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Abstract: Multi-Object Tracking (MOT) in airborne videos is a challenging problem due to
the uncertain airborne vehicle motion, vibrations of the mounted camera, unreliable detections,
changes of size, appearance and motion of the moving objects and occlusions caused by the
interaction between moving and static objects in the scene. To deal with these problems, this work
proposes a four-stage hierarchical association framework for multiple object tracking in airborne
video. The proposed framework combines Data Association-based Tracking (DAT) methods and
target tracking using a compressive tracking approach, to robustly track objects in complex airborne
surveillance scenes. In each association stage, different sets of tracklets and detections are associated
to efficiently handle local tracklet generation, local trajectory construction, global drifting tracklet
correction and global fragmented tracklet linking. Experiments with challenging airborne videos
show significant tracking improvement compared to existing state-of-the-art methods.

Keywords: multiple object tracking; airborne video; tracklet confidence; hierarchical association
framework

1. Introduction

The goal of Multi-Object Tracking (MOT) in airborne videos is to estimate the state of multiple
objects and conserving their identities given variations in appearance and motion over time [1–4].
MOT is challenging due to the uncertain motion of airborne vehicles, the vibration of non-stationary
cameras and the partial occlusions of objects [5]. Studies have focused on DATmethods [6] along
with the improvement of object detection methods, which provide reliable detection even in complex
scenarios. To produce the final trajectories for each tracked object, most DAT approaches rely on
detection accuracy [7] and the used affinity model [8], integrating multiple visual cues, such as
appearance and motion, to find the linking probabilities between detection responses and tracklets in
the subsequent frames.

Existing object detectors can be roughly categorized into offline and online methods. Offline detectors
use a pre-defined strategy to learn the patterns representing the object’s appearance by using various
kinds of features. They are widely used in MOT because they are less sensitive to image noise [9–13].
In the field of aerial surveillance, the range in types of targets, their fine-grained size and appearance
differences, due to their own movement, as well as the motion of the Unmanned Aerial Vehicle
(UAV), cause these methods to be difficult to train while achieving reasonable detection performance.
For these reasons, online detectors using motion compensation-based models [8,14–18] are more
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popular in airborne video analysis. Objects with different motion and appearance cues compared
to the background can be automatically detected without any prior information. Moreover, the low
computational complexity of such algorithms makes them suitable for platforms embedded on board
unmanned aerial vehicles.

Generally, the performance of existing motion compensation-based detectors involves a tradeoff
between the detection rate and the false alarm rate because an accurate estimation of the camera’s
motion model cannot be computed and is time consuming. Most of the compensation-based algorithms
assume a simple camera model such as the affine or projective camera model [19]. To reduce false
detections, Yin et al. [20] adopted a detection method based on the forward-backward Motion
History Images (MHI) to localize moving objects. However, this method is not suitable for real-time
applications due to the required forward motion history. To analyze long-term object motion patterns,
Yu et al. [21] used a tensor voting computational framework to detect and segment moving objects.
This method is impractical in many real-world applications because it requires the full image sequence
for the global analysis step. Considering the errors that can arise from motion compensation,
Kim et al. [22] proposed a spatio-temporal distributed Gaussian model, whereas a dual-model Single
Gaussian Model (SGM) was adopted by Yi et al. [23]. These approaches decrease the number of many
detections and achieve real-time performance with a low computation complexity, but they miss
some detections and still provide unsatisfactory performance in complex scenes. In [19], the authors
combined the spatio-temporal properties of moving objects and the SGM background model to reduce
the number of missed and false detections.

Occlusions are the main problem faced by both offline and online detectors [24–27]. To overcome
the challenges caused by occlusions, some proposed tracking algorithms recover the trajectories of
all targets using a two-stage association framework [11,26]. In the first stage, a set of reliable short
tracklets is locally generated by linking the detections to tracklets. In the second stage, to build
longer tracklets and manage frequent occlusions, a global optimal solution is obtained by solving
a maximum a posteriori problem using various optimization algorithms. This two-stage DAT approach
can be applied for time critical applications since they sequentially build trajectories based on a
frame-by-frame association. However, DAT cannot be directly adopted in airborne videos as both the
local and global association stages require efficient object detection with accurate object location and
size [26,27].

To circumvent the limitations of recent MOT algorithms in handling unreliable detections and
long-term occasions, in this paper, we propose an efficient hierarchical association framework for
multiple object tracking in airborne videos. We chose the SGM [23] as the online object detector,
and motivated by the works of Bae et al. [11] and Ju et al. [28], we formulated the MOT problem as
a hierarchical DAT based on tracklet confidence. The proposed hierarchical association framework
uses a four-stage approach for data association: local tracklet generation, local trajectory construction,
global drifting tracklet correction, then global fragmented tracklet linking. To this end, the tracklets and
the detections are divided into several groups depending on the tracklet confidence and association
results. Furthermore, for each tracklet, we use a Kalman filter tracker and an appearance-based
tracker, built upon compressive tracking [29,30], to manage: (1) changes in the target’s appearance;
(2) occlusions; and (3) motionless tracklets. Moreover, the appearance-based tracker is used to update
the tracklets’ state for managing unreliable associations.

In tracking-by-detection, a major challenge of MOT is how to robustly associate noisy object
detections on a new video frame with previously tracked objects, as well as how to handle occlusions.
To address the first problem, our main contribution in this paper is leveraging the power of
single-target tracking, which has proven reliable to track objects of interest locally given a bounding-box
initialization, for enhancing the data association and estimating the state of each tracklet. The second
contribution is related to occlusion handling, merging and separation of the targets, for which we
propose combining single-target tracking with hypothesis matching for object re-identification.
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2. Related Works

In this section, we provide an overview of state-of-the-art methods for MOT in airborne surveillance,
the main DAT approaches on which we based our work and basic object re-identification methods.

MOT in airborne videos: A number of methods for detecting and tracking objects from airborne
platforms have been developed [2–4,25,31,32]. Early approaches adopted optical flow [33] or feature
points [5,21] to detect and estimate the trajectories of moving objects. Yu and Medioni, in [21],
estimated the motion flow in each frame based on a cross-correlation method, and then, a tensor voting
approach was used to analyze the optical flow to segment moving objects. The MHI method [20] was
used to generate the initial segmentations, and the tracklets were generated by using the appearance
similarity and flow dynamics between the segmented regions. The mean-shift algorithm was applied
to predict the location in the motion field. The end (entry and exit) information of a flow was imposed
as environmental constraints when associating tracklets. However, in their tracking framework,
a relatively long sequence was needed to detect motion patterns, which caused tracking delays.
As such, this method was not practical for real-time tracking. In [34], the Kanade–Lucas–Tomasi
(KLT) features and a temporal differencing method were used to separate moving vehicles from the
background. Local features were clustered to establish different motion layers for vehicle tracking.
This method was robust to partial occlusion. However, it failed to locate vehicles when the background
was highly cluttered. In order to solve this problem, they proposed a novel tracking framework based
on the particle filter method [35]. An estimate of the vehicle’s motion was incorporated into the particle
filter framework to guide particles moving toward the target position.

Prokaj et al. [14] presented a method for vehicle tracking in an aerial surveillance context. First,
the moving object detection was performed using background subtraction. The background was
modeled as the mode of a stabilized sliding window of frames [14]. Then, the data association problem
was formulated as an inference in a set of Bayesian networks using motion and appearance consistency.
This approach avoided the exhaustive evaluation of data association hypotheses and provided
a confidence estimate of the solution. Moreover, it was able to handle split-merge observations.
In [36], a collaborative framework consisting of a two-level tracking process was introduced to track
objects as groups. The higher-level process builds a relevance network and divides objects into different
groups, where the relevance is calculated based on the information obtained from the lower level
processes. Prokaj et al. [16] handled the missed detections by generating virtual detections. Any time
a detection in frame t did not have an object to link to in frame t + 1, a virtual detection was generated
by predicting the location and appearance of the target in the next frame. This procedure is also
recursive, so that when a newly-added virtual detection does not have nearby detections in the next
frame, the process is repeated. In [18], Prokaj et al. also presented a multiple target tracking approach
that did not exclusively rely on background subtraction and better tracked targets through stops.
It accomplished this by effectively running two trackers in parallel: one based on detections from
background subtraction providing target initialization and reacquisition and one based on a target
state regressor providing frame-to-frame tracking. The detection-based tracker provides accurate
initialization by inferring tracklets over a short time period (five frames). The initialization period was
then used to learn a non-parametric regressor based on target appearance templates, which directly
inferred the true target state from a given target state sample in every frame. When the regressor-based
tracker fails (loses a target), it falls back to the detection-based tracker for re-initialization. However,
the regressor’s output would be meaningless when the target is not visible without information.

Two-stage DAT: Xing et al. [26] combined local linking and global association as a two-stage DAT
framework. They produced locally-optimized tracklets by associating observations with tracklets
and global tracklets by associating fragmented tracklets. They used a greedy method for local
association and a predefined appearance model. Similarly, Bae et al. [24] proposed a Bayesian data
association approach in which a tracklet existence probability was used during the local stage to assign
the detections to tracks. This approach could handle partial occlusions. The tracklet-to-tracklet global
association stage was achieved by using an adjusted tracklet management system to link fragmented
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tracklets under long-term occlusions. Bae et al. [11] later formulated the multi-object tracking problem
as a two-stage DAT based on tracklet confidence. The tracklets with a high confidence were sequentially
grown with the provided detections. The fragmented tracklets with low confidence were linked to the
other tracklets and detections, without any iterative or expensive association. However, long-term
occlusions were not considered by the authors. To improve upon the approach of [11], Ju et al. [28]
proposed a four-stage hierarchical association framework based on an online matching strategy and
tracklet confidence. The tracklets and detections were divided into several groups depending on
several cues obtained from the matching results and a proposed tracklet confidence. In each matching
stage, different sets of tracklets and detections were associated to handle frequent and prolonged
occlusions, abrupt motion change of objects and unreliable detections. In our framework, we follow the
four stages outlined by Ju et al. [28], however using an online detection approach and the involvement
of multiple appearance-based trackers.

Re-identification: Object Re-Identification (Re-ID) has become an active research topic. Re-ID has
been intensively studied for stationary inter-camera target associations [37] for long-term object
tracking. A typical Re-ID algorithm is based on appearance modeling and matching [38,39].
Appearance modeling often uses low-level features such as color, texture, gradient or a combination
thereof to build more discriminative appearance descriptors [37,38]. Many successful Re-ID algorithms
have been proposed for special target Re-ID systems [37–40], such as pedestrians and vehicles.
Liu et al. [37] exploited a spatio-temporal body-action model by using Fisher vector learning to solve
the large appearance variation problem presented by a pedestrian. Zapletal et al. [38] proposed
an approach based on a linear regression model using color histograms and histograms of oriented
gradients for vehicle re-identification in a multiple cameras scenario. Liu et al. [39] proposed
a fusion model of low-level features and high-level semantic attributes for vehicle Re-ID. In our
framework, we follow the object matching framework, using appearance and motion cures for object
re-identification after long-term occlusion.

3. Conceptual Framework

3.1. Framework Overview

We follow the notations defined in [11]. An object i appearing in a frame t is present
using a binary function φi

t = 1; otherwise, φi
t = 0. When φi

t = 1, the state of the object i
is represented as xi

t =
(
pi

t, wi
t, hi

t, vi
t
)
, where pi

t = (pi
t(x), pi

t(y)), wi
t, hi

t and vi
t = (vi

t(x), vi
t(y)) are

the object’s center location, width and height of its bounding box and its velocity, respectively.
We then define the tracklet Ti

t of the object i as a set of states up to frame t and denote it as
Ti

t =
{

xi
k|φ

i
t = 1 ≤ ti

s ≤ k ≤ ti
e ≤ t

}
, where ti

s and ti
e are the start- and end-frame of the tracklet,

respectively. In addition, Tt = (x1
t , x2

t , · · · , xnx
t ) are the states of all the nx objects in the t-th frame,

and T1:t = {T1
t , T2

t , · · · , Tnx
t } is the set of tracklets of all the nx objects up to frame t. Correspondingly,

dj
t = (pd, wd, hd)

j
t is the j-th detected observation at frame t, with pd, wd and hd being the position

of the center location (given by its coordinates (p(x), p(y))), width and height of the detected blob,
respectively. We also define Dt = {dj

t; 1 ≤ j ≤ nd} as the set of the nd detected blobs (observations) at
frame t. All the observations associated with object i up to frame t are referred to as di

1:t = {di
1, · · · , di

t},
and D1:t = {d1

1:t, · · · , dnd
1:t} is the set of all observations up to frame t. Following the approach of [11],

the objective of MOT is to find the optimal T1:t by maximizing the posterior probability for a given
D1:t as:

T∗1:t = arg max
T1:t

p(T1:t|D1:t). (1)

Using a tracklet confidence, Ω(Ti
t ) ∈ [0, 1], estimated as the affinity between a tracklet and and its

associated detections, Bae and Yoon [11] formulated the above problem as:
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T∗1:t = arg max
T1:t

p
(
T1:t|T

(h)
1:t ,T(l)

1:t

)
× p

(
T(h)

1:t ,T(l)
1:t |D1:t

)
= arg max

T1:t

p
(
T1:t|T

(h)
1:t ,T(l)

1:t

)
× p

(
T(l)

1:t |T
(h)
1:t ,D1:t

)
︸ ︷︷ ︸

UA

p
(
T(h)

1:t |D1:t

)
︸ ︷︷ ︸

RA

dT(h)
1:t dT(l)

1:t
(2)

where T(h)
1:t and T(l)

1:t represent a set of tracklets with high confidence (i.e. Ω(Ti) > thΩ with thΩ = 0.5),
and a set of tracklets with low confidence, respectively. In the above equation, the tracking problem
is solved in two phases. In the first phase, tracklets with high confidence are locally associated
with provided detections (RA), whereas tracklets with low confidence, which are more likely to be
fragmented, are globally associated with other tracklets and detections in a second global phase (UA).

In our framework, we follow the same ideas, though we use the four-stage hierarchical
association concept proposed in [28] to find the optimal assignments for local tracklet-to-detection
or global tracklet-to-tracklet assignment. However, we extend the approach of [28] by considering
an appearance-based tracker associated with each tracked object, to better characterize motionless
or occluded objects, along with a detection refinement process to manage inaccurate detections.
The flowchart of the proposed method is shown in Figure 1.

At each stage, the tracklet-to-detection or tracklet-to-tracklet assignment is solved by using the
Hungarian algorithm approach [41]. For each frame, we first apply a motion compensation-based
object detector to detect objects of interest (Section 3.3). After the local tracklet-to-detection association
in Stage 1, a tracklet state analysis, involving an appearance-based tracker (Section 3.5) and a Kalman
filter tracker (Section 3.6), is used to characterize motionless or occluded objects (Section 4.1.2),
and a detection refinement process is used to manage inaccurate detections that have not been
associated with tracklets (Section 4.1.3). After an initial global tracklet-to-detection association in Stage
2, the unmatched detections are used to generate new tracklets in Stage 3. Some of these new tracklets
are used to re-link the lost tracklets during the global tracklet-to-tracklet association in Stage 4. Stage 4
also handles tracklet termination. All the symbols used in Figure 1 are introduced in the following.

Detections

Tracklet Update

Tracklet 

Termination

Stage 1

 ( )eI l

t

Tracklets

 t

 t

Detection Refine

 1U

t

Tracklet Linking

4th Association
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 ( )( ) ( ), , oI lA h A l

t t t  

 ( ( ))
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t t

l hI 
3rd Association

Tracklet Generation

 2

1, t

C U

t 

Stage 3

 ( )
, nA h

t t

C 
Tracklet Correction

2nd Association

 1( ) ,
UA l

t t 

Stage 2

 2( )( ) ( ) ,, ,oI l UA h A l

t t t t   

1st Association

 1,t t 
Tracklet Analysis

 A

t  ( ) ( ),A h A l

t t 

Figure 1. The framework of the proposed algorithm. The symbols in the gray bounding box are the
input to the processing stage, and the symbols in the white bounding box are the output.

3.2. Hierarchical Groups of Detections and Tracklets

We followed the process introduced by Ju et al. [28] and defined hierarchical groups of tracklets
and detections. In each frame t an object detector (Section 3.3) detects objects of interest and produces
set Dt of detections, the elements of which were associated with tracklets during the first two association
stages. During the association process, the set Dt is decomposed into four sets: DM1

t and DU1
t being
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the matched and unmatched detections during Stage 1, respectively, and DM2
t ⊂ DU1

t ) and DU2
t ⊂ DU1

t
being the matched and unmatched detections during Stage 2, respectively.

During the hierarchical association process, the set of tracklets in the t-th frame Tt will be
decomposed into three disjoint subsets:

Tt = TA
t ∪TC

t ∪TI
t (3)

where TA
t is the active tracklet set, TC

t is the candidate tracklet set and TI
t is the inactive tracklet set.

• The active tracklets set TA
t includes the tracklets corresponding to the currently existing objects,

composed of three disjoint subsets:

TA
t = TAn(h)

t ∪TA(h)
t ∪TA(l)

t (4)

where TAn(h)
t is the new active tracklet (recently generated tracklet) set with high confidence,

TA(h)
t the reliable active tracklet set with a high confidence and TA(l)

t the unreliable active tracklet
set with low confidence. They are formally defined as follows:

TAn(h)
t = {Ti

t |L(Ti
t ) ≤ thL} (5)

TA(h)
t = {Ti

t |L(Ti
t ) > thL, Ω(Ti

t ) ≥ thΩ} (6)

TA(l)
t = {Ti

t |L(Ti
t ) > thL, Ω(Ti

t ) < thΩ} (7)

where thL is a threshold on the tracklet length L(·) for distinguishing new from old and thΩ
is a threshold on the tracklet confidence Ω(·) for characterizing whether or not the tracklet is
reliable, meaning if it is likely to drift or be lost.

• The candidate tracklet set TC
t includes the tracklets waiting for enough matched detections in the

third stage before being added as new active tracklets.
• The inactive tracklet set TI

t includes two disjoint subsets:

TI
t = TIo(l)

t ∪TIe(l)
t (8)

where TIo
t and TIe

t represent the lost tracklet set and the terminated tracklet set, respectively.
TIo

t includes tracklets corresponding to the temporary lost objects due to long-term occlusions,
whereas the terminated tracklet set TIe

t includes objects that have disappeared. Each subset is
defined as:

TIo(l)
t = {Ti

t |L(Ti
t ) > thL, Ω(Ti

t ) < thI , t− ti
e < the} (9)

TIe(l)
t = {Ti

t |L(Ti
t ) > thL, Ω(Ti

t ) < thI , t− ti
e ≥ the} (10)

where thI is a threshold for distinguishing active and non-active tracklets, ti
e is the last frame of

the active tracklet and the is a threshold to terminate the tracklet.

Figure 2 illustrates the tracklet status changes in time according to the tracklet confidence.
The overall process is as follows. In Stage 1, we determined the best associations between the
previous set of active tracklets TA

t−1 and the detection set Dt at frame t. Then, the states of the matched
tracklets were updated based on the associated detections and the appearance-based predictions.
For the unmatched tracklets, a tracklet analysis (Section 4.1.2), using the appearance-based predictions,
is performed to update the states. According to the tracklet analysis, some tracklets are updated using
appearance-based prediction, and others are updated using motion-based prediction.
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Figure 2. Tracklet status.

Then, the tracklet confidence values are estimated using the associated detections. Based on the
confidence value, a tracklet is assigned to the sub-set TA(h)

t or TA(l)
t . Inaccurate detections from the

unmatched detection set, DU1
t , which overlap the active tracklets, are deleted or resized via a detection

refinement process (see Section 4.1.3).
In Stage 2, the association between the unreliable tracklets TA(l)

t and the unmatched detections
DU1

t is performed to handle drifting targets caused by frequent occlusions. The states of the tracklets
that have been matched with detections are updated using the associated detections and assigned to
TA(h)

t . The tracklets unmatched to detections are moved to the inactive tracklets set TIo(l)
t when their

confidence Ω(Ti
t ) is lower than a given threshold thI (i.e Ω(Ti

t ) < thI). Then in Stage 3, the association
between candidate tracklets, TC

t−1, and the remaining unmatched detections, DU2
t , is performed to

update the set of candidate tracklets, TC
t , or generate new active tracklets in TAn(h)

t .

Finally, in Stage 4, the association between the lost tracklets TIo(l)
t in the inactive tracklets set and

new tracklets is performed to merge fragmented tracklets of the same object after long-term occlusions.
The inactive tracklets that are not associated with new tracklets within t− ti

e ≥ the are terminated and
included in the set TIe(l)

t after the fourth stage. The four stages are detailed in Section 4.

3.3. Online Detection

In our framework, we used a method described in [19,23] as an online detector. The detector
models the background through a dual-mode SGM and compensates for the motion of the camera by
mixing neighbor models. Modeling through a dual-mode SGM prevents the background model from
being contaminated by the foreground pixels, while still allowing the model to adapt to the changes in
the background. After the detection step, a post-processing step, consisting of dilation and erosion,
is performed to merge scattered detections. Finally, a bounding box is estimated around every detected
blob. The detector achieves real-time performance with low computation complexity, but produces
missed and false detections.

The detection results are illustrated in Figure 3. Most of the missed detections and false detections
were caused by occlusions or motionless objects. Figure 3a shows a reliable detection bounding box,
which perfectly encloses the object. However, in cases of slow moving objects, the bounding box may
cover part of the object (Figure 3b). The detector can also provide two or more bounding boxes for
a single object (Figure 3c). In the following, the above cases are called Motion-I-type detection. Notably,
motionless objects cannot be detected with the used algorithm, so we called such cases Motion-II-type
detection, as shown in Figure 3d.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Motion compensation-based detection. Red blobs correspond to detected moving objects.
Red bounding-boxes are the detection results, and green dotted boxes are ground truth. (a) good
detection. (b,c) partially detected object. (d) not detected object. (e) occluded object. (f) unreliable
detection. (g) partially detected object. (h) occluded object.

In our algorithm, we define two occlusion cases: Occlusion-I and Occlusion-II. Occlusion-I
included all occlusions caused by other tracked objects. We define the object in front as the “occluder”
and the occluded object as “occluded”. In general, a good detection bounding box can be obtained for
the occluder. However, when two or more objects are close, only one detection is obtained (Figure 3e),
and the size of the bounding box matches one of the two objects (Figure 3f. The Occlusion-II case
includes occlusions caused by static objects (obstacles) within the environment, such as trees and
buildings. This case is more challenging because of the lack of hard temporal (frame-to-frame)
constraints and unreliable object representation from the detected bounding boxes. Therefore,
the obtained bounding boxes do not match the object size, as shown in Figure 3g. The Occlusion-II
case also included objects that were fully occluded by the environment (Figure 3h).

To address the above-described unreliable detections, we implemented a detection refinement
process (Section 4.1.3) in which the states of the current tracklets were used to analyze and refine
unreliable detections for further tracklet-to-detection associations.

3.4. Tracklet Confidence

The tracklet confidence Ω(Ti
t ) expresses how well the constructed tracklet matches the real

trajectory of the target. In our framework, it is defined as:

Ω(Ti
t ) =

{
ΩΛ(Ti

t )Ωo(Ti
t ), if φi

t = 1
Ω(Ti

t−1) · wi
p, if φi

t = 0
(11)

ΩΛ(Ti
t ) =

1
LT

∑
k∈[ti

s ,ti
e ],φi

k=1

ΛJ
(

Ti
t , di

k

)
(12)
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Ωo(Ti
t ) = 1− exp

(
−wd

√
L(Ti

t )− LM

)
(13)

where ΩΛ(Ti
t ) and Ωo(Ti

t ) are the affinity and observation confidence terms, respectively. Depending on
the association stage, J ∈ [1, 4], the affinity confidence term ΩΛ(Ti

t ) is calculated using an affinity
model ΛJ (Ti

t , di
k
)

involving the appearance, shape and motion of the objects. The used affinity models
are defined in Section 4. The observation confidence term Ωo(Ti

t ) is computed using the tracklet length
L(Ti

t ) and LM = (ti
e − ti

s + 1− LT), whereas wd is a control parameter relying on the performance of
the detection, which is discussed in Section 5.2.1. wi

p is a control parameter relying on the performance
of the i-th tracklet prediction as defined in Equation (24) in Section 4.1.2. The observation confidence
Ωo(Ti

t ) decreases rapidly if the detection responses of the tracklet Ti
t are missing over LM frames

(heavily-occluded tracklet). A tracklet is considered a reliable tracklet Ti(h)
t ∈ TA(h)

t if it has a high
confidence, i.e., Ω(Ti) > thΩ. thΩ was set to 0.5 in our experiment. Otherwise, it is considered as
a fragmented tracklet with low confidence, Ti(l)

t ∈ TA(l)
t .

3.5. Appearance-Based Prediction

Object appearance modeling is important in our framework for both tracklet state analysis and
detection refinement processes. To maintain a reliable appearance model of the tracklets, we applied
the discriminative appearance model of the Compressive Tracking (CT) algorithm of [29,30]. For each
object i, we associated a Fast-CT (FCT) as proposed in [30].

The main components of the CT algorithm are (1) naive Bayes classifier update and (2) target
detection. For further algorithmic details, the reader is referred to [29,30].

1. Naive Bayes classifier update: The CT algorithm samples some positive samples near the current
target location and negative samples far away from the object center. To represent the sample
z ∈ Rw×h, CT uses a set of rectangle features and extracts the features with low dimensionality
using a very sparse measurement matrix R ∈ Rn×m, a = Rb. The high-dimensional image
features b ∈ Rm (m = (w × h)2) are formed by concatenating the convolved target images
(represented as column vectors) with rectangle filters. a ∈ Rn, the lower-dimensional compressive
features, are formed with n � m. Each element ai in the low-dimensional feature a is a linear
combination of spatially-distributed rectangle features at different scales. A simple Bayesian
model is used to construct a classifier based on the positive (y = 1) and negative (y = 0) sample
features. The compressive sensing algorithm assumes that all lower-dimensional samples of the

target are independent of each other, H(a) =
n
∑

k=1
log
(

p(ak |y=1)
p(ak |y=0)

)
. The parameters of the Naive

Bayes classifier are incrementally updated according to the four parameters of the classifier’s
Gaussian conditional distribution (µ1, σ1, µ0, σ0) with an update rate λ > 0.

2. Target detection: The candidate region corresponding to the maximum H(a) is regarded as the
tracking target location:

l∗t = arg max
a

H(a). (14)

See [29] for the detailed implementation. The overall performance of the CT algorithm, in terms
of speed and tracking accuracy, was significantly improved by the FCT presented in [30]. Although the
CT samples in a fixed rectangular region in single-pixel steps, the FCT improves upon this method
by introducing a coarse-to-fine search strategy to reduce the computational complexity of the
detection procedure.

In our implementation, for each new active tracklet Ti(h)
t ∈ TAn(h)

t , the latest object state
xi

t =
(
pi

t, wi
t, hi

t, vi
t
)

was used to initialize an FCT-based tracker and retain the four parameters of its
appearance model (µ1

i , σ1
i , µ0

i , σ0
i ). At each new frame t, the coarse-to-fine sampling strategy [30] is used

to crop a set of candidate samples around the previous location of the target. The sample that obtains
the maximal classifier response in Equation (14) is selected as the current appearance-based prediction
of the target’s location,lci

t. The FCT-tracker outputs a target-state denoted as ci
t = (lci

t, wci
t, hci

t),
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with wci
t and hci

t being the width and height of the corresponding bounding box, respectively. In our
implementation of the FCT algorithm, we used a dynamic learning rate defined as λ = Ω(Ti

t ) to
update the target’s appearance. The parameters of the appearance model are re-initialized every
five frames to avoid large-scale variation in both x and y directions. For the tracklet Ti(l)

t ∈ TA(l)
t ,

we set λ = 0 to stop the update. For the tracklet Ti(l)
t ∈ TIe(l)

t , we deleted the appearance model.

3.6. Motion-Based Prediction

The motion model describes the dynamic movement of tracked objects, which can be used to
predict the potential position of objects in future frames, especially under occlusion. In most cases,
a given object is assumed to move smoothly in the world; hence, the image apparent motion is
also smooth [7]. A linear motion model based on the Kalman Filter (KF) is the most used model in
MOT [26,42,43]. Given the motion model of a moving object, KF provides an optimal estimate of its
position at each time step.

In our framework, we used KF to predict the position and velocity of a target object. For each
tracked object xi

t =
(
pi

t, wi
t, hi

t, vi
t
)
, we maintained a Kalman filter state xki

t =
(

pki
t, vki

t

)
. We used

the propagation equation of the KF to predict the object’s state when not associated with any
detection and used the update equation of the KF to update the state of the object when it was
associated with a detection. In this case, the observation vector is the center location of the associated
detected blob given by its coordinates pd = (p(x), p(y)). The state transition matrix is defined as

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, and the observation matrix defined as H =

[
1 0 0 0
0 1 0 0

]
.

4. Four-Stage Hierarchical Association Framework

In this section, we describe the different stages of the proposed framework for sequentially and
robustly tracking multiple objects.

4.1. Stage 1: Local Progressive Trajectory Construction

The first association stage solves the assignment problem between the active tracklets TA
t−1

and the current detections Dt to progressively build object trajectories. The input pairs for this
stage are {(Ti

t−1, dj
t)|∀Ti

t−1 ∈ TA
t−1, ∀dj

t ∈ Dt}, and the association is evaluated using the following
affinity model:

Λ1
(

Ti
t−1, dj

t

)
= Λ1

a

(
Ti

t−1, dj
t

)
Λ1

s

(
Ti

t−1, dj
t

)
Λ1

m

(
Ti

t−1, dj
t

)
(15)

where Λ1
a

(
Ti

t−1, dj
t

)
, Λ1

s

(
Ti

t−1, dj
t

)
and Λ1

m

(
Ti

t−1, dj
t

)
are the appearance affinity, shape affinity

and motion affinity, respectively. They are defined in the following section.

4.1.1. First Association via the Affinity Score

To rapidly evaluate the affinity appearance for real-time applications, a template matching-based
approach is used. Each active tracklet maintains the latest template and the historical template set
consisting of Na

H templates. This was Na
H = 10 in our experiments. The templates of the detections

and tracklets are obtained using a 24-bin red-green-intensity histogram extracted from the image
patches within the bounding box. All patches are resized to 64× 64 pixels to be invariant to object
scaling. Let χdj be the template of a detection dj

t, χL
Ti be the latest template of the tracklet Ti

t−1
and HTi = {χk

Ti , k ∈ [1, Na
H ]} be the historical template set of the tracklet Ti

t−1, The Bhattacharyya



Remote Sens. 2018, 10, 1347 11 of 26

distance is used to evaluate the similarity between two templates, and we define the appearance
affinity, Λ1

a in Equation (15), of a tracklet Ti
t−1 and a detection dj

t as:

Λ1
a

(
Ti

t−1, dj
t

)
= ωaρ(χL

Ti , χdj) + (1−ωa)max
k

ρ(χk
Ti , χdj) (16)

where ρ(·, ·) is the Bhattacharyya distance, and ωa = Ω(Ti
t−1).

The shape affinity, Λ1
s in Equation (15), between the tracklet and the detection is defined as:

Λ1
s

(
Ti

t−1, dj
t

)
= exp

(
−
{

hi − hj
d

hi + hj
d

+
wi − wj

d

wi + wj
d j

})
(17)

where (wi, hi) and (wj
d, hj

d) are the widths and the heights of the bounding boxes of the tail of tracklet

Ti
t−1 and the detection dj

t, respectively.
The motion affinity, Λ1

m in Equation (15), is evaluated between the tail of the history of the tracklet
Ti

t−1 and the detection dj
t based on a linear motion assumption [11]:

Λ1
m

(
Ti

t−1, dj
t

)
= N

(
p̃i; pj

d, mF
)
= exp

(
−0.5(p̃i − pj

d)
>(mF)−1(p̃i − pj

d)
)

(18)

where p̃i = pi
tail + vi

FΘt, pi
tail and pj

d represent the position of the target Ti
t−1 and detection dj

t,
respectively; vi

F is the forward velocity of Ti
t−1, estimated via the associated Kalman Filter (KF)

using the latest NF
v (NF

v = 4 in our experiments) states of tracklet Ti
t−1; and N (·) is a Gaussian

distribution function.
Then, an association score matrix S1 is used to express the affinity score between the detections

and tracklets:
S1 =

[
sij
]

nh×nd
, sij = − ln

(
Λ1(Ti

t−1, dj
t)
)

. (19)

The Hungarian algorithm [41] is used to determine the tracklet-detection pairs with the lowest
affinity value in S1. A detection dj

t is associated with Ti
t−1 when the association cost sij is less than

a pre-defined threshold θ [11].

4.1.2. Tracklet Analysis and Update Based on Prediction

Once a tracklet is associated with a detection, the state (position, velocity and size) of the object is
updated with the associated detection. However, the detection’s bounding box does not always fully
represent the object (Figure 3b,c,g). The location, width and height of the state vector xi

t of the tracklet
Ti

t are estimated using the FCT tracking results ci
t and the detection dj

t as follows:

xi
t = w f dj

t + (1− w f )c
i
t (20)

where w f = Area(B(di
t) ∩ B(ci

t))/Area(B(di
t) ∪ B(ci

t)), B(·) is the bounding box of dj
t or ci

t, and ∩
and ∪ are the intersection and union operators between bounding boxes, respectively. The velocity vi

t
of the state vector xi

t is updated using the KF output.
In our framework, the detector acts as an unbiased observation model, while the FCT tracker

adaptively refines the results. This fusion strategy efficiently handles inaccurate detections, as shown
in Figure 4a–c, especially for Motion-I-type objects.

For unmatched objects (tracklets not associated with detections), the FCT-based prediction, ci
t,

is used to analyze their occlusion state using the following constraint:

ζ(ci
t, Ti

t̃ ) = ζa(ci
t, Ti

t̃ ) exp(−ζp(ci
t,D

M1
t )) (21)
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where ζa(ci
t, Ti

t̃
) is the appearance similarity between the FCT-tracker prediction ci

t and the templates’
history of object i (tracklet Ti) at time t̃, being the latest time the object i has been updated with
an associated detection. It is defined as:

ζa(ci
t, Ti

t̃ ) =
1

Na
H

∑
k

ρ(χci , χk
Ti ) (22)

where χci is the template of ci
t, χk

Ti is the k th template of the tracklet Ti
t and ρ(·, ·) is the Bhattacharyya

distance. ζp(ci
t,D

M1
t ) is the bounding box overlap ratio between ci

t and the matched detections
dk

t ∈ DM1
t in the first stage. It is defined as:

ζp(ci
t,D

M1
t ) = ∑

dk
t∈D

M1
t

Area(B(ci
t) ∩ B(dk

t ))

Area(B(ci
t) ∪ B(dk

t ))
(23)

where ζa(ci
t, Ti

t̃
) is used to distinguish the motionless objects from those occluded by obstacle,

and ζp(ci
t,D

M1
t ) is adopted to suppress objects’ drift when the FCT-based prediction overlaps with

a matched detection (tracklet).
In our experiments, we assumed that an object is motionless of the Motion-II-type when ζ(ci

t, Ti
t̃
) >

tho (tho = 0.5); otherwise, it is an occluded object (ζ(ci
t, Ti

t̃
) ≤ tho). As shown in Figure 4d, the motionless

object obtains reliable appearance cues, whereas both the appearance and motion cues are unreliable
for the occluded objects in Figure 4e–h.

#175 #260

(a) (c)

#492

(b)

#363

(f)

#414

(g)(e)

#543

#652

(d)

#127

(h)

Figure 4. Illustration of Stage 1 association. The bounding boxes with the red color are the detection
results. The bounding boxes with the green color are appearance-based predictions as a result of the
Fast Compressive Tracker (FCT). The unmatched objects are marked with a yellow dotted circle and
yellow color. (a–d) Matched objects having a high tracklet confidence; (e–h) matched objects having a
low tracklet confidence.

After the tracklet state analysis, the FCT-based prediction ci
t is used to update the state of

a motionless object (Motion-II). The state of the occluded objects (both Occlusion-I and Occlusion-II) is
updated using the KF prediction. To reduce the drifting effect of the occluded object, we assumed the
targets do not abruptly change their motion, so we used KF to predict their next position.
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After the state update, the tracklet’s confidence calculated with Equation (11), of the matched
tracklets is updated using the affinity Equation (15) and wi

p defined as:

wi
p =

{
ζa(ci

t, Ti
t̃
), if ζ(ci

t, Ti
t̃
) > tho

0.4, if ζ(ci
t, Ti

t̃
) ≤ tho

(24)

Consequently, according to the confidence level, Ω(Ti
t ) ≥ thΩ, the tracklets are added to the set

TA(h)
t or TA(l)

t .
In estimating the confidence level, wi

p = ζa(ci
t, Ti

t̃
) is used to reduce the tracklet confidence of

the motionless objects slowly according to appearance similarity, and wi
p = 0.4 is used to reduce the

value of the tracklet confidence of the occluded objects to change the unmatched tracklets to unreliable
tracklets TA(l)

t , for input into Stage 2 for occlusion analysis.

4.1.3. Detection Refinement

Figure 3 illustrates some inaccurate detections caused by two or more spatially close objects,
which might increase the object’s identity switch and false alarms. Therefore, we proposed a detection
refinement process to solve these problems. For the unmatched detection dj

t ∈ DU1
t after Stage 1,

we deleted inaccurate detections from DU1
t when their bounding box overlapped with more than

two unmatched objects updated by the FCT appearance-based prediction. Thus, the inaccurate
detections in Figure 3b,c,e–g would be deleted if they were not associated with any tracklets. After this
detection refinement step, all remaining unmatched detections dj

t ∈ DU1
t are used in Stage 2, along with

the unreliable tracklets in TA(l)
t .

4.2. Stage 2: Handling Drifting Tracklets

In complex airborne videos situations, where objects are occluded as the mounted camera changes
its motion, conventional online tracking methods, based on a simplified motion model (e.g., the used
KF-based constant velocity model), are prone to producing drifting problems [27,44]. If the object
continues drifting, it is difficult to re-assign the object to detections or re-appearing objects (Occlusion-I
and Occlusion-II). In the proposed framework, the second association stage solves the reassignment
problem between unreliable tracklets TA(l)

t and unmatched detections DU1
t not associated during the

first stage. An unreliable tracklet in TA(l)
t is converted into a reliable tracklet in TA(h)

t if it can be
re-associated with a detection; otherwise, it maintains the same state or is converted to an inactive
tracklet in TIo(l)

t after the state update.
Two aspects are considered in this stage: (1) If the object is occluded by an occluder, it might

re-appear again around the occluder. The unmatched detection near the occluder has a high possibility
of being re-associated with the re-appearing object after occlusion. (2) If the object has been occluded by
environmental obstacles, it might re-appear at any position in the image. We assumed that the occluded
object might re-appear in a limited region around the occluder. The longer the object disappears,
the larger the required search region.

4.2.1. Second Association via the Affinity Score

For the current frame t, the input pairs of this association stage are {(Ti
t , dj

t)|∀Ti
t ∈ TA(l)

t ,∀dj
t ∈ DU1

t }.
The affinity of the second association is defined as:

Λ2
(

Ti
t , dj

t

)
=


Λ1

a(Ti
t , dj

t) exp
(

Ω(Tk
t )
)

, if ζ2
s (Ti

t ) = Tk
t , dist(dj

t, Tk
t ) ≤ ∆i(l)

t

Λ1
a(Ti

t , dj
t), if ζ2

s (Ti
t ) = ∅, dist(dj

t, Ti
t ) ≤ ∆i(h)

t
0, otherwise

(25)
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where ζ2
s (Ti

t ) is an operator that returns a possible occluder tracklet Tk
t or ∅ to indicate that the

occluder is an environmental obstacle. A tracklet Tk
t is defined as an occluder of Ti

t if the overlap ratio
ζp(ci

t, Tk
t ), defined in Equation (23), between the bounding box of the FCT-based tracker ci

t of Ti
t and

the bounding box of the tracklet Tk
t is less than a given overlapping threshold tho, i.e., ζp(ci

t, Tk
t ) ≥ tho.

The function dist(dj
t, Tk

t ) is the Euclidean distance between the location of a detection dj
t and the tracklet

Tk
t . ∆i(l)

t =

√
(

wi
t+wk

t
2 )2 + (

hi
t+hk

t
2 )2 is the maximum allowed distance for an acceptable detection near

the occluder tracklet, Tk
t to be associated with Ti

t , with (wi
t, hi

t) and (wk
t , hk

t ) the width and height of

the bounding box of tracklets Ti
t and Tk

t , respectively. ∆i(h)
t =

√
(wi

t)
2 + (hi

t)
2LM(1−Ω(Ti

t )) is the

maximum allowed distance of an acceptable detection to be associated with Ti
t , where Ω(·) is the

tracklet confidence and LM is the number of frames in which the i-th object is missing due to occlusion
or unreliable detection, as defined in Equation (11).

4.2.2. Tracklet Correction

The second association allowed us to re-assign drifting tracklets to the detections of re-appearing
objects in a limited time. An association score matrix S2, the same as in Equation (19), is used to express
the affinity score between the detections and the tracklets, and the Hungarian algorithm [41] is used to
determine the tracklet-detection pairs with the lowest affinity value in S2. After association, the state
and the confidence values of the associated tracklets are updated with the associated detections using
Equations (11) and (20), respectively. Here, to update the state of the re-appeared tracklet, we used
only the matched detection and set w f = 1 in Equation (20). Finally, the trajectory within the drifting
interval is corrected via linear interpolation between the previous and updated location of the tracklet.

4.3. Stage 3: New Active Tracklet Generation

The third association stage solves the assignment problem between the candidate tracklets TC
t−1

from the previous frame and the remaining unmatched detections DU2
t to generate new active tracklets

TAn(h)
t . The input pairs of this association in the current frame t are {(Ti

t−1, dj
t)|∀Ti

t−1 ∈ TC
t−1,∀dj

t ∈ DU2
t }.

The affinity Λ3(Ti
t−1, dj

t) and the association score matrix S3 are the same as those used in Stage 1.
When the candidate tracklet is associated in thI consecutive frames (thI = 5 frames in our experiments),
it is converted into a new tracklet, for which we initialized an FCT appearance-based tracker.
The matched to detection candidate tracklets are maintained in the candidate tracklet set TC

t if the
tracklet length is less than thI . The unmatched candidate tracklets, which are considered false-alarms,
are removed from the candidate tracklet set.

4.4. Stage 4: Globally Linking Fragmented Tracklets

In challenging situations where the objects are constantly occluded by other objects or obstacles
for a long time, tracklet fragmentation is likely to occur, and the same object can be divided into two or
more tracklets, as illustrated in Figure 5. Motivated by the works in object re-identification [38,39] to
build long-term object trajectories based on appearance modeling and matching, the fourth association
stage of the proposed framework solves the assignment problem between the lost tracklets TIo(l)

t and

the new tracklets TAn(h)
t , linking these fragmented tracklets, re-identifying the lost objects and thereby

building longer trajectories. As targets in airborne videos have similar appearances, false tracklet
linking might occur if only based on the appearance modeling. Thus, both the appearance and motion
terms are considered in the fourth stage.
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#448 #528 #589
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(a) (c) (d)
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3
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Figure 5. Fragmented tracklet under long-term occlusions. (a) Two tracked objects ID-3 and ID-4;
(b) the object ID-3 is partially occluded and (c) heavily occluded by trees; (d) the lost object ID-3 is
switched to ID-6 when it reappears again after the occlusion.

4.4.1. Fourth Association via the Affinity Score

The input pairs of the forth association in the current frame t are the set {(Ti
t , T j

t )|∀Ti
t ∈

TIo(l)
t , ∀T j

t ∈ TAn(h)
t }. The affinity of the fourth association is defined as:

Λ4
(

Ti
t , T j

t

)
= Λ4

a

(
Ti

t , T j
t

)
Λ4

m

(
Ti, T j

)
(26)

where Λ4
a

(
Ti

t , T j
t

)
and Λ4

m

(
Ti

t , T j
t

)
are the appearance and motion affinity score, respectively.

The appearance affinity Λ4
a

(
Ti

t , T j
t

)
is defined as:

Λ4
a

(
Ti

t , T j
t

)
= max

 1
Ni

H
∑

l∈[1,Ni
H ]

ς(χl
Ti , T j

t ),
1

N j
H

∑
m∈[1,N j

H ]

ς(χm
T j , Ti

t )

 (27)

where Ni
H and N j

H are the number of templates of the tracklet Ti
t and T j

t , respectively; χl
Ti is the l-th

template of tracklet Ti
t ; χm

T j is the m-th template of tracklet T j
t ; and ς(χa

Ti , Tb
t ) =

1
Nb

H
∑

b∈[1,Nb
H ]

ρ(χa
Ti , χb

T j),

for (a, b) = (l, j) and (a, b) = (m, i). The motion affinity Λ4
m

(
Ti

t , T j
t

)
is evaluated between the tail of

the history of the tracklet Ti
t and the head of the tracklet T j

t with the time gap Θt [11] based on a linear
motion assumption:

Λ4
m

(
Ti, T j

)
= N

(
p̃i; phead

j , mF
)
N
(

p̃j; ptail
i , mB

)
(28)

where p̃i = ptail
i + vF

i Θt and p̃j = phead
j + vB

j Θt, ptail
i and phead

j represent the position of Ti
t and T j

t , vF
i is

the forward velocity of Ti
t and vB

j is the backward velocity of T j
t estimated using the KF with the latest

and first NB
v states of the tracklet Ti

t and T j
t , respectively. N (·) is a Gaussian distribution function.

4.4.2. Object Re-Identification via Tracklet Linking

The association score matrix S4 =
[
sij
]

n4
i ×n4

j
with sij = − ln

(
Λ4(Ti

t , T j
t )
)

is used to express the

affinity score between tracklets in the fourth stage. The Hungarian algorithm [41] is used to determine
the (i, j) pairs of tracklets with the maximum affinity in S4. The tracklet T j

t is associated with Ti
t when

the association cost sij is less than a pre-defined threshold θ [11]. If a lost tracklet Ti
t and a new tracklet

T j
t are associated, they are considered as the same object and merged, and their trajectories are linked

with a linear interpolation. We assigned the ID of the lost tracklet Ti
t to the new tracklet T j

t . Thus,
the lost objects are re-identified using the above tracklet linking process.

The remaining inactive tracklets that have not been reassigned to new tracklets are either
terminated if t− ti

e ≥ the (the = 40 frames in our experiments) or kept in the inactive tracklets set TIo(l)
t .



Remote Sens. 2018, 10, 1347 16 of 26

5. Experiments

The proposed hierarchical association framework for multiple object tracking in airborne video is
implemented in MATLAB on a desktop PC with an Intel Core 2.40 GHz CPU with 32 GB RAM. In the
following, we evaluate its performance considering several airborne video sequences.

5.1. Datasets

We evaluated our approach on two datasets, the Video Verification of Identity (VIVID) dataset [45]
and the Shaanxi provincial key laboratory of speech and Image Information Processing (SAIIP) dataset.
Figure 6 illustrates some images from the datasets. The VIVID dataset includes five visible data
sequences and three thermal Infrared (IR) data sequences. The VIVID datasets have been collected over
the Eglin Air Base and the Fort Pickett base under the framework of the DARPA VIVID program [45].
The SAIIP dataset includes four sequences that were captured over a provincial road using the
DJI PHANTOM-3-4K quad-copter. Table 1 lists the different sequences, their number of frames,
the number of targets involved, as well as their main challenges, including Illumination Variation
(IV), Scale Variation (SV), Occlusion (OCC), Background Occlusion (BOC), Motion Variation (MV),
Image Blurring (IB) and Shadow Interference (SI).

EgTest02 EgTest03 EgTest04

SpTest01

EgTest01

EgTest05 PkTest01 PkTest02 PkTest03

SpTest02 SpTest03 SpTest04

Figure 6. Scenes from the public Video Verification of Identity (VIVID) dataset (first two rows) and
the Shaanxi provincial key laboratory of speech and Image Information Processing (SAIIP) dataset
(last row).

Table 1. Used benchmark sequences: Illumination Variation (IV), Scale Variation (SV), Occlusion
(OCC), Background Occlusion (BOC), Motion Variation (MV), Image Blurring (IB), and Shadow
Interference (SI).

Dataset Sequence Image Size # of Frames # of Targets IV SV OCC BOC MV IB SI

VIVID

EgTest01 680 × 480 1821 6
√ √

× ×
√

×
√

EgTest02 680 × 480 1302 6
√ √ √

×
√

×
√

EgTest03 680 × 480 2571 6
√ √ √

×
√

×
√

EgTest04 680 × 480 1833 5
√

× ×
√ √ √ √

EgTest05 680 × 480 1764 4
√ √

×
√ √

×
√

PkTest01 680 × 480 1460 5
√ √ √ √

× × ×
PkTest02 680 × 480 1595 12

√ √
×

√ √
× ×

PkTest03 680 × 480 2011 7
√

× ×
√ √

× ×

SAIIP

SpTest01 1920 × 1080 1763 37
√

× × × × × ×
SpTest02 1920 × 1080 1689 42

√ √
× ×

√
× ×

SpTest03 1920 × 1080 1624 29
√ √

× ×
√

×
√

SpTest04 1920 × 1080 1206 46
√ √

×
√ √

×
√
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In the EgTest01 sequence, the vehicles loop around a runway and then drive straight.
Some vehicles are similar in appearance. In the EgTest02 sequence, two sets of three vehicles pass each
other on a runway. Changes of scaling occur because the airborne camera circles the scene. The data
association for the EgTest02 sequence is more difficult than for the EgTest01 sequence due to severe
occlusions. This also occurs in the EgTest03 sequence, where two sets of three vehicles pass each other
on a runway. In the EgTest04 sequence, a line of vehicles travels down a red dirt road. In the EgTest05
sequence, a vehicle moves along a dirt road in a wooded area. Occlusion and illumination variations
occur when the vehicle passes in and out of tree shadows.

The sequences of PkTest01, PkTest02 and PkTest03 are thermal IR data. In the PkTest01 sequence,
the vehicles are frequently occluded by the trees. In the PkTest02 sequence, the vehicles stop at
an intersection, then continue. The main issues include occlusion, shadows and camera auto-gain.
The thermal IR contains a line of vehicles in a stop-and-go scenario in the PkTest03 sequence. As in
the previous sequence, occlusions, shadows and camera auto-gain are prevalent in this sequence.
Moreover, the vehicles are small, and the camera viewpoint is nearly nadir.

All the sequences from the SAIIP dataset (SpTest01, SpTest02, SpTest03 and SpTest04) were
captured over a provincial road. There are fewer occlusions because the camera is pointed at the
road to take the videos, and most of the vehicles are moving at a high speed while maintaining a
safe distance from each other. However, several targets have a similar appearance, and some stop
at the crossroad. There are also some trucks with a long body, which might be detected as two
separate objects.

5.2. Parameter Setting

In the following, we describe the parameter setting of each module of the framework.

5.2.1. Detector Parameters

We first compared three motion compensation-based detectors and then analyzed the
parameters setting of the used detector. The three compensation-based detectors included the Basic
Compensation-based Detector (BCD) [20], the MHI detector [20] and the SGM detector [23]. All source
codes were provided by the authors. For a fair comparison, the same parameter settings used by the
authors in their original publication were used. Both BCD and MHI detectors assume a pre-defined
threshold (Tθ = 20) to determine the detections in each image. The SGM detector relies on a grid size of
Tθ × Tθ with Tθ = 10 [23] for determining the detections.

For the quantitative evaluation of detector performance, we used the Detection Ratio (DTR)
rD = ND

O /NT
O and the False-Alarm Ratio (FAR) rF = (NA

O − NT
O)/NA

O , where ND
O represents the

effective number of detected objects, NT
O represents the number of true objects and NA

O represents
the total number of detections. A detection with bounding box BD is considered successful if
SR = Area(BD∩BGT)

Area(BD∪BGT)
≥ TSR (in our experiments TSR = 0.5) for a ground truth bounding box BGT .

To analyze the influence of the threshold Tθ on the considered motion compensation-based detectors
appropriately, we defined different values of Tv

θ = 10× θv, with θv = {0.5, 0.75, 1, 1.25, 1.5}. As shown
in Figure 7, the MHI-based approach can efficiently reduce FAR compared with the BCD- and
SGM-based approaches. However, the required forward motion history is not suitable for practical
applications. In our implementation, we selected the SGM-based detector, which has comparable DTR
and FAR to the MHI-based approach, while performing in real time.

The detection performance depends on the velocity of the tracked objects and the complexity
of the background when using motion-based compensation approaches. As such, a single fixed
determining threshold Tθ was not suitable for all test sequences. Table 2 lists the DTR and FAR,
along with the computational cost in terms of Frames Per Second (FPS), of the SGM-based detector
with different determining thresholds on the VIVID dataset and SAIIP dataset. Notably, on the VIVID
dataset, both the DTR and FAR ratios decreased with increasing values of the determining threshold.
The obtained results on the SAIIP dataset were similar, but less computation was required when the
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determining threshold was increased. The computation cost on the SAIIP dataset was higher than on
the VIVID dataset due to the larger image size.

For the experiments reported in the following sections, we set wd = 0.5 in Equation (11) and
Tθ = 10 for the five visible data sequences and Tθ = 5 for the three thermal IR data sequences of the
VIVID dataset. For the SAIIP dataset, we set Tθ = 15 and wd = 0.7. Note that wd is set to a large value
when the detector is highly accurate [11].

Table 2. Comparison of detection results with different detection thresholds Tv
θ . DTR, Detection Ratio;

FAR, False-Alarm Ratio.

VIVID SAIIP
Threshold DTR% FAR% FPS DTR% FAR% FPS

T1
θ 91.7 36.7 18 97.3 12.8 9

T2
θ 85.6 28.4 22 94.4 10.3 12

T3
θ 81.3 18.6 28 91.7 8.7 16

T4
θ 72.9 14.2 32 88.5 6.6 20

T5
θ 68.4 10.5 37 86.9 5.9 27

Threshold or grid size (%)

D
TR
 (%
)

FA
R
 (%
)

Threshold or grid size (%)

Figure 7. Performance comparison of different motion compensation-based detectors. MHI,
Motion History Images; BCD, Basic Compensation-based Detector; SGM, Single Gaussian Model.

5.2.2. Hierarchical Framework Parameters

All parameters of the tracking framework have been set empirically and remained unchanged for
all datasets.

• For the affinity models of Equations (15) and (26), the parameters mF and mB were set to
diag [302 752].

• The same threshold θ = 0.4 was used for the association score matrices S1, S2, S3 and S4 to
determine the association results.

• For the FCT trackers in our experiments, the search radius for drawing positive samples in the
online appearance-based classifier was set to α = 4 to generate 45 positive samples. The inner
and outer radii for the negative samples were set to β = 8 and ζ = 30, respectively, to randomly
select 50 negative samples. The initial learning rate λ of the classifier was set to 0.9. The size of
the random matrix was set to 100.

• For the Kalman filter model, the process (Q) and measurement (R) noise covariance matrices were

set as Q =


0.0025 0 0.0025 0

0 0.0025 0 0.0025
0.0025 0 0.0025 0

0 0.0025 0 0.0025

, and R =

[
0.1 0
0 0.1

]
, respectively.
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5.3. Comparison with State-of-the-Art Frameworks

To demonstrate the tracking performance of our proposed framework, we compared it to the MOT
approaches of [11] and [14] on the selected datasets. All the approaches, including ours, adopt the
same detection configuration, and a window size of five frames was defined to remove unreliable
shorter tracklets. For both [11] and [14], we used publicly available codes provided by the authors.

5.3.1. Evaluation Metrics

The popular evaluation metrics as defined in [46] were used for performance evaluation.
Denoting by GT the number of trajectories in the Ground-Truth, we estimate the Mostly Tracked
targets (MT), the Mostly Lost targets (ML) and the Partially Tracked (PT) objects. Furthermore,
the Precision (PR), defined as the correctly-matched objects over the total output objects, and the total
number of Identity Switches (IDS) are used. They are summarized in Table 3.

Table 3. Evaluation metrics [46]. PR, Precision.

Name Definition

PR Correctly-matched objects/total output objects (frame-based);

GT Number of Ground-Truth trajectories.

MT Mostly Tracked: percentage of GT trajectories that are covered by the tracker’s
output for more than 80% in length.

ML Mostly Lost: percentage of GT trajectories that are covered by the tracker’s
output for less than 20% in length. The smaller the better.

PT Partially Tracked: 1.0-MT-ML.

IDS ID Switches: the total of number of times that a tracked trajectory changes its
matched GT identity. The smaller the better.

5.3.2. Comparison of Data Association

A qualitative comparison between different versions of the proposed system on sequence EgTest02
is provided in Table 4. Two versions were considered:

• S1 corresponds to the framework without tracklets analysis and detection refinement. The method
presented by [11] was used to estimate the tracklet state. The position and the velocity of the
matched tracklets were updated with the associated detection, whereas the unmatched tracklets
were updated using the KF motion-based predictions. The size of the object was updated by
averaging the associated detection of the recent past frames.

• S2 is the fully-proposed framework as illustrated in Figure 1, denoted as HATAin the following.

Table 4. Comparison of tracking results on sequence EgTest02 with different detection thresholds Tv
θ

(θ1 = 0.5, θ3 = 1, θ5 = 1.5). Best results are underlined.

MT (%) ML (%) IDS
Method T1

θ T3
θ T5

θ T1
θ T3

θ T5
θ T1

θ T3
θ T5

θ

S1 86.6 80.6 76.3 3.8 8.6 16.4 24 20 27
S2 92.1 86.1 80.5 2.1 6.8 10.7 12 9 13

Comparing the results of frameworks S1 and S2, the effect of the tracklet analysis and detection
refinement processes in the proposed framework S2 is noticeable. Notice from Table 4 that the system
S1 performs well for the MT and ML measures. The high false alarm rate and unreliable detections
cause a high IDS measure, due to the inaccurate location and size of the detections, which affects the
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association between tracklets and detections. As expected, the proposed framework S2 performed
better for most metrics, efficiently reducing the IDS measure compared to S1. Figure 8 illustrates the
tracking results of S1 and S2 using the threshold T3

θ on sequence EgTest02. As shown in Figure 8,
the ID-2 and ID-3 targets in Frame #390 have an accurate location and size using the framework S2,
even with inaccurate detection inputs. This is due to the use of the FCT tracker to correct the state of
the tracklet, as obtained with Equation (20). Similarly, S2 performs well in Frame #460 with the help of
the tracklet analysis and detection refinement process, which efficiently avoided the false new tracklet
generation (ID-11 in system S1). This also occurs in Frame #532.

1
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#023 #390 #460 #532 #742
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#023 #390 #460 #532 #742

17

Figure 8. Detection and tracking results. First row: the detection results. Second row: the bounding box
for each detection. Third row: the tracking results using the framework S1. Fourth row: the tracking
results using the framework S2.

5.3.3. Comparisons to Other MOT Frameworks

A quantitative comparison between our proposed framework and state-of-the-art algorithms is
outlined in Table 5. Both [11,14] achieved good results with the available detections, but performed
poorly in terms of inaccurate detection. Instead, our algorithm was better with the chosen
evaluation metrics (ML, MT and IDS). The qualitative tracking results of our approach are shown in
Figures 9 and 10.

Results using the VIVID dataset: Figure 9 illustrates the tracking results using the eight sequences
from the VIVID dataset. For the EgTest01 sequence, all considered approaches performed well due
to the reliable detections. Our proposed framework achieved the best results when the appearance
and motion of the vehicles varied during the loop around period (Frames #28, #172 and #323). In the
EgTest02 sequence, two sets of vehicles pass each other on a runway and one set is occluded by the other
set between Frames #443, #482 and #670. Both [11,14] produce ID switches with most of the tracked
targets, whereas HATA appropriately identified most of the tracklets. HATA also performed well in
the EgTest03 sequence. In the EgTest04 sequence, only HATA solved the ID switching problem when
the ID-3 vehicle was occluded by the trees in Frame #721. In the EgTest05 sequence, HATA managed
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the occlusion in Frames #590 and #701 and the illumination changes when the targets passed in and
out of the shadowed wooded area well.

Table 5. Tracking results on the selected datasets. The best results are underlined.

Sequence GT Method PR (%) MT (%) ML (%) PT (%) IDS

EgTest01
Bae et al. [11] 90.7 94.4 3.6 2.0 2

6 Prokaj et al. [14] 88.6 93.6 3.2 3.2 4
Proposed HATA 94.8 96.8 2.9 0.3 2

EgTest02
Bae et al. [11] 78.8 80.6 8.6 11.8 28

6 Prokaj et al. [14] 70.5 69.3 5.4 25.3 41
Proposed HATA 84.4 86.1 6.8 7.1 13

EgTest03
Bae et al. [11] 82.6 80.7 6.8 12.5 20

6 Prokaj et al. [14] 77.8 74.3 5.4 20.3 29
Proposed HATA 87.1 83.6 4.7 11.7 11

EgTest04
Bae et al. [11] 82.9 78.9 4.9 16.2 19

5 Prokaj et al. [14] 76.4 73.2 6.6 20.2 28
Proposed HATA 85.3 81.8 5.6 12.6 12

EgTest05
Bae et al. [11] 68.9 75.2 6.7 18.1 42

4 Prokaj et al. [14] 70.8 81.2 5.3 13.5 60
Proposed HATA 78.6 86.4 5.7 7.9 23

PkTest01
Bae et al. [11] 79.6 82.3 5.3 12.4 20

5 Prokaj et al. [14] 74.3 78.7 10.2 11.1 36
Proposed HATA 88.8 89.1 2.1 8.8 14

PkTest02
Bae et al. [11] 76.9 73.8 5.9 20.3 23

12 Prokaj et al. [14] 72.9 69.7 7.2 23.1 38
Proposed HATA 83.4 79.4 5.1 15.5 15

PkTest03
Bae et al. [11] 72.9 78.6 6.4 15.0 29

7 Prokaj et al. [14] 68.4 74.5 8.2 17.3 42
Proposed HATA 79.1 81.9 5.8 12.3 16

SpTest01
Bae et al. [11] 97.6 94.7 0.9 5.4 5

37 Prokaj et al. [14] 93.3 92.6 2.8 7.6 9
Proposed HATA 98.5 96.4 0.5 3.1 2

SpTest02
Bae et al. [11] 88.9 83.8 9.8 6.4 18

42 Prokaj et al. [14] 82.9 77.9 12.2 9.9 22
Proposed HATA 93.5 91.4 6.2 3.4 7

SpTest03
Bae et al. [11] 87.2 85.6 10.8 3.6 17

29 Prokaj et al. [14] 84.6 82.6 13.5 3.9 29
Proposed HATA 89.8 91.2 6.9 1.9 11

SpTest04
Bae et al. [11] 89.3 87.9 8.4 3.7 26

46 Prokaj et al. [14] 81.6 81.3 13.6 5.1 31
Proposed HATA 91.7 93.4 4.1 2.5 12

Figure 9f,g illustrates the tracking results using the thermal IR sequences PkTest01,
PkTest02 and PkTest03. In the PkTest01 sequence, only HATA accurately identified the vehicle that
was frequently occluded by the trees between Frames #128 and #278. Our algorithm constantly tracked
the vehicles that stopped at the intersection in Frame #561 and resumed moving after Frame #654 in
the PkTest02 sequence. As with visible data, HATA solves the occlusion and illumination variation
problems in IR data, as shown in Frames #833 and #1229. In the PkTest03 sequence, the vehicles
are frequently occluded by trees after Frame #298, and HATA robustly saved the correct ID for each
tracked target in Frame #374 and Frame #386.
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Figure 9. The results on eight sequences from the VIVID dataset.

Results using the SAIIP dataset: Figure 10 illustrates the tracking results using the SAIIP dataset.
For the SpTest01 sequence, all the moving objects were well detected (Figure 10a). HATA efficiently
tracked all the detected objects. The false alarms were removed when the bounding box size was
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smaller than a pre-defined threshold Tf al = 5× 5. This strategy was also adopted for the sequences
SpTest02, SpTest03 and SpTest04. The SpTest02 sequence was more challenging than the SpTest01
sequence as the vehicles slow their motion. HATA solves the motionless problem, as shown in Frames
#564 and #709 of Figure 10b. Both the SpTest03 sequence and SpTest04 sequence were captured
around a crossroad where the vehicles slow down, stop or change directions. In the SpTest03 sequence,
as shown in Figure 10c, HATA accurately identified the ID-4 object when it changed direction in Frame
#122. Moreover, HATA achieved long-term tracking for the ID-1 object in Frame #245. In the SpTest04
sequence, many vehicles pass through the crossroad. As shown in Figure 10d, HATA identified the
ID-3 and ID-7 objects in Frame #98 and the objects with ID-3 and ID-10 in Frame #119.
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Figure 10. The results on four sequences from the SAIIP dataset.

The proposed method was implemented using MATLAB on a PC with an Intel Core 2.40-GHz
CPU with 32 GB RAM without parallel and GPU processing. The average speed of the proposed
method using the VIVID dataset was about 16 FPS and 13 FPS for the SAIIP dataset, excluding the
detection step. The results show the improved performance of the proposed method compared to
state-of-the-art methods. Compared to the framework proposed by Prokaj et al. [11], apart from
including the online single-target tracking and object re-identification, our method integrates extra
steps such as the tracklet analysis and detection refinement processes. This allowed solving drifting
problems and tracklet fragmentation. The detection refinement process helped avoiding the generation
of false new tracklets caused by unreliable detections.
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6. Conclusions

In this paper, an online multi-object tracking method was proposed for airborne videos to
solve the association problem caused by unreliable object detection. To robustly track objects
in complex scenarios, we proposed an efficient hierarchical association framework based on the
tracklet confidence and an FCT-based appearance tracking for multiple object tracking in airborne
videos. The proposed framework appropriately handled tracklet generation, progressive trajectory
construction and tracklet drifting and fragmentation. Each association stage of the hierarchical
framework solved different assignment problems achieving reliable performance with 15 frames per
second in MATLAB. The obtained results demonstrate the effectiveness of our framework compared to
state-of-the-art methods. Improvements should be targeting three aspects: (1) a better object detector to
reduce unreliable detections; (2) a better single-target tracking to deal with abrupt appearance change,
which can cause unreliable matching; (3) a more sophisticated object re-identification in Stage 4. In the
future, we will seek approaches that combine the proposed motion compensation-based detector with
a deep online multi-object detection approach to reduce the false alarm rate of detections, as well as
consider a deep learning approach for better object re-identification after long-term occlusion.
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