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Abstract: The water cloud model (WCM) is a widely used radar backscatter model applied to SAR
images to retrieve soil moisture over vegetated areas. The WCM needs vegetation descriptors to
account for the impact of vegetation on SAR backscatter. The commonly used vegetation descriptors
in WCM, such as Leaf Area Index (LAI) and Normalized Difference Vegetation Index (NDVI), are
sometimes difficult to obtain due to the constraints in data availability in in-situ measurements
or weather dependency in optical remote sensing. To improve soil moisture retrieval, this study
investigates the feasibility of using all-weather SAR derived vegetation descriptors in WCM. The
in-situ data observed at an agricultural crop region south of Winnipeg in Canada, RapidEye optical
images and dual-polarized Radarsat-2 SAR images acquired in growing season were used for WCM
model calibration and test. Vegetation descriptors studied include HV polarization backscattering
coefficient (σ

◦
HV) and Radar Vegetation Index (RVI) derived from SAR imagery, and NDVI derived

from optical imagery. The results show that σ
◦
HV achieved similar results as NDVI but slightly

better than RVI, with a root mean square error of 0.069 m3/m3 and a correlation coefficient of 0.59
between the retrieved and observed soil moisture. The use of σ

◦
HV can overcome the constraints of

the commonly used vegetation descriptors and reduce additional data requirements (e.g., NDVI
from optical sensors) in WCM, thus improving soil moisture retrieval and making WCM feasible for
operational use.
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1. Introduction

Soil moisture plays a key role in the terrestrial water cycle. The retrieval of soil moisture over a
large area is important in the modeling and assessing drought impact [1], evapotranspiration [2], and
water budget [3,4]. With high temporal and spatial variations, soil moisture data over large areas is
difficult to obtain from in situ networks. Radar has a high backscattering sensitivity to soil moisture
due to the high contrast of the microwave dielectric constant (ε) between dry soil (ε = 2~3) and water
(ε = 80) [5]. It also has the advantage of observing the earth’s surface day and night in all weather
conditions. Therefore, radar remote sensing has the potential to measure soil moisture on a large scale
at regular temporal intervals from space [6–10]. Over the past 30 years, considerable effort has been
spent on using Synthetic Aperture Radar (SAR) imagery to retrieve soil moisture.

SAR incidence angle and polarization are important factors that affect soil moisture
retrieval [5,8,11–14]. Radar backscatters normally decrease with increasing incidence angle [15,16].
The rate of decrease depends mostly on roughness conditions and land cover. Previous studies
showed that SAR at low incidence angle is less sensitive to surface roughness [5,11–13,17] and
vegetation [18,19] than at high incidence angle. Low incidence angles are thus optimal for soil moisture
retrieval. The choice of polarizations also plays an important role in SAR-based soil moisture retrieval.
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Single-polarization data is often used for soil moisture retrieval [5,11]. Several studies showed that
HH polarization is more sensitive than HV to soil moisture but less sensitive than VV [13,20,21].
However some other studies disagreed. For example, Beaudoin et al. [22], Le Loan [23], and Baghdadi
et al. [14] found that HH polarization is most relevant to soil moisture estimates. Moreover, the
study by McNarin and Brisco [24] demonstrated that additional polarizations can provide more
information content in a SAR dataset. For example, cross-polarized SAR images (HV or VH) are
sensitive to crop structure within the total canopy volume and thus provide information that can be
complementary to HH and VV imagery. Using multiple polarizations should, in theory, improve soil
moisture estimation [25]. Improved soil moisture retrieval using multi-polarization SAR data was
reported even under dense vegetation canopy [26,27]. It must be noted that Baghdadi et al. [28] found
that the accuracy of the soil moisture estimation did not improve significantly (<0.01 cm3/cm3) for
two bare soil sites when two polarizations (HH and HV) were used instead of only one polarization.
There have been great interests to use full-polarized SAR data in soil moisture retrieval after the data
is available [1,25,29] as it contains more information on the scattering objects than the single- and
dual-polarization data. However, full-polarized SAR data has the disadvantage of narrow swath,
which limits its applications in soil moisture retrieval over large areas. As such, dual-polarized SAR
data is recommended for retrieving soil moisture over large areas because of its large swath width of
up to 500 km (e.g., Radarsat-2 ScanSAR wide beam mode).

For the case without vegetation or with low vegetation cover, shorter wavelength SAR (especially
X-band) is more sensitive to soil moisture and least sensitive to surface roughness than longer
wavelength SAR [30–32]. For the presence of vegetation (especially dense vegetation), however,
longer wavelength L-band, compared with the SAR X-band and C-band, is more suitable for soil
moisture retrieval since it has stronger vegetation/soil penetration power and is less sensitive to
vegetation canopy [9,33]. Unfortunately, currently, ALOS-2/PALSAR is the only long wavelength
L-band SAR sensor currently in orbit. Since its data is limited, especially for regions outside Japan, the
ALOS-2/PALSAR is significantly hampered for operational use in soil moisture retrieval. In contrast,
Sentinel-1A, Sentinel-1B and Radarsat-2, which are C-band SAR satellites currently in orbit, can provide
routine observations of Earth’s surface over large areas. Radarsat Constellation Mission (RCM) with
4-days revisit interval will further expand current C-band SAR satellites’ revisit capabilities (6-days
for Sentinel-1A/B and 24-days for Radarsat-2). These capacities are promoting new scientific and
operational perspectives, e.g., downscaling passive microwave soil moisture [34,35], in the retrieval of
soil moisture continuously over large areas using C-band SAR imagery.

Soil moisture retrievals from C-band SAR are significantly affected by vegetation cover and surface
roughness. A number of SAR backscatter models have been proposed to separate the backscattering
contributions of soil and vegetation [6,14,36–39]. These models are generally categorised into three
groups: theoretical, empirical, and semi-empirical. The theoretical models such as the Integral
Equation Model (IEM) and the advanced IEM model [17,40,41] are complicated and require a large
number of parameters. Baghdadi et al. [42–44] modified the IEM to reduce the IEM’s input soil
parameters from three to two [45]. On the other hand, the empirical models, e.g., Dubois model [46],
are simple to develop but may have limitations in applicability for other sites due to their data and site
dependency [6,47]. Recently Baghdadi et al. [31] improved the Dubois model for a reliable estimate of
soil moisture. The semi-empirical models, e.g., Oh model [15] and Water Cloud Model (WCM) [48],
start from a physical background and then use simulated or experimental datasets to simplify the
theoretical backscattering models [8]. The WCM is often used in retrieving soil moisture and modelling
of the scattering of vegetated areas for its simplicity [27]. In addition, the inversion techniques,
including the Neural Network (NN) approach and the Change Detection (CD) method, are also used
widely for soil moisture retrieval.

The neural network approach consists of a number of hidden neurons or nodes that work in
parallel to convert data from an input vector to an output vector [9,48]. For soil moisture retrieval, the
neural network is often trained using a synthetic database generated from SAR backscattering model
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such as IEM, Oh, and WCM models [39,49,50] or WCM model combined with the IEM model [39,51].
Based on the NN approach, Santi et al. [52] retrieved soil moisture from ENVISAT/ASAR data with
an Root Mean Square Error (RMSE) as low as 0.023 m3/m3. Paloscia et al. [39] trained a neural
network by using a synthetic database of backscattering coefficients simulated from WCM model
combined with IEM model for a wide range of soil moisture, surface roughness, and vegetation index.
The inputs to the neural networks were the SAR data and NDVI. The approach doesn’t need roughness
measurements. They achieved results with RMSE between 1.67 m3/m3 and 6.68 m3/m3 over several
areas in Italy, Australia, and Spain using Sentinel-1 SAR data, which were very much in line with
GMES requirements (with RMSE generally <5 m3/m3). The change detection method is based on the
near linear relationship between SAR backscatter and soil moisture. It assumes the effect of vegetation
and surface roughness on observed backscatter are consistent between acquisitions. The advantage
of this method is that it can retrieve soil moisture in the absence of prior information of the study
area when multi-temporal SAR data is available. Based on this method, Gao et al. [48] retrieved soil
moisture over a site in Urgell (Catalunya, Spain) from multi-temporal Sentinel-1/SAR data, which
combined with optical Sentinel-2 data, with an RMSE as low as 0.059 m3/m3. Zribi et al. [53] achieved
a better result with a RMSE of about 0.035 m3/m3 in retrieving soil moisture over a semi-arid area using
ASAR data. The Water Cloud Model (WCM), a simple semi-empirical backscatter model, can relate the
backscattering coefficient (HH or VV polarizations) to soil properties (moisture and roughness) and
vegetation properties (e.g., biomass, leaf area index) and thus it can be used to retrieve soil moisture
from SAR imagery over densely vegetated areas [48]. Based on the WCM, Gherboudj et al. [27]
retrieved soil moisture with an RMSE of 5.9% and 6.6% for two sites in crop fields from multi-polarized
and multi-angular Radarsat-2 SAR data. Zribi et al. [54] achieved similar result (RMSE: ~0.06 m3/m3)
in a semi-arid region from C-band ASAR data using the WCM. Kumar et al. [55] obtained a better soil
moisture retrieval with an RMSE as low as 0.0419 m3/m3 from C-band ASAR data by the use of LAI in
the WCM as the vegetation descriptor. The WCM is used in this study for its simplicity.

The performance of the WCM for soil moisture retrieval depends on the characterization of surface
roughness and vegetation. Obtaining accurate information about surface roughness is difficult. First,
the in-situ measurement of the surface roughness is quite challenging [56]. Second, the SAR-based
surface roughness retrievals (e.g., depolarization ratio method) are mainly developed for bare soil
and are less efficient in the presence of a vegetation canopy [27]. In this study, the effect of surface
roughness is accounted for by using multi-temporal data over the same field, as surface roughness has
little change over a short time period especially for crop fields during the growing time period [57].

Various vegetation descriptors such as plant height, leaf area index (LAI), vegetation water
content, and normalized difference vegetation index (NDVI) have been used in WCM [14,27,38,55].
These vegetation descriptors are calculated using data either from in-situ measurements or from optical
satellite remote sensing. The use of in-situ data is difficult in operational applications because of the
high cost and time consuming in data collections, especially in remote areas. The use of optical satellite
data is often limited by weather conditions such as cloud and haze.

Recently, some advances have been made toward developing SAR parameters for characterizing
vegetation canopies. For example, the radar vegetation index (RVI), which is computed as a ratio of
the cross-polarization scattering to the total scattering, has been used to estimate the biomass and the
water content of a wheat crop [58]. Kumar et al. [59] showed RVI as a better alternative to NDVI for
monitoring soybean and cotton. In other studies, the HV backscattering coefficient (σ◦

HV) was found
to be very sensitive to the vegetation biomass [60,61] and correlated with LAI [62,63]. Using SAR
data to characterize vegetation in the WCM for soil moisture retrieval could be much more effective
and beneficial than using in situ and optical sensor-based vegetation descriptors, but few studies
are available.

The objective of this study was to assess the WCM performance in soil moisture retrieval by
using SAR-derived vegetation descriptors. Specifically, the SAR-derived σ◦

HV and RVI obtained from
dual-polarized Radarsat-2 SAR imagery were tested using a simplified WCM. The NDVI derived from
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RapidEye images was also used in the WCM for comparison. The goal of this study is to provide a
practical tool for continuous mapping of soil moisture over large areas by future SAR missions such
as RCM.

2. Methods

A simplified WCM was employed in this study to retrieve soil moisture. Assuming the effect of
soil surface roughness on observed backscatter for a given site is consistent over a short period, in
such a case, the temporal change in SAR backscattering only reflects the change of vegetation and
soil moisture. Therefore the multi-temporal SAR data was used in the WCM for this study. Since the
multi-temporal SAR imagery may be in different viewing geometries, an incidence angle normalization
was conducted to make the SAR data radiometrically comparable. The RVI was then computed from
these normalized SAR images. The accuracy of the retrieved soil moisture was evaluated by root mean
square error (RMSE) and the Pearson correlation coefficient (R). The detailed WCM description and
data processing methods are given below.

2.1. A Simplified Water-Cloud Model (WCM)

The water-cloud model, initially developed by Attema and Ulaby [36], considers the vegetation
canopy as a cloud containing water droplets randomly distributed within the canopy. It provides
solutions for the backscattering coefficients for the vegetation canopy as well as the underlying
soil [23,28]. The WCM for a given co-polarization (pp) is formulated as:

σ◦
pp = σ◦

veg + τ2σ◦
soil , (1)

where
σ◦

veg = AV1cosθi

(
1 − τ2

)
, (2)

τ2 = e−2BV2secθi , (3)

where σ◦
pp (in power) is the observed canopy backscattering coefficient, which is represented as

the sum of vegetation volume scattering σ◦
veg and the bare soil scattering σ◦

soil , τ2 is the two-way
transmissivity of the vegetation, A and B are the model coefficients, and V1 and V2 are the vegetation
descriptors. According to Bai and He [42], the WCM can be further simplified by expanding τ2 through
the Maclaurin series [64]:

τ2 = e−2BV2secθi = 1 − 2BV2

cosθi
+

2B2V2
2

cos2θi
+ · · · · · · , (4)

Only the first two items are preserved in Equation (4). Combining Equations (1)–(4), the WCM is
simplified as:

σ◦
pp = 2ABV1

2 +

(
1 − 2BV2

cosθi

)
σ◦

soil , (5)

The V1 and V2 are often reduced to a single vegetation descriptor V (V = V1 = V2) in the WCM.
As such, Equation (5) can be further simplified through variable substitution:

σ◦
pp = aV2 + bVσ◦

soil + σ◦
soil , (6)

in which a = 2AB and b = −2B/cosθi are the coefficients of the simplified WCM. Comparing to
Equation (1), Equation (6) can simplify the computation of the unknown model coefficients [38].

The bare soil scattering σ◦
soil is represented by the function f (R, Ms) of surface roughness (R) and

soil moisture (Ms). For a field especially an agriculture field during the crop growing time period, R is
considered constant for a short period. In such a case, when multi-temporal SAR data is used over the
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same field, the temporal change in bare soil scattering only reflects the change of soil moisture with
time for a site, and the σ◦

soil has a linear relationship with Ms, which can be expressed as:

σ◦
soil(db) = cMs + d, (7)

where c can be considered as the sensitivity of SAR to soil moisture and d indicates the backscatter due
to surface roughness. The parameters a, b, and c for a specific vegetation are assumed to be constant
for a specific time period and the parameter d varies with surface roughness. It must be noted that
the backscattering coefficients in Equations (6) and (7) are given in power and db formats, respectively.
When submitting Equation (7) to Equation (6), the unit conversion must be conducted to make the units
of both equations are the same. As mentioned earlier in the Introduction, the V is often parameterized
by LAI, vegetation water content, or NDVI estimated using in-situ or optical remote sensing data, and
it is parameterized using HV backscattering and RVI from Radarsat-2 dual-polarization (HH + HV)
imagery in this study.

2.2. Incidence Angle Normalization of SAR Imagery

Given a short time period, the amount of repeat pass SAR images may not be sufficient for fitting
the WCM due to their low temporal resolutions. As a solution, all available SAR images were used to
produce a time series dataset. These images may not be radiometrically comparable because they could
be captured at different incidence angles (especially low incidence angles), which have a significant
impact on radar backscatters [16]. For example, Oh et al.[15] showed that even as little as a 5◦ incidence
angle can sometimes have ~3 db difference in radar backscatters, which may correspond to about 15%
soil moisture change when incidence angle was lower than 35◦. As such, incidence angle normalization
toward a single reference angle is required for the time series SAR images. For this purpose, several
studies [65,66] used empirical regression approaches, which assume linear function of SAR backscatter
to incidence angles. This kind of approaches is site- and sensor-specific. In this study, we normalized
the SAR backscatters to a reference angle based on the theoretical model of Lambert’s law:

σ◦
(

θre f

)
=

cos2
(

θre f

)
cos2(θi)

σ◦(θi), (8)

where σ◦(θi) is the incidence angular dependent radar backscatter, θi and θre f represent the local

incidence angle and the reference incidence angle, respectively, and σ◦
(

θre f

)
is the normalized radar

backscatter to a reference incidence angle θre f . The Lambert’s law assumes that the relationship
between the incidence angle and amount of scattering per unit surface area follows the cosine law.
This behaviour is typical for the middle range of incidence angles [67]. The model is simple but it was
found to be reasonably representative for many types of terrains [65,66]. The model has been applied
for agriculture land surfaces by many researchers [57,68–72].

2.3. Radar Vegetation Index (RVI)

The RVI is normally derived from quad-polarization SAR data using the equation proposed by
Kim and Van Zyl [73]:

RVIquad =
8σ

◦
HV

σ
◦
HH + σ

◦
VV + 2σ

◦
HV

, (9)

where σ
◦
HH , σ

◦
HV , and σ

◦
VV are backscattering coefficients of HH, HV and VV polarizations, respectively.

Since we use dual-polarization (HH + HV) SAR data for soil moisture retrieval, VV polarization data
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is not available. Instead, we calculate the RVI from the dual-polarization SAR data for each Radarsat-2
image using the following equation as modified by Charbonneau et al. [74],

RVI =
4σ

◦
HV

σ
◦
HH + σ

◦
HV

. (10)

2.4. Normalized Difference Vegetation Index (NDVI)

The NDVI is computed as the ratio of the difference and sum of the reflectance measurements
acquired in the near infrared (NIR) and red spectral regions. It can be written as:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

, (11)

where ρNIR and ρRED are the reflectance at NIR and red spectral wavebands respectively.

2.5. Model Evaluation

The model results for soil moisture are compared to in-situ measurements using the Pearson
correlation coefficient (R) and the Root Mean Square Error (RMSE) as given below:

R =
∑n

i=1
(

Msoi − Mso
)(

Mspi − Msp
)√

∑n
i=1
(

Msoi − Mso
)2

∑n
i=1
(

Mspi − Msp
)2

, (12)

RMSE =

√
∑n

i=1(Mspi − Msoi)
2

n
, (13)

where Msoi and Mspi are the retrieved and in-situ soil moisture at site i, respectively. Mso and Msp are
their corresponding mean values, and n is the total number of sample sites. In this study, the wide
range of variability for in-situ soil moisture and LAI data and large time span over the growing season
provided solid inputs for the model testing, validation and analysis. However, the difficulties and
costs associated with field measurements at this scale largely constrained the size of the in situ datasets.
To address this limitation, the Leave-One-Out-Cross-Validation (LOOCV) method was used for model
evaluation [9]. In this method, one of the data samples was left out of each time for model evaluation
and the remaining n − 1 data samples were used to train the model. This resulted in a total of n
models trained using the n − 1 data samples. The results of the model evaluation can be obtained by
computing R and RMSE using all unique sample estimation from each of the n models. One advantage
of the LOOCV method over other traditional validation methods, e.g., splitting the dataset equally
into one subset for training and one subset for validation, is that it can effectively reduce the impact of
small amount of data samples. The result from this LOOCV evaluation is generally regarded as a more
conservative estimate of the model performance than that trained on all samples [75].

3. Study Area and Datasets

3.1. Study Area

Our study area was located in the SMAP Validation Experiment 2012 (SMAPVEX12) site [31]
(Figure 1). The background image shows the coverage (30 km by 50 km) of our study region. It is an
agricultural region (90% are crop fields) located in south of Winnipeg in Manitoba, Canada. The crop
types include corn, soybean, canola, wheat, and pasture. The soil texture varies greatly across the
study region providing a large range of soil moisture levels. Soil moisture, soil temperature, and other
surface characteristics (vegetation, roughness, soil density, etc.) data were collected during a six-week
field campaign in 2012 (7 June–17 July). Accompanying the field campaign, remotely sensed satellite
and airborne data were acquired at a time close to the in-situ data collections. The remote sensing
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data includes SMOS, AMSR-E, Radarsat-2, RapidEye, SPOT-4, DMC International Ltd. (DMCii) and
Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The crop map was produced from a
supervised classification of imagery acquired by SPOT-4, DMCii, and Radarsat-2. The wealth of data
collected during the intensive field campaign provided a good opportunity for developing and testing
our soil moisture retrieval models. More detail information about the study region and the datasets
can be found in McNarin et al. [76].Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 17 
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Figure 1. The location of the study area.

3.2. Data and Pre-Processing

Time series of Radarsat-2 (in single look complex (SLC) format) and RadpidEye (in L1B format)
images acquired during the SMAPVEX12 field campaign were used in this study. RapidEye refers to
the constellation of five satellites, which provide daily-revisit high resolution (5 m) images. A RapidEye
image has five spectral bands: Blue (440–510 nm), Green (520–590 nm), Red (630–690 nm), Red-Edge
(690–730 nm), and Near-Infrared (760–880 nm). All the satellite images were obtained through
Canada’s National Earth Observation Data Framework (NEODF). There are a total of 12 Radarsat-2
scenes and seven RapidEye scenes of which details are given in Table 1. In addition, a 30 m resolution
Shuttle Radar Topography Mission (SRTM) DEM data covering the study area was downloaded from
http://eros.usgs.gov for orthorectifying the satellite images.

The SLC (single look complex) format data for the time series of Radarsat-2 images was first
multi-looked. The digital number (DN) values of HH and HV polarizations were then converted
to backscattering coefficients (denoted as σ◦

HH and σ◦
HV , respectively) in power format. σ◦

HH and
σ◦

HV were then orthorectified in UTM projection with 20 m resolution by using the SRTM DEM data.
While orthorectifying the images, the local incidence angle for each pixel was computed scene by scene.
A 5 × 5 enhanced Lee filter was applied to reduce speckle noise. All the processes were completed
using the GAMMA Remote Sensing software. Table 1 shows that the incidence angles of the Radarsat-2
images vary from 20◦ to 37◦. To make these images radiometrically comparable, we used Equation (8)
to normalize the backscattering coefficients to a reference incidence angle of 25◦ since low incidence
angle (<35◦) is less sensitive to surface roughness [12,13]. The RVI images were then generated from
these incidence angle normalized images by using Equation (10).

http://eros.usgs.gov
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Table 1. The satellite images used in this study.

Radarsat-2 RapidEye

Acquisition
Date (2012)

Flight
Direction Mode Polarizations Incidence

Angle
Acquisition
Date (2012)

5 June Descending FQ3W HH, HV, VH,VV 20.0–23.6◦ 4 June
6 June Ascending S3 HH, HV 30.4–37◦ 12 June
13 June Ascending FQ10W HH, HV, VH, VV 28.4–31.6◦ 28 June
19 June Descending S3 HH, HV 30.4–37◦ 5 July
20 June Ascending FQ6W HH, HV, VH, VV 23.7–27.2◦ 14 July
27 June Ascending FQ2W HH, HV, VH, VV 19.7–22.7◦ 21 July
29 June Descending FQ3W HH, HV, VH, VV 20.0–23.6◦ 27 July
30 June Ascending S3 HH, HV 30.4–37◦

7 July Ascending FQ10W HH, HV, VH, VV 28.4–31.6◦

14 July Ascending FQ6W HH, HV, VH, VV 23.7–27.2◦

21 July Ascending FQ2W HH, HV, VH, VV 19.7–22.7◦

24 July Ascending S3 HH, HV 30.4–37◦

For the time series L1B RapidEye images, a series of preprocessing procedures were conducted
using the PCI Geomatica software including the conversion of DN values to Top of Atmosphere
(TOA) reflectance, atmospheric corrections for converting TOA reflectance to surface reflectance, and
orthorectifiction. Finally, all the images represented surface reflectance in UTM projection with 20 m
resolution. The NDVI images were then generated from these processed images by using Equation
(11). Due to the differences of acquisition dates between Radarsat-2 imagery and RapidEye imagery
(see Table 1), we used the B-Spline interpolation method to interpolate the NDVI images to generate
time series NDVI images corresponding to the acquisition dates of Radarsat-2.

Considering that the in situ soil moisture data collected in the field campaign was only coincident
with flight overpasses of the UAVSAR rather than the Radarsat-2, we used soil moisture measurements
(0–5 cm) from the U.S. Department of Agriculture’s (USDA) stations, which were installed during the
SMAPVEX12 campaign. The USDA datasets provided hourly calibrated soil moisture measurements
from 4 June to 18 July 2012. For each station, only soil moisture recorded close (less than 30 min) to
the acquisition time of Radarsat-2 imagery was used in this study. The soil surface roughness and
LAI data measured during the SMAPVEX12 were also used for analysis. Each measurement of soil
surface roughness and LAI represents a crop field where a USDA station was located. For most of the
USDA stations, LAI were measured on 12, 13, 19, 20, 27, 29, and 30 June, and 6, 7, 13, and 14 July 2012.
Since the dates of LAI measurements were different from the acquisition dates of Radarsat-2 imagery,
the LAI measurements were also interpolated to match the acquisition dates of Radarsat-2 imagery
using the B-Spline interpolation method, similar to that for NDVI. All the in-situ measurements
were downloaded from https://smapvex12.espaceweb.usherbrooke.ca and were processed in ArcGIS
shapefile format. More details about in-situ measurements can be found in McNairn et al. [75] or the
above website.

As mentioned earlier, the effect of surface roughness can be eliminated by using multi-temporal
data over the same field. However, soil surface roughness varies with the fields even having the
same crop types. To make data as most as possible for analysis, we used the in-situ data with similar
roughness in the WCM for each crop type. The soil moisture data were processed as follows. For each
crop type, the USDA soil moisture stations with similar surface roughness are grouped. The group
with the largest number of stations were selected for this study. For each selected soil moisture station,
the time series of soil moisture (Ms) and LAI measurements at the acquisition times of Radarsat-2
images, as well as the co-located 3 × 3 pixel averaged Radarsat-2 backscatter coefficients (σ◦

HH and
σ◦

HV), RVI and RapidEye NDVI values, were extracted. Using a 3 × 3 pixel averaged value to replace
a single pixel value can reduce errors caused by co-registration errors between satellite images and
soil moisture measurement sites. It is noted that the study was based on data representing each

https://smapvex12.espaceweb.usherbrooke.ca
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specific in-situ measurement site and not the whole crop field. Table 2 lists the statistics of the selected
soil moisture and LAI measurements for five crop types: soybean, canola, corn, wheat, and pasture.
The root mean square (RMS) roughness values of the selected fields for each crop type are 0.31–0.42 cm
(soybean), 1.31–1.33 cm (canola), 1.23–1.28 cm (corn), 1.27–1.29 cm (wheat), and 0.6–0.74 cm (pasture),
which are also listed in Table 2.

Table 2. The in-situ soil moisture (0–5 cm) and Leaf Area Index (LAI) data used in this study.

Crop Types
Soil Moisture (m3/m3) LAI (m2/m2)

RMS * (cm)
Range Average n * Range Average n

Soybean 0.155–0.467 0.317 26 0.11–2.43 0.92 18 0.31–0.42
Canola 0.042–0.419 0.24 27 0.31–6.33 3.12 18 1.31–1.33
Corn 0.122–0.354 0.211 23 0.09–3.92 1.04 21 1.23–1.28

Wheat 0.123–0.37 0.245 27 0.59–5.15 2.38 20 1.27–1.29
Pasture 0.0398–0.217 0.14 25 1.3–7.19 3.36 18 0.6–0.74

* n is the number of in-situ measurements and RMS is the root mean square roughness.

4. Results and Discussion

SAR backscatters are generally related to vegetation properties such as shape, height, size, and
density, which vary with vegetation types [77]. Different vegetation types may present different
behavior in WCM’s calibrations [27,78,79]. In this study, therefore, the simplified WCM (Equation
(6)) was applied to five different crop types: soybean, canola, pasture, wheat, and corn where σ◦

HH
was used as the soil moisture retriever σ◦

pp. The σ◦
HV , RVI, and NDVI were separately used as the

vegetation descriptor V. The WCM was calibrated for each crop type separately. The LOOCV method
was used for the model evaluation. We calculated R values between the in-situ and modelled soil
moisture for each crop type. Figure 2 show the plots of the R values for the five crop types. The results
showed that the R values vary with crop types and vegetation descriptors.
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Figure 2. The plots of R values of the retrieved and measured soil moisture against (a) crop types and
(b) vegetation descriptors.

The soil moisture retrieval for soybean, canola, and corn generally showed higher R values than
those for wheat and pasture for all the three vegetation descriptors (Figure 2a). Among the five crop
types, soybean and pasture have the best and the worst soil moisture retrieval, respectively. These
results are confirmed by the mean R values of the three vegetation descriptors. The soybean, canola,
and corn have mean R values ranging from 0.61 to 0.77 while the wheat and pasture have mean R
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values of 0.48 and 0.15, respectively. Figure 2b shows the mean R values for σ◦
HV , RVI, and NDVI

are 0.57, 0.52, and 0.51. It also demonstrates that σ◦
HV used as the vegetation descriptor in the WCM

gave slightly better soil moisture retrieval results than RVI and NDVI. The results are also confirmed
by Figure 3, which shows the scatter plots with R values between the in-situ measured and model
retrieved moisture together for all crop types. The R values for σ◦

HV , RVI, and NDVI are 0.59, 0.54, and
0.54, respectively. The values of RMSE between retrieved and in-situ soil moisture are 0.069 m3/m3,
0.085 m3/m3, and 0.071 m3/m3 for σ◦

HV , RVI, and NDVI, respectively. The results are similar to
those in the literature for soil moisture retrieval for other crops from SAR data using the WCM [12,28].
Overall, σ◦

HV as the vegetation descriptor in the WCM shows similar accuracy as NDVI but slightly
outperforms RVI for the retrieval of soil moisture. It worth mentioning that the in-situ LAI as the
vegetation descriptor in the WCM achieved slightly better results (R = 0.8 and RMSE = 0.067 m3/m3)
than σ

◦
HV . Nevertheless our study showed that the use of σ

◦
HV can overcome the constraints of the

commonly used vegetation descriptors (e.g., NDVI) in WCM such as data availability and weather
dependency, thus improving soil moisture retrieval.
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Figure 3. Plots of soil moisture measured from U.S. Department of Agriculture’s (USDA) stations and
soil moisture retrieved from Radarsat-2 using (a) backscatters of HV polarization σ◦

HV , (b) RVI, and (c)
NDVI in the WCM for all crops.

To further understand the results, we examined the relationships between the LAI and the
vegetation descriptors for each crop type. Figure 4 shows the scatter plots of the LAI vs. the three
vegetation descriptors of σ◦

HV , RVI, and NDVI. The R values between the LAI and the three vegetation
descriptors were given in Figure 5. The results show that soybean, canola, and corn generally have
better correlations (R) between the LAI and three vegetation descriptors than wheat and pasture.
Soybean, canola and corn have mean R values larger than 0.65 while wheat and pasture have mean R
values around 0.3, which helps to explain the results shown in Figure 2a. The results indicate that the
crops that have a stronger correlation between LAI and vegetation descriptors generally demonstrate
better soil moisture retrievals when using the WCM.

Figure 4 show that for some crop types, e.g., wheat and pasture, the relationships between
vegetation descriptors (σ◦

HV , RVI, and NDVI) are not good. Moreover, for some crop types, vegetation
descriptors do not saturate with LAI. More specifically, for soybean, the σ◦

HV has a better sensitivity
to LAI than RVI and NDVI. It could result in the more accurate soil moisture retrieval (with R = 0.81).
Canola shows LAI values ranging from 0.3 m2/m2 to 6.3 m2/m2 with a mean value of 3.12 (Table 2).
All three vegetation descriptors present a good relationship with LAI, but σ◦

HV and RVI are more
sensitive to LAI than NDVI , which is saturated at a LAI of around 2.0 m2/m2 as shown in Figure 4.
This could be the reason why NDVI as the vegetation descriptor in the WCM achieves less accurate soil
moisture retrievals (R = 0.57) than σ◦

HV and RVI. For corn, the three vegetation descriptors show good
linear relationships with LAI when LAI is less than 2.0 m2/m2, but they saturate quickly. Their similar
relationships with LAI could lead to similar soil moisture estimations (Figure 2b). For wheat, all three
vegetation descriptors saturate with LAI and have weak relationships with LAI, with NDVI showing
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slightly better correlations than σ◦
HV and RVI. Some of the LAI having values between 3.0 m2/m2 and

5.0 m2/m2 (Figure 4) indicated some observations were in late growing stage of wheat with dense
canopy, as a result, the penetration of SAR is in fact limited when vegetation canopy is dense. The three
vegetation descriptors present similar soil moisture estimations (Figure 2b). We also tested LAI as
the vegetation descriptor in the WCM. The LAI gives the values of 0.59 and 0.07 m3/m3 for R and
RMSE, separately. It shows that even LAI as the vegetation descriptor cannot significantly improve
the result at this growing stage. However the estimation accuracies are still acceptable. The partial
reason for the results is that NDVI and LAI are often influenced by vegetation water content [80],
in addition, Kim et al. [58] also showed that RVI is highly correlated with vegetation water content in
wheat. The vegetation water content could correlate with the soil moisture underneath the canopy.
For pasture of which the LAI values ranged from 2.0 m2/m2 to 7.0 m2/m2 (Table 1), all three vegetation
descriptors were saturated and had weak relationships with LAI (R = 0.47 for σ◦

HV , R = 0.04 for RVI
and R = 0.29 for NDVI). However, NDVI leads to better soil moisture retrieval than σ◦

HV and RVI
which needs to be explained by further studies. In general, Figure 4 shows the σ◦

HV became saturated
at relatively higher LAI values and is more sensitive to LAI than RVI and NDVI for some crop types
The results are consistent with the studies of Paloscia [62], Simoes et al. [63], and Jiao et al. [81] which
showed that σ◦

HV is related to LAI and vegetation biomass.
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Figure 4. The plots of LAI against three vegetation descriptors: σ◦
HV (top row), RVI (middle row) and

NDVI (bottom row) for each crop type.

Although, σ◦
HV is generally more sensitive to vegetation than NDVI and RVI, its backscatter

still contains some soil moisture signals, which may introduce errors. However, this study shows,
overall, σ◦

HV as the vegetation descriptor presents similar soil moisture estimation accuracy as NDVI
and slightly outperforms RVI (Figure 3). Actually Baghdadi et al. showed that cross polarization is
more sensitive to vegetation cover than to soil moisture and the soil contribution in cross polarization
quickly becomes lower than the vegetation contribution. The sensitivity of cross polarization to soil
moisture strongly decreases when both incidence angle and vegetation density increases. Therefore
σ◦

HV only introduce errors when the WCM is applied to areas with less vegetation. Moreover, the
sensitivity decreases when the soil moisture decreases. For example, the soil contribution becomes
negligible for incidence angle higher than 25◦ from an NDVI of 0.27 and 0.39 for soil moisture with
0.05 m3/m3 and 0.10 m3/m3, respectively [16]. The soil contribution in cross polarization to the total
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signal is low in the case of well-developed vegetation cover. Moreover, in this study, 25% of in-situ
data were collected when LAI was less than 1.0. Majority of the in-situ data has LAI larger than 1.0.
The influence of soil contribution to HV backscatter on the soil moisture estimation is low in this
study. The study also showed that σ◦

HV (R = 0.63) achieved better soil moisture estimations than RVI
(R = 0.53) and NDVI (0.52) for LAI larger than 2.0 and vice versa for LAI less than 1.0 (R = 0.80, 0.86,
0.83 for σ◦

HV , RVI and NDVI, separately).
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As stated above, NDVI has a saturation point at lower LAI than σ◦
HV for some crop types.

The reason could be that NDVI is a measure of vegetation greenness whereas σ◦
HV is a measure

of volumetric scattering. In general, vegetation reaches the maximum greenness before it becomes
matured volumetrically due to radar’s penetration. Normally σ◦

HV and RVI have similar results
in vegetation characterization [82]. The dispersion of σ◦

HV and RVI in this study may be related to
the effect of crop planting directions. RVI was calculated only from HH and HV polarization in this
study. A previous study [83] reported that the planting row orientations in a sugarcane field had an
influence on the HH polarization but not on the HV polarization. In addition, it can be also noticed
from Figure 3 that the retrieved soil moisture is overestimated for relatively dry sites (Ms < 0.25 m3

m-3) and underestimated for wet sites (Ms > 0.25 m3 m−3) due to the difference of penetration of SAR
in dry and wet soils. In addition, the data we used in this study is from the SMAPVEX12, which is
a six-week field campaign in 2012 (7 June–17 July). The database for some crop types may cover a
limited period. It could be useful to test WCM for a vegetation growth cycle in future study.

Ideally, the Radarsat-2 data should be in the same viewing geometry. Since Radarsat-2 has a revisit
time of 24 days, it is difficult to obtain enough repeat pass images within a short period for the analysis.
Instead, we used all available Radarsat-2 data, which are in different modes and possess different
incidence angles. To reduce the effect of SAR incidence angle, we normalized all Radarsat-2 images to
a reference angle theoretical model of Lambert’s law. However, it should be noted that the theoretical
approach may not be the most appropriate one and could introduce errors [40]. The assessments of
errors and different approaches are beyond the scope of this paper. Therefore, although an incidence
angle normalization process was applied to these images to minimize the effect of different viewing
geometries on SAR backscatters, the residual errors may still exist. The SAR imagery limitations can
be improved after the RCM data become available. The RCM has a 4-day revisit time, which makes it
possible to acquire sufficient repeat pass SAR images in a short period.
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5. Conclusions

This study investigated the capability of using SAR-derived vegetation descriptors in a WCM for
improving soil moisture retrieval over a vegetated area. Two vegetation descriptors, σ◦

HV and RVI,
derived from Radarsat-2/SAR were studied. The results were compared to those obtained from using
NDVI. The use of σ◦

HV in WCM achieved similar soil moisture retrieval as the use of NDVI but slightly
better than the use of RVI. The RMSE between retrieved and observed soil moisture were 0.069 m3/m3,
0.085 m3/m3 and 0.071 m3/m3 for σ◦

HV , RVI and NDVI, respectively. The corresponding R were
0.59, 0.54, and 0.54, respectively. The results can be explained from the relationships of the vegetation
descriptors with LAI, which shows σ◦

HV saturates at relatively higher LAI values for some crop types
and is generally more sensitive to vegetation than RVI and NDVI. Soil contribution in HV polarization
brings an effect on the soil moisture estimation over areas with less vegetation but the effect is limit in
this study. The small difference of RVI and σ◦

HV (or NDVI) in soil moisture retrieval indicates that RVI
is also a relevant vegetation descriptor in the WCM. Moreover, the use of σ◦

HV or RVI in the WCM
overcomes the dependency of WCM on in-situ or optical remote sensing data for deriving vegetation
descriptors and further reduces additional data requirements for WCM, thus improves soil moisture
retrieval. The study also indicates that the use of dual-polarized SAR images presents a practical way
to retrieve soil moisture over a large area since the dual-polarized images can have a large swath width
of up to 500 km (e.g., Radarsat-2 ScanSAR wide mode). The RCM will further enhance the capability
with its rapid revisit and compact polarimetric (CP) configuration. The RCM CP is considered as a
possible alternative of quad-polarized (QP) system but with wider image swath. Therefore the use
of CP data in WCM could achieve a better soil moisture retrieval over a large area even under dense
vegetation canopy.
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