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Abstract: Since its launch in 2007, TerraSAR-X has continuously provided spaceborne synthetic
aperture radar (SAR) images of our planet with unprecedented spatial resolution, geodetic, and
geometric accuracy. This has brought life to the once inscrutable SAR images, which deterred many
researchers. Thanks to merits like higher spatial resolution and more precise orbit control, we are now
able to indicate individual buildings, even individual floors, to pinpoint targets within centimeter
accuracy. As a result, multi-baseline SAR interferometric (InSAR) techniques are flourishing, from
point target-based algorithms, to coherent stacking techniques, to absolute positioning of the former
techniques. This article reviews the recent advances of multi-baseline InSAR techniques using
TerraSAR-X images. Particular focus was put on our own development of persistent scatterer
interferometry, SAR tomography, robust estimation in distributed scatterer interferometry and
absolute positioning using geodetic InSAR. Furthermore, by introducing the applications associated
with these techniques, such as 3D reconstruction and deformation monitoring, this article is also
intended to give guidance to wider audiences who would like to resort to SAR data and related
techniques for their applications.

Keywords: multi-baseline; multi-pass; PS; DS; geodetic; TomoSAR; D-TomoSAR; PSI; robust
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1. Introduction

1.1. Overview of Multi-Baseline InSAR

Since its launch in 2007, TerraSAR-X has continuously revealed synthetic aperture radar (SAR)
images of unprecedented high resolution from space. This has brought life to the once obscure and
sometimes inscrutable SAR images that deterred many researchers. Figure 1 shows a comparison of the
medium resolution ERS image and a high resolution TerraSAR-X spotlight image of the same area in Las
Vegas. Individual buildings are for the first time interpretable by the naked eye from spaceborne SAR
images, because the 1-m resolution in spotlight mode is well beyond the inherent scale of the 3-m floor
height typical of urban infrastructure. This marks the start of an era of urban infrastructure monitoring
using spaceborne SAR images. Currently, the staring spotlight mode provides images with a resolution
up to 25 cm, from which the mapping of individual window edges is even possible. This breakthrough
in spatial resolution, together with the precise orbit determination with sub-centimeter accuracy [1,2],
positions TerraSAR-X images as a perfect dataset for long-term repeated monitoring of large areas
with precision and high resolution.
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Figure 1. Comparison of medium (ERS) and high (TerraSAR-X) resolution SAR images of downtown
Las Vegas [3].

Among the many promising InSAR techniques that prospered in the past decade, multi-baseline,
especially multi-pass, InSAR techniques are undoubtedly one of the jewels in the crown. They build
up invaluable data cubes of long-term image time series. For example, the TerraSAR-X revisit time of
11 days allows monthly deformation signals of the Earth’s surface, such as ground subsidence, to be
retrieved using techniques like persistent scatterer interferometry (PSI). For monitoring dense urban
areas, SAR tomography (TomoSAR) and its differential form, D-TomoSAR inversion, are the most
competent techniques because of their capability of layover separation. They generate point clouds
with density comparable to that of a LiDAR. Both PSI and TomoSAR produce highly accurate parameter
estimates, because they work on highly coherent point targets. Therefore, they are often the workhorses
for deformation monitoring and 3D reconstruction, especially in urban areas. To complement
these techniques, distributed scatterer (DS)-based techniques, such as SqueeSAR [4], robust InSAR
optimization (RIO) [5] and coherence tomography enable dense monitoring of deformation in areas of
low interferometric coherence, such as volcanic areas. Among them, some algorithms, such as RIO,
address the statistical robustness of estimators to ensure the reliability of the accuracy of the estimates
in operational processing over large areas. Despite the many advantages of multi-baseline InSAR,
they are still relative measures, as the estimates are often relative to a local reference point whose 3D
position is unknown. Such differential operation is often performed in multi-baseline InSAR in order to
mitigate some common phase errors, such as atmospheric delay. It was only until recently, that geodetic
InSAR [6] bridged the gap between multi-baseline InSAR techniques and absolute positioning using
SAR imaging geodesy [7] to produce absolute 3D (and higher dimensional) InSAR point clouds.
It is an important piece of the components of the ecosystem of Earth observation using SAR data.
Multi-baseline InSAR techniques that were once only a relative measure can now be employed as
geodetic techniques to provide centimeter-level absolute positioning and millimeter-level relative
deformation monitoring.

1.2. Principle of Multi-Baseline InSAR

InSAR is the technique of using SAR as an interferometer. Multi-baseline InSAR techniques
exploit the interferometric phase (i.e., the phase difference) of multiple complex-valued SAR images.
These images are acquired at different satellite positions, time, or frequency, and hence, they create
spatial, temporal baselines, or ∆k-radar when forming interferograms. For TerraSAR-X images,
such multi-baseline configuration is usually acquired in a repeat-pass manner (hence “multi-pass”),
except if the twin satellite TanDEM-X was employed. Figure 2 shows the multi-baseline InSAR
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configuration in an urban scenario at a fixed azimuth position. The TerraSAR-X satellite flies
perpendicular into the screen/paper. The term r indicates the line of sight (LOS), i.e., the slant range
direction, of the sensor; s is the elevation direction that is perpendicular to the range and azimuth. The
blue outline on the surface indicates the area illuminated by radar pulses. The elongated ellipse is the
range-elevation tube within which all the objects are imaged into a single pixel in the focused SAR
image. The cross-section of the tube naturally depends on the range and azimuth resolution of the
sensor. The extent of the tube ∆s is much larger than the dimension of the cross-section because of
the large distance between the sensor and the object, as well as the small angular diversity among
different acquisitions. Therefore, it is common that several objects, such as a building roof, tree and
ground, are layovered in a single pixel in a TerraSAR-X image.

Figure 2. Schematic drawing of the principle of multi-baseline InSAR at a fixed azimuth position
(modified after [8]). The TerraSAR-X satellite flies away from the reader into the screen/paper.
The line-of-sight, i.e., the range direction, of the sensor is indicated by r. The range timing is always
delayed after propagation through the atmosphere. The term s is the elevation direction that is
perpendicular to the range. The blue outline on the surface indicates the area illuminated by radar
pulses. The elongated ellipse is the range-elevation resolution cell with in which all the objects are
imaged into a single pixel in the final SAR image. It is very common that several objects, such as
a building roof, tree and ground, are layovered in a single pixel in a TerraSAR-X image.

If one considers a single phase center in the range-azimuth-elevation tube without layover
(i.e., single scatterer model), the absolute interferometric phase of the n-th measurement in a
multi-baseline InSAR stack is [9]:

φn = −4π

λ

bns
R

+ φde f o + φatmo + φerror, (1)

where λ is the wavelength of the SAR electromagnetic wave, bn is the baseline of the n-th image, s is
the elevation of the single scatterer and R is the nominal range which is the distance of the SAR sensor
to a zero-elevation point. The deformation phase φde f o is often modeled as a function d (tn) (e.g., linear
or periodic) of the acquisition time tn. The interferometric phase is always delayed due to atmospheric
propagation. In multi-baseline InSAR, such atmospheric phase delay φatmo is mitigated by subtracting
a nearby reference point. This renders multi-baseline InSAR a relative measure, unless the absolute
position of the reference point is known a priori.
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Based on Equation (1), the forward system model of multi-baseline InSAR measurement can be
expressed as Equation (2), where gn is the pixel value at the n-th image, and γ (s) is the reflectivity
profile along the elevation direction. Since a far-field antenna acts like a Fourier transform to the signal
in the resolution cell, each measurement is actually the Fourier transform at a specific frequency that
is linearly proportional to the perpendicular baseline bn to the master satellite position. This is also
known as the system model for TomoSAR [10–13].

gn =
∫
∆s

γ (s) exp
(
−j

4πbn

λR
s
)

ds. (2)

In the case of differential TomoSAR (D-TomoSAR), Equation (2) is extended into higher
dimensions [14–16].

Equation (2) can be written in a more compact matrix form as:

g = Rγ, (3)

where R and γ are the discretized Fourier matrix and the reflectivity profile along the direction
s, respectively. Estimating γ is essentially a spectral estimation problem. In the case of PSI- or
DS-based interferometry that assumes a single phase center in the resolution cell, it is basically
a spectral estimation of a single frequency. Equation (3) will degenerate to either Equation (4) for the
deterministic PS mode or Equation (5) for the stochastic DS model.

g = r (s1) γ1, (4)

E
(

ggH
)
= r (s1)Cggr (s1)

H , (5)

where s1 is the elevation of the single phase center, r (s1) is the column in R associated with s1, γ1 is
the complex-valued brightness of the PS and Cgg is the covariance matrix of the DS.

1.3. The Structure of This Paper

The rest of this article introduces the recent development of the aforementioned techniques, each
in its respective section. In Section 2, we introduce the development of PS-based methods following
their improvements in estimates accuracy that in turn refers to the reconstructed point density, as
well as the reduction of the required number of images for a reliable estimation. Section 3 focuses
on the development of robust InSAR techniques based on DS. Section 4 focuses on the evolution of
TerraSAR-X absolute positioning from a single target to many targets and eventually to the fusion with
multi-baseline InSAR.

2. Advances in Point Scatterer-Based Methods

This section focuses on the advances of PS-based methods, i.e., PSI and TomoSAR/D-TomoSAR in
urban areas. Their development mainly focuses on the improvement of estimation accuracy, which in
turn increases the density of the retrieved point cloud or reduces the number of interferograms required
for a reliable estimation.

Both PSI and TomoSAR utilize a single-master configuration to extract time-coherent scatterers
from SAR images. The major difference between the two methods is the number of scatterers that
are assumed within a resolution cell, which requires different spectral estimators to be employed in
the parameter retrieval. However, over the past two decades, PSI has made substantial development,
so that it usually refers to a full processing chain including interferogram formation and reference
network construction. Therefore, PSI is often employed as a preprocessing step for TomoSAR. Several
variations of PSI that differ in algorithmic details have been introduced in recent years. For a full review
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of these techniques the reader is referred to [17]. Although the specifics of existing PSI algorithms are
different, the following workflow is widely acknowledged:

Step 1 Differential interferogram formation: From a stack of N + 1 co-registered SAR images,
a master acquisition is selected. Subsequently N interferograms are computed, while their
topographic phase components are removed using a reference digital elevation model (DEM).

Step 2 Reference network construction: Scatterers presumed to be the most phase-stable ones are
selected. The detection can be carried out using various methods, such as thresholding on the
amplitude dispersion index (ADI) [18] or on the signal-to-clutter ratio (SCR) [19]. These PS
candidates are connected to form a reference network. Through the PS double-difference
phase measurements, i.e., difference in time and space, differential topography and
differential motion parameters are estimated on arcs.

Step 3 Atmospheric phase estimation: The differential topography estimates are integrated with
respect to an arbitrarily chosen reference point so that the topographic phase components
are removed from the interferometric phases. The remaining phase contributions include
deformation, atmosphere, and noise. Then a low-pass filtering in the spatial domain and
a high-pass filtering in the temporal domain extracts the atmospheric component, which is
interpolated over the entire scene and subtracted from the differential interferograms.

Step 4 PS densification: Additional PS are computed from the corrected differential interferograms.
These PS are connected to the nearest point(s) in the reference network and their modeled
parameters are estimated.

Step 5 PS geocoding: The DEM height of each PS is added to its differential height estimate.
The radar timing of each PS and its updated height are geocoded using satellite orbit and a
reference ellipsoid to represent the PS coordinates in a common geodetic coordinate system.

The processing steps for TomoSAR are similar to those of PSI, except the fourth step is replaced
with higher-order spectral estimators that can be enumerated as followings.

• The full reflectivity profile is reconstructed using higher-order spectral estimation techniques.
• The scatterers’ positions and motion parameters are determined by detecting maxima on the

reflectivity profile.

2.1. Overview of Advances

For each of the steps delineated above, numerous improvements have been suggested in the
literature. For example, in the reference network step, [20,21] consider the geometry of the connections
among arcs to construct a redundant reference network, while dense differential PS pairs were used
in [22] to form the network. In terms of network inversion, to robustly retrieve the topography
and deformation estimates of the PS in the reference network, a `1 norm outlier rejection scheme
was proposed after the LAMBDA estimation [23]. In [24,25], numerical weather data were used to
simulate and mitigate tropospheric delay. For a detailed comparison of widely used PSI techniques,
the interested reader is referred to [21].

The development of TomoSAR has been mainly focused on the improvement of the spectral
estimator and the scatterer detector. Studies have been conducted to improve the maximum likelihood
estimator (MLE) by restricting the support of the signal (i.e., nonlinear least square) [3,13], by `2 norm
regularization (i.e., the Tikhonov method) [15], and by `1 norm regularization (i.e., compressive
sensing-based method) [26,27]. The SL1MMER algorithm proposed in [27] was also recently extended
to the M-SL1MMER [28], which exploits group sparsity in the urban environment. M-SL1MMER
achieves a comparable result with far fewer images than SL1MMER and other algorithms. Several
studies have also addressed the efficiency and robustness of the detection of scatterers. For example,
[29] describes the optimal detection of multiple scatterers, and [27,30–32] address scatterer detection in
the super-resolution regime where the distance among scatterers is less than the elevation resolution.
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In general, TomoSAR is so far the most competent multi-baseline InSAR method for urban
area monitoring. However, the relatively high computational cost limits it for extensive uses like
PSI, especially for the CS-based TomoSAR algorithms. Therefore, combining PSI and TomoSAR
has also been proposed to improve the computational efficiency of TomoSAR processing [22,33,34].
Only recently, an efficient sparse recovery algorithm was proposed, which made city-scale 3D/4D
reconstruction directly using SL1MMER operational [35].

2.2. Very High Resolution PSI

PSI is undoubtedly the workhorse for deformation monitoring of large areas, owing to its
computational efficiency and reliability in the accuracy of the deformation estimates. As mentioned
earlier, estimating the unknown elevation and deformation parameters in PSI is a spectral estimation of
a single frequency. The spectral estimator is essentially a periodogram that can be expressed as follows.

θ̂ = arg max
θ

{∣∣∣∣∣ 1
N

N

∑
n=1

gn exp (−jφn (θ))

∣∣∣∣∣
}
≈ arg max

θ

{∣∣∣∣∣ 1
N

N

∑
n=1

gn

|gn|
exp (−jφn (θ))

∣∣∣∣∣
}

, (6)

where θ denotes the parameters, including the elevation s and the deformation parameters, and φn (θ)

is the modeled phase of the PS in the n-th image (i.e., Equation (1)). Often, the amplitude of g is
dropped in the estimation [18], since it barely changes the estimates for PS of high signal-to-noise
ratio (SNR).

Employing very high resolution (VHR) PSI, it is now possible to detect very localized deformation
patterns even on different parts of a single building [36]. Apart from its deformation monitoring
capability, VHR PSI leads to detailed 3D reconstruction of urban areas owing to the high density PSI
point clouds. It can typically produce 40,000 to 100,000 PS per square kilometer using TerraSAR-X high
resolution spotlight images [37,38]. The 3D reconstruction capability has even been strengthened by the
geometrical fusion of PSI point clouds obtained from different viewing geometries, i.e., along-heading
and cross-heading orbits [39]. Especially in the case of cross-heading orbits, that is, the combination
of point clouds from ascending and descending orbits, point cloud fusion provides a shadow-free
point cloud of the observed area. It also allows a decomposition of the raw LOS PSI deformation
measurements into 3D displacement vectors in geodetic coordinate system [36,40,41].

2.3. Differential TomoSAR

Unlike PSI, D-TomoSAR retrieves the full reflectivity profile γ, and detects prominent peaks from
it. Therefore, D-TomoSAR is inherently a more competent method for urban area monitoring than PSI.
The MLE (under complex Gaussian noise) of γ can be expressed as follows.

γ̂MLE = arg min
γ

1
2
‖g− Rγ‖2

2 . (7)

During the last decade, we have developed a suite of algorithms named Tomo-GENESIS
[42] to address both the methodological and practical aspects of D-TomoSAR. For example, the
Tomo-GENESIS suite includes both conventional linear estimators [15] and the compressive sensing
(CS)-based estimator that works in the superresolving regime [27,30,31], as well as a computationally
efficient processing pipeline [22], the fusion of TomoSAR point clouds from multiple aspects [43] and
3D object reconstruction from TomoSAR point clouds [44–46].

2.3.1. Conventional (Non-Superresolving) D-TomoSAR

For spaceborne data, the number of acquisitions is usually far less than the discretization of γ.
Therefore, Equation (3) is often under-determined. A popular method before the invention of CS-based
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TomoSAR techniques to regularize the equation system was to employ the `2 norm regularization that
is also known as Tikhonov regularization. The regularized estimator is shown as follows.

γ̂`2
= arg min

γ

1
2
‖g− Rγ‖2

2 + λ`2 ‖γ‖
2
2 , (8)

where λ`2 is the regularization parameter. We have implemented the estimator using singular value
decomposition with Wiener filtering on the system matrix R. Therefore this algorithm is also known
as SVD-Wiener in the community [15].

This type of estimator is also a maximum a posteriori (MAP) estimator. It is the optimal Bayesian
estimator that minimizes posterior expected loss. Experiments showed promising performance
on TerraSAR-X image stacks [13]. However, in the classical Nyquist–Shannon sampling regime,
the resolution of the reconstructed reflectivity profile is limited by the so-called Rayleigh resolution
(see Equation (9)) [15] that is governed by the spread of the baseline ∆b.

ρs =
λR
2∆b

. (9)

2.3.2. Super-Resolving D-TomoSAR

For dense urban areas, closely spaced objects often coexist in a range-azimuth-elevation resolution
cell. These objects cannot be resolved by conventional tomographic inversion algorithms. This is where
CS-based super-resolving tomographic inversion comes to play, as it can achieve super-resolution
in the estimate of γ, if it is sparse. The CS-based TomoSAR estimator can be generally expressed in
a similar form as Equation (8), except that the `2 regularization term is replaced by the signal sparsity
term, i.e., the `0 norm. Because of the nonconvexity of the `0 norm, it is often relaxed by the `1 norm
in optimization, such as the SL1MMER “scale-down by `1 norm minimization, model selection, and
estimation reconstruction” algorithm proposed in [27]. The `2 + `1 norm estimator can be expressed
as follows.

γ̂`0
= arg min

γ

1
2
‖g− Rγ‖2

2 + λK‖γ‖1, (10)

where λK is a regularization parameter (K being the sparsity, i.e., the number of discrete scatterers).
In practice, the minimization of the `0 norm is often relaxed by the `1 norm for better convexity in
the optimization.

Because of their super-resolving ability and the robustness of the `1 norm minimization, CS-based
D-TomoSAR algorithms are the state of the art in term of the accuracy of the parameter estimate and
the performance of scatterer detection. This in turn increases the density of the reliable points. Figure 3
is a comparison of the point cloud retrieved by PSI and SL1MMER of the same building (Bellagio
Hotel, Las Vegas). SL1MMER retrieves many more points than PSI. Yet, CS-based algorithms are less
computationally efficient than the conventional TomoSAR. To cope with large area processing, we
enriched Tomo-GENESIS with an approach [22,47] that integrates PSI, conventional TomoSAR, and
super-resolving TomoSAR. Recently, we have developed a fast and accurate `1-regularized least square
solver with application to D-TomoSAR [35]. This new solver offers a speedup of one or two orders of
magnitude than typical second order cone programming. With above-mentioned advances, we are able
to reconstruct a high-quality TomoSAR point cloud of an entire city with density comparable to that of
LiDAR. For a better overview of the capability of the aforementioned methods, Table 1 summarizes
the typical density of the point cloud reconstructed by PSI and D-TomoSAR using a TerraSAR-X high
resolution sliding spotlight image stack.
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Table 1. Comparison of the typical density of the point cloud reconstructed by PSI and D-TomoSAR
using TerraSAR-X high resolution spotlight image stack.

Density (thousand/km2)

PSI [38] 40–100
D-TomoSAR (non-superresolving) [15] 150–250
D-TomoSAR (SL1MMER) [48] 500–1500

Figure 3. Comparison of the density of the 3D point cloud retrieved by PSI (left) and TomoSAR (right)
of Bellagio Hotel, Las Vegas [8].

2.3.3. Staring Spotlight TomoSAR

In spotlight modes, the radar beam is steered back and forth toward a common reference target in
order to increase its illumination time tAP (see Figure 4). The beam sweep rate controls the balance
between the scene spatial extent and the azimuth resolution. In the TerraSAR-X sliding spotlight mode,
the radar beam is swept at a moderate rate with a squint angle range up to±0.75 degrees [49]. While in
its staring spotlight mode, the beam sweep rate is set to equal the frequency modulation (FM) rate
of the reference target. In other words, the radar beam is configured to exactly follow the target over
time and the squint angle range can be up to ca. ±2.2 degrees. As a result, the azimuth resolution
is maximized. Nevertheless, the improved azimuth resolution comes at the cost of reduced scene
extent: the time span of a focused image ∆timage is considerably shorter. Needless to say, the slant
range resolution stays unchanged for both modes, as long as the same range bandwidth is employed
during imaging.

Figure 4. TerraSAR-X sliding (left) and staring (right) spotlight imaging geometry [48].

The transition from sliding to staring spotlight requires several adaptations in SAR focusing and
InSAR processing. In the staring spotlight mode, the satellite can no longer be assumed to be standing
still during chirp transmission and reception, or to follow a linear trajectory. In addition, variations
of tropospheric and ionospheric delay within the large squint angle span also need to be corrected.
Another major challenge is to estimate Doppler centroid frequency as a function of focused image time.
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The TerraSAR-X multimode SAR processor [50,51] and the integrated wide area processor [24,25] were
revised accordingly.

For PSI and TomoSAR in urban areas, the improved azimuth resolution has at least two
advantages. PSs in the same resolution cell in the sliding spotlight mode may be resolved in different
resolution cells in the staring spotlight mode. This leads to an increase in the density of the resulted 4D
point cloud. Furthermore, the clutter in each resolution cell may be significantly suppressed, thanks to
the increased azimuth resolution. Consequently, the SCR of PSs increases, which in turn leads to a
better lower bound on the variance of elevation estimates [52].

In order to demonstrate these improvements, we processed two interferometric stacks of the City
of Las Vegas in the sliding and staring spotlight modes using the SL1MMER algorithm. Each stack
consists of 12 scenes acquired from October 2014 to February 2015. In each mode, 11 coregistered
complex interferograms were used for the TomoSAR reconstruction of two regions of interests (ROIs).

One of the ROIs is a relatively flat region that was selected mainly for the assessment of relative
vertical accuracy. The mean intensity maps in both modes are shown in Figure 5a. In the staring
spotlight mode, point-like targets, such as the six bright points aligned at each side of the central
field, are more focused. Even for DS, clutter appears to be more suppressed and thus the boundaries
between areas of different smoothness are easier to recognize. This indicates an increased SCR. As a
result, the reconstructed TomoSAR point cloud from staring spotlight images has a significant increase
in the number of points compared to that of the sliding spotlight images. Indeed, the total number of
scatterers in the staring spotlight is approximately 5.5 times as high, and the scatterer density is up to
circa 13.5 million points per km2 in this small region. In addition, the better SCR also improves the
relative accuracy of height estimates. In fact, the relative accuracy of height estimates using staring
spotlight images is approximately 1.7 times as high [48].

(a) ROI #1 that contains a flat area.

(b) ROI #2 that contains two high-rise buildings.

Figure 5. Mean intensity map of two ROIs in the sliding (a) and staring (b) spotlight modes [48].
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Another ROI contains two high-rise buildings (Hilton Grand Vacations on the Las Vegas Strip),
which were chosen as a demonstration of layover separation. The mean intensity maps are shown in
Figure 5b. Similarly, point-like targets stand out more prominently from clutter in the staring spotlight
mode and the regularities on the building facades are more clearly visible. The TomoSAR point clouds
of single and double scatterers are shown in Figure 6. For this ROI, a substantial increase in the number
of (single and double) scatterers was also observed. The scatterer density in the staring spotlight mode
is approximately 5.1 times as high, see Table 2. The number of double scatterers in the staring spotlight
mode almost rivals the number of single scatterers in the sliding spotlight mode.

600 620 640 660 680 700
Topography [m]

Figure 6. Updated topography (m) of the region in Figure 5b with 12 TerraSAR-X images in the sliding
(left column) and staring (right column) spotlight modes, respectively. The upper and lower rows show
single and double scatterers, respectively [48].

Table 2. Statistics of the point clouds in Figure 6.

Sliding Staring Ratio 1

No. of single scatterers 148, 646 740, 656 4.98
No. of double scatterers 21, 576 124, 546 5.77
Total no. of scatterers 170, 222 865, 202 5.08
Single-to-double-scatterer ratio 6.89 5.95 1.16
Scatterer density (million/km2) 1.56 7.91 5.08

1 The ratio was calculated by dividing the larger by the smaller value.

2.3.4. Point Cloud Fusion

Both PSI and D-TomoSAR deliver 4D point clouds relative to their reference points. They need
to be co-registered when considering the results from multiple SAR image stacks. Although general
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point cloud fusion is a classic topic in the computer vision field, there is very little literature addressing
InSAR point cloud fusion, especially for point clouds from image stacks of cross-heading orbits.
This is because the fusion of two point clouds requires the identification of common points in the
two point clouds. There is theoretically no common point from such two point clouds due to the
cross-heading geometry.

The first attempt to fuse cross-heading TerraSAR-X point clouds in an urban area was presented
in [36]. This algorithm employs RANSAC to robustly match the ground points of two cross-heading
TerraSAR-X PSI point clouds. The point correspondences are found by searching closely spaced point
pairs on the ground surface. Therefore, this algorithm does not address the exact point correspondence.
To find the exact point correspondence, Wang and Zhu detected the end positions of L-shaped facades
in the two TomoSAR point clouds where the two point clouds converge [43]. In [6,53], the authors
located dozens of pairs of street lampposts in two point clouds as point correspondences, additionally
taking into account the diameter of the lampposts.

The fusion of along-heading (either both ascending or both descending) InSAR point clouds is
less challenging. Classical point cloud co-registration methods such as iterative closest point (ICP)
can be directly applied. Gernhardt et al. have demonstrated the direct application of ICP on multiple
InSAR point clouds of a volcano [39].

2.3.5. 3D Motion Decomposition

A natural step after the fusion of multiple D-TomoSAR point clouds from different aspects
is the decomposition of the 1D LOS displacement vector into its original 3D motion components.
A 3D deformation vector in a geographic coordinate system is highly beneficial to improving the
interpretation of the deformation pattern. A 3D motion decomposition algorithm was proposed and
validated on four TomoSAR point clouds in [54]. The method relies on either geometrical [39,43] or geodetic
fusion [6,55] of multi-aspect TomoSAR point clouds as input. It estimates the 3D motion components
of the queried point target by inclusion of observations from all different viewing geometries and
robust inversion with `1 norm minimization in a local neighborhood. The method allows for highly
detailed and shadow-free 3D deformation monitoring, as has been demonstrated in [54]. An example
of seasonal motion decomposition on a small test site in Berlin is demonstrated in Figure 7, where it
shows the vertical (up), and horizontal (east-west) linear deformation of a railway bridge.

1 
 

Institut für Methodik der Fernerkundung 

Up 

East-West 

[mm] 

Figure 7. Decomposed seasonal deformation of a railway bridge located in the northeast of Berlin,
Germany [54].
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2.3.6. Object Reconstruction

Due the development described above, the quality of TomoSAR point cloud, including point
density and relative accuracy, has become sufficient for the reconstruction of 3D models of individual
objects. We have developed a suite of algorithms that have proved effective for tasks ranging from
reconstructing vertical facade [44,45] (see Figure 8), to the detection and reconstruct of a LOD1 model
of individual buildings [46,56].

Figure 8. A TomoSAR point cloud of Las Vegas (upper), and the reconstructed facades (lower) [45].
The color of the point cloud represent its height above ellipsoid.

2.4. Object-Based InSAR Algorithms

The reconstruction of such high quality dense point clouds, as in aforementioned examples,
are only possible with a stack of fairly high number of images. In practice, we are often faced with
a limited number of images. In such situations, a proper algorithm should exploit information from
neighboring pixels in order to reduce the number of images needed for a reliable reconstruction, such as
adaptive filtering and nonlocal filtering that have been extensively described in previous literature,
such as [4,57,58] and [59–61], respectively. However, this section goes beyond these pixel cluster-based
methods. It focuses on the recent development of object-based algorithms that explicitly exploit
geometric and semantic information to support parameter retrieval in multi-baseline InSAR. To this end,
this section introduces the M-SL1MMER algorithm [28], which exploits the freely available building
footprint from OpenStreetMap (OSM), and RoMIO (Robust Multi-pass InSAR via Object-based low
rank decomposition) [62,63], which exploits the smoothness prior and low rank property of the InSAR
data stack of individual objects.

2.4.1. M-SL1MMER

Multiple-snapshot SL1MMER (M-SL1MMER) is an extension of the original SL1MMER
algorithm for joint tomographic reconstruction of resolution cells containing scatterers that share,
up to quantization errors, the same height (hereafter referred to as “iso-height resolution cells”) [28].
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Similar approaches based on multiple snapshots or polarimetric channels can be found, for example,
in [64–66].

In M-SL1MMER, the iso-height resolution cells are detected by projecting the freely available
OSM building footprint [67] to the SAR image, and shifting it toward the near range direction until it
reaches the top of the building. Each shifted position of the footprint represents a cluster of iso-height
resolution cells. Let a specific iso-height cluster contain M resolution cells; the InSAR measurements
gm ∈ CN (N being the number of interferograms) of the m-th resolution cell can be approximated
with the linear model (see Equation (3)) gm ≈ Rmγm for all m = 1, . . . , M. In addition, we assume
without loss of generality that R1 ≈ · · · ≈ RM and rewrite the M linear models in the more compact
form G ≈ RΓ, where the m-th columns of G and Γ equal gm and γm, respectively. A key element of
M-SL1MMER involves solving the following `2,1 regularization problem:

Γ̂ = arg min
Γ

1
2
‖RΓ−G‖2

F + λ2,1‖Γ‖2,1, (11)

where ‖ · ‖F and ‖Γ‖2,1 = ∑L
i=1 ‖γi‖2 denote the Frobenius and `2,1 norms, respectively, and γi is the

i-th row of Γ. The `2,1 norm is known to promote the entries of Γ to be jointly sparse among columns.
In other words, nonzero rows can be expected in Γ̂ or its submatrices. Solving the minimization
problem in (11) is followed by model selection and amplitude debiasing independently for each
resolution cell, as in the SL1MMER algorithm (see Section 2.3).

As a practical demonstration, we reconstructed the elevation of two high-rise buildings using
6 TanDEM-X bistatic sliding spotlight interferograms. The elevation estimates of the upper and lower
layers are depicted in Figure 9. In the case of layover, the higher and lower scatterers can be found in
the upper and lower layers, respectively. The smooth color transition on the reconstructed building
facades already indicates its high quality. Roof-facade and facade-ground interactions are clearly
visible in the near and far range, respectively. This can also be observed in the elevation difference
map under layover (see Figure 10). The color change from deep blue (near range) to cyan (far range)
corresponds to increasing elevation distance between building roof and facade.

Figure 9. Elevation estimates of two test buildings with M-SL1MMER using 6 TanDEM-X bistatic
sliding spotlight interferograms. In the case of layover, the higher and lower scatterers appear in the
upper and lower layers, respectively [28].
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Figure 10. Difference of elevation estimates of higher and lower scatterers in Figure 9 subject to
layover. The red and yellow rectangles mark areas where roof-facade and facade-facade interactions
are expected, respectively [28].

2.4.2. RoMIO

As a complement to M-SL1MMER, RoMIO does not necessarily require explicit information of
the footprints of the objects in the image. It is a more general framework that exploits the low rank
property of InSAR phase tensor, because the low rankness of a tensor describes its information entropy,
which requires looser signal support than the explicit iso-height line required in M-SL1MMER. RoMIO
filters the InSAR data tensor by robustly minimizing its rank. Therefore, it can be regarded as a
filtering step in prior to multi-baseline InSAR algorithms. The core RoMIO estimator can be expressed
as follows.

{X̂ , Ê} = arg min
X ,E

rank(X ) + λrank‖E‖0, s.t. X + E = G, (12)

where G is the observed InSAR phase tensor, X and E model the tensor of the true signal, and the sparse
outliers, respectively, X̂ , Ê are the recovered outlier-free phase tensor and the estimated outlier tensor,
respectively, rank(X ) refers to the multilinear rank of X , and λrank is the regularization parameter.
In practice, the multilinear rank and the `0 norm are relaxed by the tensor nuclear norm ‖X ‖∗ and `1

norm, respectively.
RoMIO reaches filtering performance comparable to state-of-the-art filtering algorithms,

i.e., nonlocal means filtering [59,61]. However, it outperforms nonlocal means filtering by a factor of two
in terms of the interferometric phase variance when the interferogram is corrupted by 50% outliers [63].
The merit of this extreme robustness in turn improves parameter estimation in multi-baseline InSAR
algorithms. In typical settings of the TerraSAR-X high-resolution spotlight image stack, i.e., 10–20
images, SNR of 0–5 dB, a combination RoMIO and PSI outperforms the original PSI by a factor of 10 to
30 in the accuracy of the linear deformation estimates [63].

While optimizing the deformation parameters using multi-baseline InSAR algorithms, e.g., PSI,
RoMIO can also make use of the explicit support of objects, such as a given segmentation mask of
the SAR image. RoMIO includes a spatial regularization term, e.g., smoothness, of the 2D matrices of
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the parameters in the estimator [62]. A general form of such regularized estimators can be expressed
as follows.

{Ŝ, P̂} = arg min
S,P

1
2
‖W � (G − G(S, P))‖2

F + λTV f (S, P), (13)

where S and P are the matrices of the elevation and deformation parameters. Similar to other MAP
estimators, e.g., Equation (8), the first term on the right-hand side of the estimator is a data fidelity term
that calculates a weighted log likelihood between the observed InSAR phase tensor G and the modeled
tensor G, whereW denotes an optional weighting tensor, and � denotes the element-wise product
between two tensors. An example of the weighting tensor can be a tensor comprised of coherence
matrices of each interferogram. Pixels of higher coherence are given higher weights. The function
f (S, P) denotes the regularization term that represents the spatial prior of S and P. The regularization
parameter λTV controls the balance between these two terms. In [62], we made use of the popular
total variation as a smoothness prior.

3. Advances in Robust Estimation

3.1. Overview of Advances

Robust estimation in multi-baseline InSAR was sporadically mentioned in previous
literature. Some examples include using an adaptive window to improve the covariance matrix
estimation [4,57,68], improving the PSI reference network by `1 norm minimization [23,24], and robust
detection of multiple scatterers in TomoSAR [31,33]. However, it was not systematically addressed
until [5]. Wang and Zhu pointed out that, due to the existence of non-Gaussian samples and unmodeled
phase, e.g., the atmospheric phase, robust estimation in multi-baseline InSAR lies on the following two
fundamental problems:

• covariance matrix estimation for DS, due to the existence of non-Gaussian and
nonstationary samples

• phase history parameters estimation for both DS and PS, due to observations with large
unmodeled phase

The impact of non-robust covariance estimation and the existence of nonstationary phase
on parameter estimation in multi-baseline InSAR has been confirmed in several recent works,
such as [69–72], and [58,73], respectively. The following sections will elaborate on these two points.
The development of robust estimation is greatly associated with DS-based InSAR. Please refer to [74]
for a recent review of DS-based InSAR techniques.

3.2. Robust Covariance Matrix Estimation

The estimation of the covariance matrix of a pixel is usually carried out by the sample covariance
matrix. Its estimator is shown in Equation (14), where g is the multivariate observation, and G is the
matrix consisting of M spatial samples, that is G = [g1, g2, ..., gM]. Equation (14) is also the MLE if
the samples are complex circular Gaussian (CCG) distributed. Unfortunately, this equation does not
always hold in real data. This is why a robust estimator is necessary. A robust covariance estimator
should consider the following two scenarios (and the mixture of both):

• the selected samples are non-Gaussian (possibly heavily tailed distribution)
• the expected interferometric phase of the samples is nonstationary, e.g., very strong underlying

topographic phase

Ĉgg =
1
M

M

∑
m=1

gmgH
m =

1
M

GGH (14)

The following content will summarize the robust covariance estimators, focusing on the
points above.
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3.2.1. Non-Gaussian Samples

For the first scenario, [5] proposed that the sample covariance matrix can be made more robust by
an M-estimator, which is essentially an iterative reweighted sample covariance matrix [75,76]:

Ĉk+1 =
1
M

M

∑
m=1

w
(

gH
m Ĉ−1

k gm

)
gmgH

m , (15)

where m and k are the sample index and the iteration index, respectively, and w (x) is a weighting
function of the negative log-likelihood of the sample gm to the CCG probability density function
(PDF). The weighting function down-weights highly deviated samples whose log-likelihood is small.
Equation (15) is solved iteratively. The authors of [5] also proposed an approximation to drop the
iterative process, which is the sign covariance matrix (SCM) [77,78]. Extending it to complex number,
it is:

ĈSCM =
1
M

M

∑
m=1
‖gm‖−2gmgH

m (16)

SCM is an engineering solution for fast processing under the general M-estimator’s framework.
The weighting function is replaced by the inverse of the `2 norm of the sample. Therefore, only the
direction (or sign) of each multivariate sample is considered.

3.2.2. Non-Gaussian Samples with Nonstationary Interferometric Phase

It is often the case that the interferometric phase of the selected samples are not stationary, due to
varying topography and motion or other factors. Usually, this type of deterministic phase is estimated
and mitigated in prior to covariance estimation. For example, [58] proposed a multi-resolution defringe
algorithm to mitigate such nonstationary phase.

Nevertheless, poor estimates significantly affect the covariance matrix estimation. Therefore, [5]
proposed a new covariance estimator rank M-estimator (RME) for complex multivariate. The RME is
derived by replacing the multivariate g with its rank r in Equation (15):

ĈRME,k+1 =
1
M

M

∑
m=1

w
(
xm
(
ĈRME,k

))
r̂m.r̂H

m (17)

The complex rank vector r, analogous to its real number version [78], is defined as follows:

r̂m =
1
J

J

∑
j=1

gm � g∗j∥∥∥gm � g∗j
∥∥∥ , (18)

where gj is a direct neighborhood sample of gm, and� denotes the Hadamard product. The multiplication
of the complex conjugate of a direct neighbor mitigates the nonstationary interferometric phase of gm.
Due to the multiplication, the RME is a fourth-order descriptor of the sample statistics. An element-wise
square root on

∣∣ĈRME
∣∣ should be performed in order to obtain the second-order momentum. It was

proven that the element-wise square root of
∣∣ĈRME

∣∣ approaches
∣∣Ĉgg

∣∣ asymptotically under CCG
distribution when calculating the rank using one neighborhood sample [5].

3.2.3. Comparison

We compared the sample covariance matrix, M-Estimator, and the RME under three different
scenarios: (1) multivariate CCG, (2) a heavily tailed multivariate distribution (complex t-distribution),
and (3) nonstationary multivariate complex t-distribution. For each scenario, 1000 ten-acquisition
vectors were simulated according to the distribution and a predefined coherence matrix that has a
exponential decay of the coherence w.r.t. the temporal baseline. In the last scenario, linear phase fringes
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with ten different fringe frequencies randomly picked within [0 π/10] were added to the phases of the
ten acquisitions.

The results are shown in Figure 11, where each row corresponds to the three scenarios, respectively.
The top left subplot can be regarded as the ground truth, because MLE is the optimal estimator
under CCG, and is asymptotically unbiased. All three estimators can preserve the correct shape
of the covariance matrix under CCG. The MLE fails in the second scenario, where the samples are
contaminated by outliers. The coherence is usually overestimated because of the large amplitude
of the outliers. In the last scenario, both MLE and M-estimator are not capable of dealing with
nonstationary phases. Heavy underestimation occurs because of the summation of the complex
numbers with non-constant phases. The estimates of M-estimator are extremely low due to more
summation operations caused by the iterative process. Last but not least, RME is invariant to such
nonstationary phase, and hence maintains good performance in all conditions.

A quantitative experiment shows that the robust estimator is extremely effective for samples with
low coherence. At true coherence of 0.2, M-estimator outperforms the Gaussian MLE by a factor of 1.1
to 2.3, and a factor of 1 to 10, in terms of the accuracy and the bias, respectively, under a wide range of
outlier percentages [5].

0 0.2 0.4 0.6 0.8 1

Figure 11. Comparison of three covariance matrix estimators under three different observation cases:
first row: complex circular Gaussian, second row: complex t-distribution with one degree of freedom,
and third row: nonstationary complex t-distribution with one degree of freedom. First column: MLE
(under Gaussian), second column: M-estimator with t-distribution weighting, and third column: rank
M-estimator with t-distribution weighting.

3.3. Robust Phase History Parameters Retrieval

A robust covariance matrix estimate alone is not sufficient for a robust estimation of the phase
history parameters, i.e., elevation, and motion parameters, because a multi-pass InSAR observation
g ∈ CN may contain an unmodeled phase, e.g., uncompensated atmospheric phase, unmodeled
motion phase, etc. The following content provides examples of robust estimators for the retrieval of
the phase history parameters of both PS and DS.
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3.3.1. Robust PS Estimator

The general form of the MLE of PS phase history parameters can be expressed as follows:

θ̂MLE = arg min
θ

‖g− ḡ (θ)‖2
2 , (19)

where ḡ (θ) is the modeled PS signal. Equation (19) is shown to be equivalent to Equation (6) in [79].
Similar to the robust covariance estimator, it can be robustified by an M-estimator:

θ̂M−est = arg min
θ

N

∑
i=1

ρ (Re [εi (θ)]/σR ) + ρ (Im [εi (θ)]/σI ) , (20)

where the residual εi (θ) equals gi − ḡi (θ), Re [·], Im [·] are the real and imaginary parts of a complex
number, and σR and σI are the standard deviations of the real and imaginary parts of the residual,
respectively. The function ρ (x) is the so-called robust loss function that can be derived from the PDF
of the contaminated distribution of g, if it is known. However, it is usually unknown in practice. We
shall use stable empirical functions instead, e.g., the Tukey biweight function.

3.3.2. Robust DS Estimator

According to [80], the MLE of DS phase history parameters can be expressed as follows:

θ̂MLE = arg min
θ

{
gHΦ (θ) |C|−1 Φ (θ)H g

}
(21)

where Φ is a diagonal matrix of the modeled interferometric phase. If stationarity is assumed for a DS
and its neighborhood, one can treat a cluster of DSs as a single PS by averaging them, as proposed in
SqueeSAR [4]. Then, the robustified DS estimator is identical to Equation (20).

However, if the objective is a full inversion of individual single-look DS observation (without
averaging) without the strict assumption of phase stationarity, the robustified estimator is shown in [5]
to be in the following form:

θ̂M−est = arg min
θ

{
εH (θ)W (ε̄) ε (θ)

}
, (22)

where the residuals ε (θ) is shown in Equation (23). It is whitened by a robust covariance matrix
estimate, e.g., ĈRME. The matrix W ∈ RN×N is a diagonal robust weighting matrix computed from
the mean residual ε̄. Because of possible outliers in the residual, ε̄ should also be robustly estimated,
for example by a robust weighted averaging of ε (θ) of the selected samples.

ε (θ) =
∣∣ĈRME

∣∣−0.5
Φ(θ)Hg (23)

To summarize, Equation (22) is a joint estimation of the phase parameters of individual single-look
DS observations in a neighborhood. It is solved iteratively. Its computation should begin with initial
estimates of each sample in the neighborhood (assumed to be the same), which jointly determine
the initial weighting matrix. The same weighting matrix is used to retrieve the parameters of each
single-look DS in the neighborhood, and is updated on the basis of all the estimates upon finishing
one iteration.

To demonstrate the robustness of the estimator, Figure 12 shows the linear deformation rate of
the volcano Stromboli, Italy, estimated by the robust DS phase history parameter retrieval method.
Parameter estimation in active volcanic areas is challenging due to strong decorrelation, and the
varying deformation model. In the experiment, only 16 interferograms acquired in 2008 were used.
We can see that scatterers over 50% of the surface area were retrieved, although most of them did not
undergo any significant deformation. The crater shows an uplift of 10 cm/year, and the southern slope
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undergoes a subsidence of up to 20 cm/year. This may suggest certain displacement of the magma
underneath the volcano.

Figure 12. The linear deformation rate of the volcano Stromboli, in Italy, estimated by the robust DS
phase history parameter retrieval method. In total, 16 interferograms acquired in 2008 were used.
The crater shows an uplift of 10 cm/year, and the southern slope undergoes a subsidence of up to
20 cm/year. This may suggest certain displacement of the magma underneath the volcano. Courtesy:
the tropospheric correction was done by Cong et al.

4. Advances in Absolute Positioning

A unique feature of TerraSAR-X is its precise orbit determination and high precision range
measurements, which allows for an unprecedented 2D localization accuracy of image pixels below one
meter. In recent years, this level of accuracy has been further improved by thorough consideration of
the most prominent error factors affecting range and azimuth measurements of SAR, a method termed
SAR imaging geodesy [7,81]. SAR imaging geodesy is seen as a great leap in SAR technology, because
it extends the applications of SAR to the geodetic positioning domain rather than the imaging domain.
Two of the numerous application examples of SAR imaging geodesy are geodetic stereo SAR [82], a
method that retrieves the precise 3D absolute position of a target by combining its 2D radar timings
from different orbit tracks, and a framework called geodetic InSAR [6], in which multi-baseline InSAR
and stereo SAR are combined to achieve absolute 4D InSAR point clouds. A brief introduction to
the two methods is given below, and the most recent advances of these techniques and their new
applications are described.

The SAR imaging geodesy method aims at attaining 2D absolute pixel localization [7]. A single
pixel in a focused complex SAR image is localized, in across-track, by range τrg and, in along-track,
by azimuth taz times. For a point target inside the mentioned pixel, the following equations read:

τrg =
2R
c

+ δτSD + δτO + δτF + δτI + δτT + δτG

taz = t + δtSD + δtO + δtF + δtG,
(24)
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where R is the geometric distance from the sensor to the center of the pixel in meters and c is the
speed of light in vacuum; the other terms are all expressed in seconds. The raw acquisition time is
denoted by t and the timing error terms subscripted by SD, O, F, I, T and G represent delays caused
by satellite dynamics, orbit inaccuracies, feature localization error, ionospheric delay, tropospheric
delay, and geodynamic effects, respectively. The magnitude of individual errors range from a couple of
centimeters for the ionospheric effect, if the satellite operates in X-band, followed by decimeter regimes
for satellite dynamic effects and geodynamic effects for both components, to up to a few meters for
the tropospheric effect, depending on the weather conditions and the average incidence angle of the
acquired SAR images. Some of the mentioned errors and their effects on SAR measurements are shown
in Figure 13. The curved propagation path shown in Figure 13 is highly exaggerated for visualization
purposes only. In order to remove the mentioned timing errors, the imaging geodesy method exploits
the highly precise orbit data of TerraSAR-X and Tandem-X [1,2,83], utilizes a highly sophisticated
SAR processor to avoid unnecessary approximations [84], precisely extracts targets with sub-pixel
sensitivity [85,86], and corrects the path delay and geodynamic errors by global numerical weather
data [81,87] and state-of-the-art geodetic models [88].

Geodynamic 

effects 

Ionosphere 

Troposphere 

Orbit error 

Ionospheric delay 

Satellite dynamics and 

timing 

Tropospheric delay 

Figure 13. The errors affecting range and azimuth timings of SAR measurements, colorized in red.
Orbit errors cause the satellite trajectory to deviate from the true track, while satellite dynamics and
atmospheric disturbances cause delays in the timings, which lead to incorrect annotation of τrg and taz.
Geodynamic effects change the position of a target on the ground, which again hampers the accuracy
of the timings. Please note that the atmospheric effect shown in the figure is highly exaggerated for
visualization purposes only. The main cause for atmospheric delay is the decrease of the speed of light.

By combining the τrg and taz of the same target visible in SAR images acquired from two or more
different viewing geometries, the stereo SAR method determines the 3D position of the target (see
Figure 14). The 2D radar timing coordinates of a particular target in the SAR image xT = (taz, τrg)

are linked to their corresponding 3D coordinates on the surface of the Earth XT = (X, Y, Z) by the
range-Doppler equation system [85]:

|XS − XT | − c · τrg = 0

ẊS(XS − XT)

|ẊS||XS − XT |
= 0

(25)
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with XS and ẊS denoting the position and the velocity vector of the satellite relative to taz, and τrg

being the calibrated two-way traveled time from the satellite to the target. The variable taz is implicitly
included in the second equation relating the state-vector of the satellite to the time of the acquisition
using a polynomial model [82]. The estimation of the coordinates is performed by least squares
adjustment plus stochastic modeling of timing observations using the variance component estimation
(VCE) [82]. The relative accuracy of the estimated coordinates depends on the SCR of the target,
the precision of the external atmospheric and geodynamic corrections, the degree of difference in the
combined viewing geometries, and the number of SAR acquisitions.

(a) Cross-heading (b) Same-heading

Figure 14. Localization of a point target (red dot) from (a) cross-heading and (b) same-heading satellite
tracks. The satellites are shown by black dots; their trajectories are presented by dashed lines and the
baselines are depicted by solid lines between the satellite positions. The black circles are defined by the
range-Doppler equations and their intersection leads to the 3D position of the target [89].

4.1. Overview of Advances

SAR imaging geodesy was first named in 2011 by Eineder et al., since the method incorporates
correction principles used in geodesy with SAR [7]. Schubert et al. reported on the correction of
atmospheric delays by local height dependent models in [90]. Gisinger studied the effect of utilizing
different mapping functions for converting the zenith atmospheric delays into the radar line of
sight in [91]. These methods used the local GNSS zenith path delays for atmospheric corrections.
Cong et al. introduced atmospheric correction through the 3D integration of weather data obtained
from the European Center for Medium-Range Weather Forecasts (ECMWF) and using global TEC
maps [81]. Apart from atmospheric errors, calibration of internal electronic delays of the SAR
sensor was investigated in [7] and the precision of azimuth timing was improved by calibrating
the sensor’s internal clock rate [92]. The most prominent geodynamic effects, such as solid earth tides,
pole tides, and continental drifts, were included in further studies [7,81,86,93]. In order to improve the
localization precision into sub-centimeter regimes, Balss et al. further modeled geodynamic effects
with smaller magnitudes, such as atmospheric pressure loading, ocean tidal loading, ocean pole tides,
and atmospheric tidal loading [94]. In all the studies, the geodynamic effects were considered by the
state-of-the-art models of the IERS 2010 convention [88]. The already precise orbit of TerraSAR-X [83]
has been further improved by modeling the non-gravitational forces and also solar radiation pressure
modeling [1]. The world-wide reproducibility of high precision measurements was demonstrated in
[95] and an operational processor called the SAR Geodesy Processor (SGP) was introduced in [87].
Relative to applications, the high precision ranging measurement of TerraSAR-X has been exploited
for maritime purposes [96,97]. In terms of achievable accuracy, SAR imaging geodesy is capable
of localizing corner reflectors with 1.16 cm and 1.85 cm range and azimuth standard deviations,
respectively [98].

The first results on 3D localization of CRs by means of stereo SAR was reported in [99]. Although
3D positioning using multi-aspect TerraSAR-X images had been previously demonstrated in [100–102],
the results in [99] were unique in the sense that the stereo processing was carried out on thoroughly
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calibrated range and azimuth timings. Gisinger et al. demonstrated the applicability of the geodetic
stereo SAR method not only on CRs but on opportunistic non-ideal scatterers such as PS in an urban
area [82]. The manually extracted scatterers could be localized with 3D precision better than 10 cm [82],
which paved the way for new geodetic applications such as secular ground movement estimation
using natural PS [103,104], high precision mapping of road networks (DriveMark) [105], and highly
precise automatic SAR Ground Control Point (GCP) generation [89,106–109]. In terms of achievable
accuracy, geodetic stereo SAR is able to localize corner reflectors with 3D precision better than 4 cm and
an absolute accuracy of 2–3 cm when compared to independently surveyed reference positions [82].

4.2. Geodetic InSAR

The geodetic InSAR approach integrates the capabilities of multi-baseline InSAR with SAR
imaging geodesy and stereo SAR techniques. The goal of the framework is to tackle the shortcomings
of both methods: the relative estimates of all InSAR approaches and the small number of points
that can be absolutely localized by geodetic stereo SAR. Therefore, it tends to achieve absolute
positioning of a large number of scatterers by exploiting the advantages of both techniques. In the
following, the workflow of the geodetic InSAR technique is described and some example applications
are demonstrated.

4.2.1. SAR GCP Generation

The first major part of the procedure is concerned with extraction of GCPs from multi-aspect SAR
images. This includes [89]:

Step 1 Detection and matching of identical PS from SAR images acquired from different orbits. In
the reference geodetic SAR tomography technique this task was performed manually [6].
At the current state of the framework, the identification of common PS can be carried out
using the PSI multi-track fusion algorithm [39] for same-heading tracks and utilizing high
resolution optical data [106] or external geospatial road network data [109] for cross-heading
tracks. A combination of all the mentioned methods for automatic detection of large number
of GCPs was used in [89].

Step 2 Precise timing extraction of PS from stacks of non-coregistered SLC images. This is done by
PTA [85,86].

Step 3 PS visibility check and initial outlier removal. The time series of phase noise approximated
by SCR of each PS [19] is analyzed and the outliers are robustly removed by the adjusted box
plot method [110].

Step 4 Correction of PS timings in the stack of images using imaging geodesy.
Step 5 Absolute 3D positioning of each PS by the stereo SAR method [82]. The posterior quality

measures of the observations and the estimates are also reported in this step.

4.2.2. Absolute Localization of InSAR Point Clouds

The main objective of the geodetic InSAR framework is to resolve the DEM error of the reference
point with respect to which the topography and deformation parameters are estimated [20,21,40].
The geodetic InSAR approach can overcome this problem, to some extent, in two ways dependent
on the number of available GCPs. If only a small number of GCPs are available, the best candidate
will be chosen as the reference point during PSI/TomoSAR processing and at the final stage the
geocoded coordinates of all points in the point clouds are shifted toward the absolute coordinates
of this point [6]. If a large number of GCPs are available, for instance using the GCP generation
approaches in [89,107], the DEM error of the reference point is approximated as a post-processing step.
Therefore, the difference in ellipsoidal heights of GCPs and their corresponding geocoded PS heights
are calculated and a height offset is robustly estimated. The height offset is added to the geocoded PS
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heights and an updated geocoding is carried out which results in absolute coordinates of the InSAR
point cloud [111].

4.2.3. Applications

To conclude this subsection, a few examples and applications of the geodetic InSAR framework
are demonstrated below.

Figure 15 shows the city of Oulu in Finland overlaid by 2049 GCPs obtained from four stacks of
TerraSAR-X high resolution spotlight images.

Figure 15. Total number of 2049 GCPs in Oulu, color-coded based on the geometry
configuration used for their positioning (AA: ascending-ascending, DD: descending-descending, AD:
ascending-descending and ADAD: quad geometry) [89]. The underlying optical image is taken from
Google Earth.

The GCPs are color-coded based on the underlying geometry configuration used for their
localization, where AA, DD, and AD stand for ascending-ascending, descending-descending and
ascending-descending orbits, respectively; ADAD means that scatterers were localized from all the four
viewing geometries. It is observed that the entire central area of Oulu is covered with the generated
GCPs. The candidates from the same-heading geometries stem from built areas, while the ones from
cross-heading orbits include the bases of lamp poles, street lights, and traffic lights. The statistics
of the generated GCPs are reported in Table 3, which demonstrate the extremely high potential of
TerraSAR-X for precise 3D positioning.

Comparison with a reference LiDAR point cloud shows that we can achieve a horizontal absolute
accuracy of 20 cm using just a single GCP to correct the geocoding of an InSAR point cloud [6,55].
Therefore, employing over one thousand GCPs, as shown previously, can achieve extremely high
absolute accuracy, presumably in the order of centimeter. In order to demonstrate this, a close
comparison of two cross-heading InSAR point clouds before and after height correction is shown
in Figure 16, where the red and green points represent the PS of descending and ascending tracks,
respectively. It can be seen that after the calibration of the height of the reference point using the GCPs,
the endpoint of building facades correctly match.
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Table 3. Averaged statistics based on the stereo SAR least squares estimated 3D coordinate standard
deviations in Oulu. The letters A and D stand for ascending and descending geometries, respectively.
The sample mean and standard deviation are denoted by µ and σ and S[ENH] represents the local
coordinates standard deviations within a 95% confidence level [89].

Geometry Number of
Scatterers µsE (cm) µsN (cm) µsH (cm) σsE (cm) σsN (cm) σsH (cm)

AA 565 17.73 5.04 15.87 11.98 2.63 11.09
DD 1417 15.08 3.80 16.71 10.38 2.10 11.30
AD 24 2.26 2.50 1.75 0.99 1.11 0.83

ADAD 43 1.17 1.40 1.12 0.42 0.55 0.37

Figure 16. Demonstration of absolute localization of PSI point clouds obtained from an ascending
and a descending orbit track of Oulu. The endpoints of buildings visible from each geometry match
correctly with the endpoints from the opposing geometry.

To give an impression of the fused TomoSAR point cloud of a large area, Figure 17 shows a result
obtained by fusing four TomoSAR point clouds of Berlin obtained from two pairs of cross-heading high
resolution TerraSAR-X spotlight images that are fused by selecting an identical GCP as the reference
point of all point clouds. The point cloud has in total 63 million scatterers in an area of 50 km2. Such
shadow-free highly detailed TomoSAR point clouds can be further utilized to reconstruct dynamic 3D
and 4D city models [44–46,112].



Remote Sens. 2018, 10, 1374 25 of 32

Figure 17. 3D view of central Berlin after geodetic registration of four TomoSAR point clouds obtained
from a pair of cross-heading high resolution TerraSAR-X spotlight data. The height is color-coded and
ranges between 70 m and 110 m [6].

5. Conclusions and Outlook

This paper provides a review of the multi-baseline InSAR techniques in the scope of TerraSAR-X
data. It covers the evolution of multi-baseline InSAR techniques, particularly with respect to improving
the relative estimation accuracy, introducing robustness to the estimators, and achieving accurate
absolute positioning of scatterers, which includes bridging the absolutely located scatterers with the
relative measures obtained from multi-baseline techniques. Particular focus was placed on our own
development work, specifically SL1MMER, M-SL1MMER, Tomo-GENESIS (TomoSAR), RIO (robust
estimation), RoMIO (object-based InSAR), and geodetic InSAR (absolute positioning).

Looking into the future, the next generation spaceborne SAR missions, including high resolution
wide swath (HRWS) and Tandem-L, will simultaneously possess high resolution and global coverage,
which would enable novel applications such as monitoring global changes. Retrieving geo-parameters
from these data will require not only new technological approaches to manage large amounts of
data, but also new analysis methods. In the following, we would like to point out some promising
future directions:

• Big data management technologies: So far, besides big missions, such as global TanDEM-X DEM
generation, scientists are dealing with SAR data in the order of up to terabytes. However, this is
about to change. Already today, petabytes of Sentinel-1 data are openly accessible to the public.
Yet, only very limited groups are capable of national-scale InSAR data processing, to say nothing
about global. To be prepared for the future, novel big geo-data management technologies are of
high relevance.

• Fast and accurate parameter inversion algorithms: The development of inversion algorithms
should keep up with the pace of data growth. For example, as a pre-study of Tandem-L, sequential
interferometric phase estimators are proposed instead of full covariance matrix inversion to
tackle the challenge of big InSAR data [72]. Fast solvers are demanded for many advanced
parameter inversion models that often involve non-convex, nonlinear, and complex-valued
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optimization problem, such as CS-based tomographic inversion, or low rank complex tensor
decomposition. Besides aforementioned model-based inversion methods, recently, data-driven
machine learning/deep learning methods have boosted the baseline performances in many remote
sensing problems [113], mostly in classification and detection tasks, yet its potential in InSAR
processing or more generally in geoparamater estimation is not yet exploited at all. This deserves
more attention of the community.

• Complicated motion: Up to now, only limited motion models, such as linear, seasonal or a
combination of several basic models, are considered for deformation estimations of InSAR.
There are also studies using model order selection to detect different types of motion either
being embedded in the estimation [114] or considered as a post-processing [115]. However,
the actual motion can be far more complex than any model can describe. The weekly repeat
cycle and long-term monitoring capability of future sensors will enable retrieving much more
complex motion models, and even allow performing classification of different types of motions
and detecting anomalies. This calls for more sophisticated algorithms.

• Data assimilation: At present, the interferometric stack is usually a static cube of interferograms.
As Sentinel-1 provides global coverage every six days, new stacking and multi-pass InSAR
concepts should be able to include new images without excessive computational burden. This
requires development of the data assimilation strategy, as well as novel inversion algorithms that
only require the new measurements and the previous estimates for updating the parameters of
interest.

• Multi-sensor data fusion: In the Copernicus era, it is standard that more than one data source, such
as SAR and optical, is available at any test site. Intelligent use of the complementary peculiarities
of the ever-increasing number of diverse remote sensing sensors and other geo-data sources has
become the natural choice for many applications [116]. Some preliminary work in the community
demonstrated that introducing the geometric prior or semantic prior to InSAR or TomoSAR
reconstruction could significantly reduced the number of required SAR data while retaining the
estimation accuracy [28,63]. This is definitely a promising future direction.
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The following abbreviations are used in this manuscript:

ADI Amplitude dispersion index
CCG Complex circular Gaussian
CS Compressive sensing
DEM Digital elevation model
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DS Distributed scatterer
D-TomoSAR Differential TomoSAR
ECMWF European Center for Medium-Range Weather Forecasts
GCP Ground control point
HRWS High resolution wide swath
ICP Iterative closest point
IERS International Earth Rotation and Reference Systems Service
InSAR SAR interferometry
LOS Line of sight
MAP Maximum a posteriori
MLE Maximum likelihood estimator
M-SL1MMER Multiple-snapshot SL1MMER
OSM OpenStreetMap
PDF Probability density function
PSI Persistent scatter interferometry
PS Point/Persistent Scatterer
RIO Robust InSAR optimization
RME Rank M-estimator
ROI Region of interest
ROMIO Robust multi-pass InSAR via object-based low rank decomposition
SAR Synthetic aperture radar
SCR Signal-to-clutter ratio
SL1MMER Scale-down by L1 norm minimization, model selection, and estimation reconstruction
SNR Signal-to-noise ratio
TEC Total electron content
TomoSAR SAR tomography
VHR Very high resolution
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