom panels show MBE (solid lines)
and RMSE (dashed lines) for land/sea surface, high/middle/low latitude, day/night, and the four
seasons. The 2017 validation dataset is used to compute the statistics.

The second and third rows in Figure 10 show that RMSE and MBE for land reach their maximum
value of about 0.5 g/kg and 1.8 g/kg for IGRA and ERA-Interim, respectively, while for sea, the worst
performances are for IGRA, with the RMSE and MBE of about 0.3 g/kg and 1.4 g/kg. The latitudinal
analysis shows the maximum values of the RMSE and MBE of about 2 g/kg and 0.5 g/kg for IGRA
at low latitude, while the best performances are for high latitude, with RMSE and MBE reaching
about 0 g/kg and 0.5 g/kg for ERA-Interim. The effect of day/night is evident mostly for IASI L2
v6, where the RMSE reaches ~0.8 g/kg and ~0.3 g/kg and the MBE reaches ~0.3 g/kg and ~0.2 g/kg,
for daytime and nighttime, respectively. For ERA-Interim and IGRA, day/night difference is almost
negligible. The seasonal effect is evident in all data sources, with RMSE higher for summer and lower
for winter, especially for IASI L2 v6 and IGRA, and a non-negligible negative MBE for IASI L2 v6
below the 800 hPa level. The worst performances are for IGRA in summertime, with the RMSE and
MBE of about 0.4 g/kg and 1.8 g/kg, while the best results are for IASI L2 v6 in wintertime, with the
RMSE and MBE of about 0.4 g/kg and 0.2 g/kg.
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5. Discussion

For both T and Q, the reliability of the MiRTaW algorithm is shown by comparing RMSE with
STD in Figures 7 and 9, respectively; for each vertical level, the RMSE is clearly below the STD,
demonstrating that the algorithm estimation is more than just an average.

For T, the best performances were obtained with the ERA-Interim and IASI L2 v6 datasets,
while IGRA shows the worst MBE and RMSE. This may likely be because the radiosonde provides
punctual measurements, while ATMS BT, ERA-Interim, and IASI L2 v6 are areal values. In general,
the worst results are for land, at high latitude and in wintertime, probably due to the surface emissivity
effect. In fact, at MW frequencies, the emissivity is more variable over land than over sea, and the
variability is higher at high latitude, due to the scattered presence of snow and ice cover, especially in
wintertime. Instead, day/nighttime difference seems almost negligible.

As for T, the Q estimation performances are closely related on the surface emissivity effect. In this
case, however, the close dependence of the MBE and RMSE with the WV concentration must also be
considered to better understand the results. In fact, while the land/sea different performances are
a consequence of the surface emissivity effect, the MBE and RMSE behavior with altitude follows the
decreasing WV concentration with altitude, as shown in Figure 9. The different WV concentration
could also explain the better performances of IASI L2 v6 when compared with ERA-Interim and IGRA,
because IASI–ATMS BT coincidences prevalently are at middle and high latitudes, where the WV is
usually less than at lower latitudes. Also, the higher RMSE and MBE values in summertime or for
|lat| ≤ 30◦, when compared with those in wintertime and for |lat| > 60◦, could be explained with the
different WV concentration. As for T, day/nighttime difference seems almost negligible and the worst
performances is for IGRA, likely because areal estimates are compared against punctual measurements.

These results are in line with those shown from the other existing MW profiling methods [63–65],
even if the MiRTaW algorithm performances seem slightly lower, especially in terms of RMSE. This is
due to the focus of the MiRTaW algorithm, which is not so much the precision or the accuracy as its
robustness, obtained mainly by using three contemporary different data sources in the training process.
In fact, considering the mean bias difference (MBD) and the root mean square difference (RMSD) among
ERA-Interim, IASI L2 v6, and IGRA coincidences (see Appendix A), it is quite obvious that these are
an upper limit for MBE and RMSE, because we cannot expect to obtain a RMSE smaller than the three
different RMSD values and an MBE smaller than the mean of the three MBD values.

6. Conclusions

In this study, the MiRTaW algorithm, developed to estimate the vertical profiles of T and WV
in the range 10–1000 and 200–1000 hPa, respectively, is described. MiRTaW is meant for intensive
applications, for near-real-time purposes, or in any other applications where robust and quick vertical
profile estimation is required. The algorithm uses one RF for each vertical level, for T and WV
separately, fed by the ATMS BT as well as some ancillary parameters such as ATMS scan angle, latitude,
longitude, land/sea flag, and solar zenith angle. To obtain a robust algorithm, three different sources of
data, ERA-Interim, IASI L2v6, and IGRA radiosonde observations, were used to train the RFs. Starting
from a five-year dataset (2012–2016), particular attention was paid to reduce the dataset via the instance
selection approach without losing information. Moreover, the algorithm was enhanced, selecting
the optimal predictors and the optimal values of the Np, Nt, and Ms parameters, by evaluating the
OOB RMSE. Finally, the RFs were trained and subsequently applied to an independent validation
dataset (2017) of ERA-Interim, IASI L2v6, and IGRA radiosonde observations to validate the MiRTaW
performance. Overall, the obtained results are in line with other existing MW profiling methods.
In future work, we plan to introduce other sources of T and WV vertical profiles to further increase the
robustness of the MiRTaW algorithm, as well as to extend the algorithm to other satellite microwave
radiometers. Another aspect we plan to focus on is the comparison between the results obtained in
this study and those obtained by using two other machine learning techniques: neural networks and
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support vector machine. Finally, we plan to analyze the correlation between the vertical levels to define
a correction method to reduce the MiRTaW estimation errors.
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Abbreviation

ATMS Advanced Technology Microwave Sounder
BT Brightness temperature
CART Classification and regression trees
DOY Julian day
ECMWF European Centre for Medium-Range Weather Forecasts
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
IFOV Instantaneous field of view
IGRA Integrated Global Radiosonde Archive
IASI Infrared Atmospheric Sounding Interferometer

IASI L2 v6
Infrared Atmospheric Sounding Interferometer: Atmospheric Temperature Water Vapour and
Surface Skin Temperature

MBD Mean bias difference
MBE Mean bias error
MiRTaW Microwave random forest temperature and water
OOB Out-of-bag
Q Water vapor mixing ratio
RF Random forest
RMSE Root mean square difference
RMSE Root mean square error
SNPP Advanced Technology Microwave Sounder
STD Standard deviation
T Temperature
WF Weighting function
WV Water vapor

Appendix A. ERA-Interim, IASI L2 v6, and IGRA Intercomparisons

Figure A1 shows the T and Q mean vertical profiles with the standard deviation for ERA-Interim,
IASI L2 v6, and IGRA separately. These profiles were obtained by using all the 2016 available data for
ERA-Interim and IGRA, consisting of 5·106 and 5·105 samples respectively, and by using 107 IASI L2
v6 profiles randomly drawn from the full dataset of more than 1.8·108 samples. The trend of both T
and Q vertical profiles seem quite regular and similar among the three data sources, although there are
non-negligible differences, mostly near the surface. In fact, near the surface, ERA-Interim T is lower
than IASI L2 v6 T and IGRA T up to ~10 K and ~5 K, respectively, while IASI L2 v6 Q is generally larger
than ERA-Interim Q and IGRA Q by about 2 g/kg below the 800 hPa level. Furthermore, the IASI L2
v6 profile shows a minor Q inversion around 725 hPa. To better understand the differences among the
three databases, the space and time colocated T and WV vertical profiles among ERA-Interim–IASI L2
v6, IASI L2 v6–IGRA, and IGRA–ERA-Interim were analyzed separately, for all the 2016 data. By using
a one-minute delay, the IASI L2 v6 and IGRA vertical profiles were considered coincident with the
ERA-Interim ones when the IASI IFOV center and the IGRA station were inside the (0.75 × 0.75)◦ box
around the ERA-Interim grid point, while the IASI L2 v6 and IGRA vertical profiles were considered
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coincident when IGRA station was inside the IASI IFOV. The small number of the IASI L2 v6–IGRA
profiles is due to the lack of space–time coincidences of the IGRA stations with the IASI overpass,
combined with having only two years of IASI-L2 v6 product availability.
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Figure A1. ERA-Interim, IASI L2 v6, and IGRA T (left) and Q (right) mean vertical profiles (solid) and
standard deviation (dashed lines and shaded areas).

Figure A2 (top panels) show the ERA-Interim, IASI L2 v6, and IGRA MBD and the standard
deviations in a circular way; that is, the ERA-Interim–IASI L2 v6 T differences, the IASI L2 v6–IGRA T
differences, and the IGRA–ERA-Interim T differences, with relative boxplots. In the middle and bottom
panels of Figure A2, the MBD and the RMSD are shown separately for land/sea; for low, middle,
and high latitude; for day/nighttime; and for the four seasons. Even if the three mean values with
their standard deviations in the top panels are similar, the boxplot shows non-negligible differences
in colocated T values, characterized by about 1 K for the interquartile range. Consistently with these
values, the MBD are generally contained in the range −0.5–0.5 K, with the largest differences at high
latitudes and low altitudes between IASI L2 v6 and IGRA. Furthermore, for low–middle altitudes,
the IASI L2 v6 mean values are a little lower than IGRA and ERA-Interim ones. The RMSD is generally
contained in the range 1–2 K, with larger values near the surface and smaller values around 500–600 hPa.
The highest variations are for different latitudes and for land/sea surface, while day/nighttime, as well
as the season, has slightly less impact on both MBD and RMSD. The smallest errors are generally for
high latitude, land surface, and low altitudes. Among the three datasets, the largest differences are
between IASI L2 v6–IGRA and ERA-Interim–IASI L2 v6, while IGRA and ERA-Interim seem more
regular and similar to each other.
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Figure A2. ERA-Interim, IASI L2 v6, and IGRA T intercomparisons. Top panels show mean bias
difference (MBD) (solid) with standard deviations (dashed area) and the boxplot of the differences.
Middle and bottom panels show MBD (solid lines) and root mean square difference (RMSD) (dashed
lines) of the differences for land/sea surface, high/middle/low latitude, daytime/nighttime, and for
the four seasons. ERA-Interim–IASI L2 v6, IASI L2 v6–IGRA, and IGRA–ERA-Interim are shown by
the left, center, and right panels, respectively.

The analysis for Q (Figure A3) shows similar results to those obtained for T, even if the former is
more variable than the latter. The interquartile difference is about −0.75–0.75 g/kg, and both the MBD
and RMSE show the maximum values generally at low latitudes, around 875 hPa when IASI L2 v6 is
compared against both ERA-Interim and IGRA. The largest differences are in the ERA-Interim–IASI
L2 v6 and IASI L2 v6–IGRA intercomparisons, while the IGRA and ERA-Interim datasets seem more
homogeneous among them. The RMSD is maximum near 875 hPa for low latitude, while day/night,
season, and land/sea effect do not produce evident effects.
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Figure A3. ERA-Interim, IASI L2 v6, and IGRA Q intercomparisons. Top panels show MBD (solid)
with standard deviations (dashed area) and the boxplot of the differences. The panels of the second and
third rows show MBD (solid lines) and RMSD (dashed lines) of the differences for land/sea surface,
high/middle/low latitude, daytime/nighttime, and for the four seasons. ERA-Interim–IASI L2 v6,
IASI L2 v6–IGRA, and IGRA–ERA-Interim are shown by the left, center, and right panels, respectively.

Appendix B. Mixing Ratio Calculation

To obtain Q starting from RH and T, the following formulas were used [66–68]:

Q = 621.97
Pq

Pre f − Pq
(A1)

Pq =
RH
100

Pqs (A2)

where Pqs is the saturated vapor pressure, Pq is the water vapor pressure, and Pref is the reference
pressure. To obtain Pqs, the Wagner and Pruß equation was used [69]:

Pqs = Pc exp
[

τ
(

α1θ + α2θ1.5 + α3θ1.5 + α3θ3 + α4θ3.5 + α5θ4 + α6θ7.5
)]

(A3)

where Pc = 22.064002·107 Pa is the critical pressure, τ = Tc/T, θ = 1−T/Tc, α1 = −7.85951783,
α2 = 1.84408259, α3 = −11.7866497, α4 = 22.6807411, α5 = −15.9618719, α6 = 1.80122502,
and Tc = 647.096 K is the water critical-point temperature. Equation (A3) is valid in the temperature
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interval 273.16 K ≤ T ≤ 647 K; for this reason, the following formula was used below 273.16 K, claimed
to be valid in the range 123K < T < 332K [70]:

Pqs = exp
[

β1 +
β2
T + β3ln(T) + β4T+

≡ tanh{β5(T + β6)}
(

β7 +
β8
T + β9ln(T) + β10 T

)] (A4)

where β1 = 54.842763, β2 = −6763.22, β3 = −4.21, β4 = 0.000367, β5 = 0.0415, β6 = −218.8, β7 = 53.878,
β8 = −1331.22, β9 = −9.44523, β10 = 0.014025, tanh(·) denotes a hyperbolic tangent, and ln(·) is the
natural logarithm.
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