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Table S1. Earth observation and geospatial information resources for SDG monitoring. 

Source: [1] 

1. The Three Step Process for Statistical Machine Learning Analyses of Remote Sensing Data

In this review, we focused on the analysis step of a three step process; pre-processing, analysis 

and evaluation. In the supplementary material we discuss the pre-processing and evaluation steps. 
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1.1. Pre-processing Considerations 

We note here three general issues that impact strongly the analysis and evaluation steps. 

1.1.1. Quality Assessment of Remote Sensing Data 

There is a misconception that big data sources, such as remote sensing, will be statistically valid 

simply due to the magnitude of data available. Although increasing sample size can reduce sampling 

errors, it does not reduce other sources of statistical bias such as measurement error. Further, data 

sets derived from these sources are not necessarily random samples of the target population 

practitioners want to make inferences about, therefore increasing the size of the dataset may not 

reduce sampling error or improve the quality of the estimates. In addition, big data sources have their 

own specific issues which can impact on statistical validity. These include accumulation of errors 

(noise) and potential spurious correlations. The different sources of data, and their aggregation, can 

also lead to statistical biases[2]. 

Some of these challenges of using remote sensing data for statistical purposes can be addressed 

by using appropriate methodologies, depending on the data source and intended outputs. However, 

it should be noted that these methodologies will not counter issues related to data quality, data 

representativeness or other related issues.  

1.1.2. Other Information Sources 

Remote sensing data can be analysed on its own, or with other datasets. The choice of other 

datasets depends on the following considerations. The first is aim; different datasets will be required 

for different purposes, based on the required estimates, selected method for analysis, spatial and 

temporal resolution and scope of the analysis, quality of the available remote sensing data, and so 

on. The second is access; datasets can include existing resources and/or they can be obtained from 

external parties. Access considerations also include intellectual property, cost, and continuity of 

access. The third is content; a wide range of data can potentially complement remote sensing data in 

an analysis, such as censuses, household or agricultural surveys, administrative data, environmental 

and meteorological data. 

The World Bank and FAO report; a Global Strategy for Improving Agricultural and Rural 

Statistics (2010) provides advice about constructing and maintaining a Minimum Set of Core Data 

(MSCD) that includes remote sensing and other spatial and non-spatial information in a Master 

Sample Frame (MSF) database[3]. The MSF is constructed by combining satellite images classified by 

geo-referenced land use and digitised administrative data, digitised enumeration areas, and 

overlaying this with population and agricultural census data, other relevant data such as a register 

of commercial farms, and an area frame [3]. 

1.1.3. Eliminating the Pre-Processing Step: Data Cubes 

A potential alternative to performing your own pre-processing of satellite images is to access a 

Data Cube product if it is available for your region of interest. A Data Cube provides a time series of 

pre-processed satellite imagery data that is ready for analysis and free [4]. This reduces the data pre-

processing time and makes the analysis of satellite imagery data more accessible to practitioners 

outside the earth science field.  The processing in the Data Cubes is also performed consistently to 

the same standard[4], which makes it simpler to draw comparisons of data from multiple countries. 

Current coverage of the Data Cube products is shown in Figure S1.  



Remote Sens. 2016, 8, 1365; doi:10.3390/rs10091365 S3 of S6

Figure S1. CEOS Data Cube products by status [5]. 

The Committee on Earth Observation Satellites (CEOS) currently has four operational Data 

Cubes in Australia, Colombia, Switzerland and Africa, with an additional eleven Data Cubes in 

development and 28 under review (43 total)[5]. As these Data Cubes become more prevalent, this will 

create more opportunities to perform analyses and make comparisons between countries based on 

satellite imagery data.  

2. Evaluation Step

After the pre-processing step is completed or an analysis ready product has been chosen, the 

analysis step is completed as described in the body of the review. We now turn to the third and final 

step in the process; evaluation. The considerations to be addressed in the Evaluation step include 

critical assessment of the results and their accuracy, assessment of model accuracy and assessment of 

other potential biases or concerns with the results or their interpretation.  

2.1. Critical Assessment of Results 

As with any statistical analysis, it is essential to critically review the results with respect to 

whether they are sensible from both statistical and domain-knowledge perspectives. Evaluations can 

be performed on the model itself to determine whether the assumptions are met. Evaluations can also 

be performed on the statistical results; including critical consideration of the overall magnitude of the 

results, identification of results that are outside expected ranges, precision of the estimates, the size 

of the prediction intervals and other measures of result variability[6]. Once the results have been 

critically assessed, they can be compared with other relevant results and statistics to determine 

whether the results make sense in context[6]. Model and accuracy assessments are described in more 

detail in the following sections.  

2.2. Model Assessment 

Regardless of the type of methodological approach (SML, informed SML, physics based or object 

based), the goodness of fit of the model is typically assessed by comparing the estimated or predicted 

values obtained from the model with the observed values, if available. Statistical models are typically 

subjected to further goodness of fit evaluations using criteria such as AIC, BIC [7,8] and traditional 

hypothesis tests (if available and applicable). Where possible, estimates obtained from the model are 

typically compared with the observed data, using measures such as misclassification rates for 

categorical responses and mean squared error of prediction for continuous responses.  

Depending on the available data, a typical statistical practice is to define complementary training 

and testing datasets by randomly partitioning the original data (for example, randomly splitting the 
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dataset into a 75% training set and a 25% testing set). A model is then built using the training data, 

which is then assessed for accuracy in various ways on the test dataset. For example, for classification 

models, accumulative prediction error (APE) [7] could be used to assess how well the training data 

predict the test data, and hence how well the trained model may be expected to perform on new, 

unknown samples.  

Cross-validation is another useful method of model assessment, which can be applied in almost 

any algorithm in most frameworks such as regression, classification and many others [8]. The idea of 

cross-validation is to repeat the validation procedure described above, using different data subsets 

each time. The measured fit (for example, the misclassification rate) is then averaged across these 

repeats to provide a more accurate measure of the predictive capabilities of the model under 

investigation [8].  Examples of cross-validation approaches include leave-one-out, leave-k-out and v-

fold cross-validation [8]. As cross-validation techniques are so simple to apply and have minimal 

assumptions[8], the specific approach selected often simply comes down to computational burden. 

2.3. Accuracy Assessment 

Accuracy “is a relative measure of the exactness of an estimate and accounts for systematic errors 

also referred to as bias. Therefore, an accurate estimate does not systematically over or underestimate 

the true value” ([2], pp.1). When considering accuracy assessment, it is important to recognise that 

sampling effort (accuracy and representativeness of sampled data used for training) as well as the 

analytical technique(s) utilised play important roles. These issues have been described above.  

Good practice involves reporting details of these processes, as well as details of the model fit, 

the accuracy of the estimates or predictions obtained from the model, and quantification of 

uncertainty of these estimates and predictions [9]. These issues are now discussed in more detail in 

the following sections.  

2.4. Accuracy Assessment of Map Data 

An example of accuracy assessment practices for remote sensing data analyses is given by the 

FAO Map Accuracy Assessment and Area Estimation Practical Guide [2] and we describe it here. In 

an accuracy assessment of map data, the map is compared with higher quality data. The higher 

quality data, called reference data, is collected through a sample-based approach, allowing for a more 

careful interpretation of specific areas of the map. The reference data is collected in a consistent 

manner and is harmonised with the map data, in order to compare the two classifications. The 

comparison results in accuracy measures and adjusted area estimates for each map category. This 

process is broken down into four major components: (i) a map, (ii) the sampling design (iii) the 

response design and (iv) the analysis. Here, we add an additional step, interpretation, in which the 

practitioner considers the implications of the accuracy assessment for their results and data collection 

and analysis processes.  

Figure S2. Adapted process for processing map data from raw form to interpreting statistical outputs. 
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At the map data stage, all map classes are defined, obvious errors are identified and corrected, 

strata are defined and their size is calculated. During sampling design, the approach, sample size, 

distribution of sample by strata, spatial unit of reference data and number of samples within the map 

data are determined. During the response design stage, the map class definitions are translated to the 

reference data classes and reference data is collected. Accuracy and area estimates and their 

confidence intervals are produced at the analysis stage [2]. After these four steps are completed, we 

propose an interpretation stage, when the accuracy estimates are considered in terms of the current 

study, and in terms of whether changes should be made at any of the previous stages (map data, 

sampling design, response design) to improve the accuracy of the final estimates.   

2.5. Reporting Accuracy Assessment Results 

FAO recommend reports of accuracy assessment results should include the estimates, adjusted 

area and their respective confidence intervals and relevant assumptions ([10], pp.23). Examples of 

assumptions that can influence level of accuracy include, but are not limited to, the minimum 

mapping unit and spatial assessment unit, the sampling design, the source of reference data and the 

confidence level used for calculating the confidence intervals (typically 95%). Presenting the error 

matrix in terms of estimated area proportions instead of absolute sample is also recommended [2].  

FAO has applied these accuracy assessment steps to measure forest area and forest area change. 

These measures are important for countries with reporting requirements to access results-based 

payments for reducing emissions from deforestation and forest degradation. For details of this 

practical application of accuracy assessment, see the Global Forest Change (GFC) example in the FAO 

Map Accuracy Assessment and Area Estimation Practical Guide 2016 [2]. For further detailed 

information about using remote sensing data for crop identification and crop yield, refer to the FAO 

Handbook on Remote Sensing for Agriculture Statistics [11].  
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