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Abstract: In this paper, we describe the results of simulating the bidirectional reflectance in
three-dimensional (3D) cloud fields. For the calculations of reflectance, we use original statistical
algorithms that ensure the effects of atmospheric sphericity and molecular absorption in the solar
spectral range are accounted for. Cloud fields are simulated on the basis of a Poisson model of broken
clouds; clouds are approximated by truncated paraboloids of rotation. The cloud heterogeneity
effect on the averaging of reflection functions over an ensemble of cloud fields is estimated
using numerical averaging of the stochastic radiative transfer equation, using a randomization.
The simulation is performed for a mono-directional receiver with wavelength channels 0.55 and
2.15 µm, different realizations with small and moderate cloud fractions, and a set of sun-view
geometries. With the appearance of an isolated cloud in the sky, the reflection function is determined
by cloud presence/absence on the line of sight (LS), shading of LS by clouds/non-obscuration
directed “toward the Sun,” and illumination of LS by cloud-reflected radiation. Passage to cloud
fields gives rise to such additional factors as mutual shading and multiple scattering between
clouds, which are mainly determined by cloud elements located near LS and directed “toward the
Sun”. Strong fluctuations of reflectance as a function of the relative azimuth angle between sun
and view directions in a specific realization are smoothed out after averaging over an ensemble
of cloud fields. In interpreting the results of retrieving the cloud characteristics according to
measurements of reflected radiation, it should be kept in mind that for fixed illumination conditions,
the mean bidirectional reflectance may differ several-fold from bidirectional reflectance in a specific
3D cloud structure.

Keywords: bidirectional reflectance; stochastic radiative transfer equation; Monte Carlo method;
isolated cloud; individual realization; averaging over an ensemble of cloud fields; 3D cloud effects

1. Introduction

For more correct solutions to a number of atmospheric remote sensing problems (retrieval of
aerosol and cloud characteristics, improved interpretation of ground-based and satellite observations,
cloud “screening” in solving inverse problems [1–13], etc.), it is necessary to calculate the spatial,
spectral, and angular characteristics of radiance fields of the cloudy atmosphere, taking into account
its spatial inhomogeneity.

Solving the radiative transfer equation (RTE) in a specific two-dimensional (2D) or
three-dimensional (3D) realization and ensuring a correct account of the spatial inhomogeneity of
optical-geometric characteristics of clouds envisages the availability of methods for constructing
the cloud fields. At present, the existing approaches make it possible to solve this problem using
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two main classes of cloud models. One class consists of dynamic, physical-based models requiring
specification of the set of atmospheric parameters (in particular, Large Eddy Simulation (LES) cloud
models [14]). The other class consists of stochastic cloud models, which are based on satellite, aircraft,
or ground-based measurements and generate cloud fields, which are close, in some degree, to the
observed ones: Gauss [15–17], cascade [18,19], Poisson [20,21], and other models [22–26]. These models
are undoubtedly advantageous in that they are constructive in character, making it possible to interpret
the results of solving the RTE, taking into account the cloud configuration in an individual realization.

However, the realizations of 3D cloud fields cannot always be constructed or are expensive to
obtain. Besides, in many practical applications, RTE in complex media cannot be solved numerically
in view of enormous computer time consumptions. At the same time, the regularities of radiative
transfer in the cloudy atmosphere and the development of possible approaches to parametrizing the
3D cloud-radiation interaction can be gained on the basis of a statistical approach, essentially consisting
of determining and analyzing the interrelation between statistical characteristics of the cloud and
radiation fields.

The mean radiative properties can be obtained by numerical or analytical averaging of the
radiative transfer equation. An ideologically simple method is numerical RTE averaging, reduced
to simulating a large number of cloud realizations and solving the deterministic radiative transfer
equation for each 3D realization of the scattering and absorbing medium. However, even with the use
of certain extra tricks, such as randomization (introducing additional randomness [27]), these methods
are still computationally inefficient. Analytical RTE averaging is based on solving new transport
equations, which are derived in the framework of statistical radiative transfer theory and relate the
statistical characteristics of cloud and radiation fields [20,21,28–32] (Subsequently, this approach was
adapted to describe vegetation reflective properties and partly implemented to operationally produce
the leaf area index and the fraction of canopy absorbed radiation from MODIS and MISR data [33,34]).

The analytical RTE averaging approach ensures much less labor for the radiation calculations
compared to numerical RTE averaging. However, it should be kept in mind that analytical averaging
can be performed only under certain assumptions on the structure of the cloud field; therefore,
equations obtained as a result of the procedure of averaging are approximate.

In this paper, we present the results of simulating bidirectional reflectance, R [35,36], in individual
deterministic realizations

Rλ(µ, µ0, ϕ) = π Iλ(µ, µ0, ϕ)/(µ0F0λ) (1)

and in ensemble averages 〈R〉

〈Rλ(µ, µ0, ϕ,)〉 = π〈Iλ(µ, µ0, ϕ)〉/(µ0F0λ) (2)

where I(µ, µ0, ϕ) is the reflected radiance at the top of the atmosphere (TOA), µ0 is the cosine of the
solar zenith angle (SZA), µ is the cosine of the viewing zenith angle (VZA), ϕ is the relative azimuth
angle between sun azimuth angle and viewing azimuth angle, F0λ is the incident solar irradiance at
the TOA, and subscript λ is the wavelength. Brackets 〈〉 indicate the radiative characteristics averaged
over the ensemble of cloud fields.

Since bidirectional reflectance is an input parameter in the algorithms for retrieving cloud
characteristics from satellite sensing data (cloud optical depth (COD, τcld) and effective radius of
cloud particles (REF, re f )), in past decades there appeared numerous theoretical studies of reflection
function R that were compared with data from measurements [35–39]. It is shown that, besides such
characteristics as the averaging scale, instrument/orbit properties, etc., the results of retrieving COD
and REF depend strongly on sun-view geometry and cloud heterogeneity. This is confirmed by the
simulation results in 2D and 3D cloud models [38,40–46].

In a number of works, the reflectances were calculated in inhomogeneous cloud fields, constructed
in the frameworks of LES models: e.g., in [4,47] the reflection functions are simulated in cumulus (Cu)
and stratocumulus (Sc) clouds, presented in the International Intercomparison of 3D Radiation Codes
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(I3RC) phase 2 [48]. Here we present model calculations of bidirectional reflectance, performed using
the Poisson model of broken clouds [20,21], which, as with other stochastic models, makes it possible
to substantially increase the set of cloud realizations considered.

At the initial stage of model development, the intensity moments (average, variance, and
correlation function) were calculated in the plane–parallel model of the atmosphere on the basis of both
numerical and analytical averaging of the radiative transfer equation. The approach to analytical RTE
averaging presented by G. Titov in [20,21] is designed for use in the model of statistically homogeneous
clouds (clouds are approximated by right parallelepipeds and cylinders, the bases of which may be
shaped as circles, ellipses, polygons, etc., and the optical characteristics do not change after transition
from one cloud to another). E. Kassianov [49] generalized this approach for a statistically inhomogeneous
Markovian model; however, the derived equations for calculating the ensemble-averaged radiative
properties are also approximate. In our later works, we developed algorithms for calculating the
spectral-angular characteristics of radiance fields of reflected and transmitted solar radiation in the
presence of an isolated cloud, a specific cloud realization, and ensemble average cloud fields, taking
into account the effects of atmospheric sphericity [50–52].

The outline of this paper is as follows. Section 2 describes the atmospheric model and Monte Carlo
algorithms for radiation calculations in an individual realization and averaging over an ensemble of
cloud fields. Section 3 analyzes the regularities of formation of bidirectional reflectances of isolated
clouds and specific 3D cloud fields, as well as mean reflection functions for different sun-view
geometries and cloud fractions. A summary is given in Section 4. The Appendix A is devoted
to a brief description of techniques that make it possible to reduce the laboriousness of the radiation
codes used.

2. Model of the Atmosphere and Calculation Algorithms

This section briefly describes the model of the spherical atmosphere and the algorithms for
calculating the spectral-angular characteristics of radiance fields in individual cloud realization and
for ensemble averages [50–52].

2.1. Atmospheric Model

The spherical model was specified in the global Cartesian coordinate system (GCS) OXYZ, whose
origin coincides with the Earth’s center (point O), while the OZ axis is defined by the position of
receiver (point A) at the level of the underlying surface or at the top of the atmosphere, see Figure 1a.
For convenience in specifying the input parameters and representing the calculation results, we also
introduced a local coordinate system (LCS) A′X′Y′Z′, defined by the axis A′Z′ passing through the
observation point (OP) A′ on the Earth’s surface and origin O of the global coordinate system. When
viewed from the Earth’s surface, GCS and LCS differ only by positions of origins of coordinate systems,
and when viewed from TOA, the coordinate systems also differ in the orientation of axes. Directions
“toward receiver”

→
ωrec = (VZA, VAA) and “toward the Sun”

→
ωSun = (SZA, SAA) were defined by

zenith and azimuth angles in the local coordinate system: The zenith angles were counted from the
positive direction of the A′Z′ axis, and the positive direction of the A′X′ axis was chosen such that
VAA = 180◦.

A parallel flux of monochromatic solar radiation with power F0λ is incident on the outward
surface of the atmosphere, i.e., a sphere with radius Ratm = R0 + 100 km, where R0 = 6371 km is the
Earth’s radius.
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Figure 1. (а) Local and global coordinate systems in observations from space; and (b) scheme of the 
cloud position in the local coordinate system. Note: VZA, VAA are viewing zenith and azimuth 
angles, SZA, SAA are solar zenith and azimuth angles, cldD  is the distance between observation 
point A′ and the projection of paraboloid center onto the Earth (C), cldφ  is the azimuth angle 
between rays A′X′ and A′C, cldZ  is the height of the center of cloud base above the Earth’s surface, 

cldH  is the cloud geometric thickness, yx pp =  are the semiaxes of paraboloid. 

2.1.1. Poisson Cloud Model 

In the Poisson model, the 3D cloud fields are simulated in two stages. At the first stage, we 
determine the amount of clouds N on a limited section of surface with area S in accordance with the 
specified cloud fraction CF and the area of cloud base bS . The second task is to generate the 
coordinates of cloud centers on a given surface.  

The number of cloud centers N is simulated according to the Poisson distribution and 
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using standard algorithms for modeling points, uniformly distributed over a circle of a given radius 
or an area-equivalent square [21]. In the spherical model, a cloud center is taken to mean the center 
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( cldZR +0 ). In this case, uniformly distributed cloud centers are simulated on a segment of the 
sphere. Since the segment of the sphere is an unfolded curvilinear surface, the solution of the 
problem becomes nontrivial. In the present work, this task was solved using the approach in [53]. 

Figure 1. (a) Local and global coordinate systems in observations from space; and (b) scheme of the
cloud position in the local coordinate system. Note: VZA, VAA are viewing zenith and azimuth angles,
SZA, SAA are solar zenith and azimuth angles, Dcld is the distance between observation point A′ and
the projection of paraboloid center onto the Earth (C), ϕcld is the azimuth angle between rays A′X′ and
A′C, Zcld is the height of the center of cloud base above the Earth’s surface, Hcld is the cloud geometric
thickness, px = py are the semiaxes of paraboloid.

2.1.1. Poisson Cloud Model

In the Poisson model, the 3D cloud fields are simulated in two stages. At the first stage, we
determine the amount of clouds N on a limited section of surface with area S in accordance with the
specified cloud fraction CF and the area of cloud base Sb. The second task is to generate the coordinates
of cloud centers on a given surface.

The number of cloud centers N is simulated according to the Poisson distribution and determined
from the formula

N = min{i :
i
u

k=0
αk < eηS}, η = − ln(1− CF)/Sb, (3)

where 0 ≤ αk ≤ 1 are random numbers, and η is the two-dimensional Poisson parameter [21]. Analysis
showed that in order to simulate N in fields with large areas, it is reasonable to divide S into n sections
with area Si, and to simulate the quantity Ni, i = 1, n, each in accordance with Equation (3). The final

number of cloud centers on the surface with area S is determined by the sum N =
n
∑

i=1
Ni.

Clouds are approximated by inverted truncated paraboloids of rotation with semiaxes of base
px = py, geometric thickness Hcld, and constant optical characteristics. Cloud centers are defined in
the local coordinate system A′X′Y′Z′ by distance Dcld between observation point A′ and the projection
of paraboloid center onto the Earth (C), by the azimuth angle ϕcld between rays A′X′ and A′C, and by
the height of the center of cloud base above the Earth’s surface Zcld, as shown in Figure 1b.

In the plane-parallel model of the atmosphere, the coordinates of cloud centers are simulated
using standard algorithms for modeling points, uniformly distributed over a circle of a given radius or
an area-equivalent square [21]. In the spherical model, a cloud center is taken to mean the center of the
cloud base, formed at the intersection of a paraboloid with a sphere with the radius (R0 + Zcld). In this
case, uniformly distributed cloud centers are simulated on a segment of the sphere. Since the segment
of the sphere is an unfolded curvilinear surface, the solution of the problem becomes nontrivial. In the
present work, this task was solved using the approach in [53].

2.1.2. Optical Model of the Atmosphere

It is assumed that the atmosphere consists of Nlay layers, and within each layer the pressure, the
temperature, and the concentration of the atmospheric gases are constant.



Remote Sens. 2018, 10, 1342 5 of 21

The optical model of the molecular-aerosol atmosphere is completely defined, if each ith layer is
assigned the coefficients of aerosol extinction σa(λ, z) = σa,i(λ) and scattering σa,s(λ, z) = σa,s,i(λ),
aerosol scattering phase function ga(λ, z, µ) = ga,i(λ, µ), coefficients of molecular scattering
σR(λ, z) = σR,i(λ) and absorption εm(λ, z) = εm,i(λ), as well as the Rayleigh scattering phase function
gR(µ) = 3(1 + µ2)/8; z is the altitude above the Earth’s surface. Clouds may reside within more
than one layer; however, in the framework of this work, the vertical variations in extinction and
scattering coefficients, as well as in the scattering phase function were disregarded: σcld(λ, z) = σcld(λ),
σcld,s(λ, z) = σcld,s(λ), gcld(λ, z, µ) = gcld(λ, µ).

The stratification and spectral behavior of the aerosol optical characteristics and cloud optical
characteristics are specified on the basis of commonly adopted models (see [54,55] for examples), while
the molecular scattering coefficients are those on the basis of a LOWTRAN7 model [56]. It is assumed
that the incident radiation is reflected from the underlying surface according to the Lambert law with
albedo As(λ) [57].

Note that the above-listed characteristics pertain to monochromatic radiation. However, they
can also be extended to a finite spectral interval ∆λ = (λ1, λ2), provided that the optical properties
of the medium within ∆λ do not change significantly. In the case of the selective absorption, εm(λ)

may be strongly oscillating functions even within very narrow spectral intervals. In this case, the
molecular absorption is accounted for using the k-distribution method, in accordance with which the
transmission function of atmospheric gases T∆λ within the wavelength interval ∆λ is represented as a
finite exponential series [58].

2.2. Calculation Algorithms

This subsection briefly describes the Monte Carlo algorithms to calculate the intensities of
solar radiation I in the spherical atmospheric model within 3D cloud fields and ensemble averages
〈I〉 ([50–52], see also Appendix A). These algorithms are parts of the Monte Crlo Codes for
THree-DimensionAl Radiative Transfer (MATHART) software package developed by the Institute of
Atmospheric Optics, Siberian Branch, Russian Academy of Sciences.

2.2.1. 3D Cloud Fields

To solve the RTE in a realization of an inhomogeneous cloud field, modelers have recently
developed many radiation codes, mostly relying upon statistical algorithms (see [59] for example
and the bibliography therein). Despite the general ideology, the Monte Carlo algorithms differ in the
features of their implementation. The specific features of the algorithms stem, in particular, from the
manner of specifying the spatial distribution of optical and geometrical cloud characteristics.

One of the most widespread techniques for specifying 2D and 3D cloud fields is to represent them
as a set of cuboids with small sizes (from tens to hundreds of meters), within each of which the cloud
optical characteristics are constant. A reliable method of identifying the errors and improving the
specific radiation codes in such complex media is to compare the calculations using different methods
of RTE solution or modifications within the same method. These comparisons were performed, e.g., in
the framework of I3RC [48].

In the Poisson model, cloud elements are approximated by inverted truncated paraboloids
“embedded” in the molecular-aerosol atmosphere. Within a paraboloid, which has vertical and
horizontal sizes of a few hundred meters, the cloud optical characteristics are constant. Taking into
account the complex structure of this field and the effects caused by the sphericity of the atmosphere,
we developed a few modifications of the statistical algorithm to simulate scattered solar radiation.
A common feature of all the modifications is the method of adjoint walks, but they differ in the manners
in which they simulate the free path length (analog simulation and method of maximal cross-section)
and account for the molecular absorption [60].

Cross-checks of different modifications of the algorithms showed that the relative difference
between simulation results is comparable to the relative calculation error (1–2%) [50]. Comparing
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algorithm labor consumption, it follows that algorithm efficiency depends on cloud amount N in a
specific cloud realization. For a small cloud amount, the most efficient modification will be the one in
which a photon-free path length is simulated in accordance with the principles of analog simulation.
As the cloud amount increases, the method of maximal cross-section leads to a certain decrease in the
algorithm laboriousness for comparable calculation accuracy.

Represented as a finite exponential series, the atmospheric gas transmission function makes it
possible to account for the molecular absorption in two ways [61]. In the present work, scattered
solar radiation is simulated using the most efficient method, based on the idea of time separation
of the events of (i) molecular absorption and (ii) scattering and absorption by cloud and aerosol
particles [60,62], permitting the transmission function T∆λ(l) to be interpreted as the photon survival
probability on a path of length l from the moment of photon entry into the medium along the given
trajectory [60].

2.2.2. Averaging over Ensemble of Realizations

Calculation of mean intensity 〈I〉 was based on numerical averaging of stochastic RTE. When this
approach is used, no restrictions on cloud models are essentially imposed, except the requirement to
construct a sampling realization of the cloud field in the form of a three-dimensional scattering and
absorbing medium.

Efficiency of simulating mean intensity was achieved by introducing additional randomness
(randomization) [21,27,52]. At the first step, a 3D cloud field is constructed in accordance with the
approach described in Section 2.1.1. Next, an approximate value of radiation intensity I is calculated for
each cloud field out of the specified set of Nκ realizations. (An approximate solution of RTE envisages
that simulation is performed with a smaller number of photon trajectories Nχ compared to the number
of trajectories required for an “exact,” in a statistical sense, RTE solution.) At the final stage, values of
radiation intensity are averaged over the ensemble of cloud field realizations.

In calculating average values 〈I〉, it is important to select a statistic (Nχ, Nκ) that ensures the
prescribed accuracy of the calculations using reasonable computer time. A no less considerable task is
to choose the size of the cloud field and its position in space. Both of these problems are discussed in
Appendix A.

3. Results of Numerical Simulation

We will consider how reflectance is formed in the appearance of an isolated cloud in the
sky, in a specific 3D cloud field, and, finally, during averaging over the set of cloud realizations.
Certain regularities of solar radiative transfer in the presence of an isolated cloud and in individual
cloud realizations were presented in our earlier work [51]. However, for deeper insight into the effects
of the horizontal cloud inhomogeneity observed in the analysis of mean reflectance 〈R〉, we will briefly
describe the most important of these results. We note that, in contrast to [53], in the present paper we
consider not the intensity of reflected radiation, but rather the reflection functions, calculated according
to Equations (1) and (2).

The main calculations were performed for two spectral intervals, 0.55 µm and 2.15 µm (spectral
resolution is 0.025 µm), and fixed cloud parameters: px = py = 0.5 km, Hcld = 1 km, Zcld = 1 km,
extinction coefficient σcld = 10 km–1, surface albedo AS(λ = 0.55 µm) was equal to 0.097 (grass) [59],
aerosol optical depth was assumed to be τa(λ = 0.55 µm) = 0.15. The spectral scattering phase functions
and single scattering albedo of the aerosol (continental average) and clouds (cumulus continental clean,
re f = 5.77 µm) are those from the OPAC model [55]. The relative error of the intensity calculation
does not exceed 1–3% in most cases. In this work, we confined ourselves to the consideration of a
mono-directional receiver.
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3.1. Isolated Cloud

Reflection in the presence of isolated cloud Rcld depends on a set of factors that can be
conventionally divided into geometrical (viewing directions and illumination conditions, vertical and
horizontal cloud sizes, cloud position in space) and optical (optical depth, and single scattering albedo
and phase function). Below, we discuss the effects caused by the geometrical factors.

The spatial and angular characteristics of the sky radiance field were simulated under the
assumption that the A′X′Y′ plane, to which the line of sight (LS; ray A′D) belongs, divides the
cloud into two equal parts, as shown in Figure 2a,c,e. Negative and positive Dcld values correspond
to cloud positions “to the left” (ϕcld = 180◦) and “to the right” (ϕcld = 0) of observation point A′.
The cloud is assumed to move from left to right relative to the observation point.

Depending on the Dcld, SZA, and VZA values, we can single out a few geometric zones, within
each of which reflectance is governed by the same regularities. In the A′X′Y′ plane, the boundaries
between zones will be determined by the distance from point A′ to the projection of the cloud center
onto the Earth’s surface, see Figure 2a,c,e.

We will consider the observation geometries, differing in viewing angles and illumination
conditions: Solar azimuth angle SAA = 0 and SAA = 180◦.

Case 1: SAA = 0 (antisolar location; Figure 2a,b).

The boundaries between Zones 1 and 2 (point P1) and between Zones 3 and 4 (point P4) are defined
by the tangent planes to the paraboloid: The tangent line is defined by the viewing direction (ray A′D)
for Zones 1 and 2 and by the direction of direct solar rays (ray A′S) for Zones 3 and 4, as shown in
Figure 2a. A specific feature of Zone 2 is that the cloud is intersected by the line of sight. The boundary
between Zones 2 and 3 is defined by point P2, where the cloud “leaves” LS. Within Zone 3, the cloud
may shadow the line of sight and an area on the underlying surface, and may even shadow the
observation point after its passage over point P3, where the cloud starts intersecting ray A′S.
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Figure 2. (a,c,e) Schematic illustration of the sensing of isolated cloud for different illumination
conditions; and (b,d) the dependence of reflectance R in the presence of cloud for different observation
conditions compared to clear-sky conditions (grey straight lines).

If the cloud is at quite a large distance from the OP, it has almost no effect on reflectance, as is
the case for Zones 1 and 4 shown in Figure 2a: The difference between the reflection function in the
presence (Rcld) and absence (Rclr) of cloud is comparable to the relative calculation error, as shown in
Figure 2b. As the cloud approaches LS, radiation reflected from the cloud contributes to Rcld.

In Zone 2, the cloud is on the LS and Rcld is determined by two opposite factors. On the one
hand, the increase in Rcld is due to the appearance of additional scatterers on the LS compared with
the clear sky. The cloud is approximated by a truncated paraboloid, so that when it moves to the OP,
the number of scatterers first increases and then decreases. On the other hand, the photon optical path
length in the cloud is of importance (in terms of the single scattering theory, it is determined by the
sum of photon optical paths from the point of photon entry into the cloud to the ray A′D, and from the
scattering point on the ray A′D to the exit from the cloud). The greater the photon optical path length
in the cloud, the smaller the reflectance.

At the beginning of Zone 2 (point P1), the increased number of scatterers and relatively small
photon optical path length within the cloud start to dominate. As a consequence, Rcld rapidly increases
compared to clear-sky reflectance Rclr, see Figure 2b. As the cloud center approaches point P2, the
effect of the second factor intensifies, causing the reflection function to decrease compared to Rclr.

Point P2 is the boundary between Zones 2 and 3: When the cloud leaves LS, no extra attenuation
of radiation by the cloud along this direction occurs, as shown in Figure 2a. As the cloud moves in
Zone 3 from P2 to P3, the inequality Rcld < Rclr holds because a part of the line of sight is shaded, with
the length and position of the shaded part on ray A′D varying. As the cloud center moves from point
P3 to point P4, the observation point A′ is within the cloud shadow zone. This circumstance can also
influence the relationship between Rcld and Rclr, especially for surface types with large As(λ).

In the examples considered above, the selected cloud sizes and observation geometries made it
possible to distinctly single out the zones of motion, within each of which the reflectance was formed
according to the same regularities. Obviously, the simulation results are far from being so easily
interpreted all the time. For instance, for large horizontal cloud sizes, and for SZA and VZA close to
zenith, the line of sight may intersect the cloud (Zone 2), and a segment of LS in the lower part of the
atmosphere and the observation point may be shaded (Zone 3). In this case, the effects that dominate
and determine the formation of the reflection function Rcld can be identified in numerical experiments.

Case 2: SAA = 180◦ (Figure 2c–e).

Analogous to the SAA = 0 case, the region between points P1 and P2, where the cloud lies on the
line of sight A′D, will be called Zone 2: Rcld ≥ Rclr, see Figure 2c,e. In this region, reflectance Rcld is
determined by the appearance of additional scatterers and a change in the photon optical path length
in the cloud. The competitive character of these factors explains the nonmonotonic behavior of the
reflection function as Dcld varies, see Figure 2d.
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Analyzing variations in reflectance outside Zone 2, we consider two situations: SZA > VZA, see
Figure 2c, and SZA < VZA, see Figure 2e. When SZA = 80◦ > VZA = 30◦, the shadow region (Zone 3)
occurs between points P4 and P1. For the case when SZA = 30◦ < VZA = 70◦, LS is shaded when the
cloud moves from P2 to P4. As in the SAA = 0 case, outside Zones 2 and 3, radiances Rcld and Rclr
agree within the relative calculation error, as shown in Figure 2d.

Thus, with the appearance of an isolated cloud in the sky, reflection function R is determined
by the presence or absence of cloud on the LS, the shading of LS by clouds/non-obscuring directed
“toward the Sun”, and illumination of the LS by cloud-reflected radiation. If the LS intersects the cloud,
reflectance Rcld may substantially exceed Rclr. The reflection function decreases due to the effects
of cloud shading of the LS and OP on the Earth’s surface. The cloud impact zone may exceed the
horizontal cloud sizes several-fold and substantially increases with solar and detector zenith angles.

3.2. Broken Cloud Field

In Section 3.1, we studied the changes in clear sky reflectance with the appearance of an isolated
cloud in the sky. In a cloud field, 3D effects of isolated clouds are complemented by the effects of
mutual cloud shading and radiation interaction, when part of the radiation, leaving through a cloud
lateral surface, can be multiply scattered by surrounding clouds.

The joint effect of these factors is discussed below. The purpose of this research stage was to
identify the specific features of the formation of reflection functions for different cloud configurations
in a specific cloud field. Therefore, for ease of interpretation of results, we confine ourselves to the
consideration of cloud fields of a relatively small area (S = 200 km2). The centers of cloud fields are
located immediately above the observation point.

The reflection functions were simulated for the wavelength interval λ = 2.15 µm, where, due to
low Rayleigh scattering and aerosol optical depths (τR(2.15 µm) = 0.0002 and τa(2.15 µm) = 0.0123),
the effect of inhomogeneity on reflectance will be manifested most noticeably compared to, e.g., the
visible range (λ = 0.55 µm). For analysis, we chose four cloud realizations, corresponding to cloud
fractions CF = 3, as shown in Figure 3a,b, and CF = 6, as shown in Figure 4a,b, viewing zenith angles
VZA = {0, 60◦}, solar zenith angles SZA = {30◦, 60◦, 75◦}, and azimuth angles SAA = {0, 5, 10, . . . , 175,
180◦}. The calculations were performed using the same geometrical and optical cloud characteristics as
in Section 3.1 (taking spectral variations into account [55]).

Figure 3 presents two cloud realizations at CF = 3 and the results of simulating the reflection
functions for different sun-view geometries.

A specific feature of Realization 1, shown in Figure 3a, is that independent of the viewing angle,
no clouds are present in the line of sight, hence the dependence of Rcld on the solar azimuth angle is
determined predominantly by shadowing effects: Rcld(SAA) ≤ Rclr(SAA). In nadir-looking sensing,
the shadowing of an observation point is determined by clouds, the centers of which are approximately
at a distance Zcld × tg(SZA)≤ Dcld ≤ (Hcld + Zcld)× tg(SZA) from the OP. Comparing Figure 3a,c
at SZA = 60◦ and SZA = 75◦ shows that Rcld is almost an order of magnitude smaller than Rclr for
those solar azimuth angles at which the direction “toward the Sun” is covered by clouds. For instance,
at SAA = 45◦, the line of sight is shadowed by cloud A (SZA = 60◦) and a conglomerate of clouds B
(SZA = 75◦). At the same time, at SAA = 150◦, the shadowing takes place only at SZA = 75◦ (cloud C).
At SZA = 30◦, clouds near the OP are absent; however, Rcld(SAA) is a little larger than Rclr(SAA)
because LS is slightly illuminated by reflected radiation.

The configuration of the cloud field in Realization 2 is such that cloud D is immediately above
the observation point, while at the oblique viewing angle VZA = 60◦, the line of sight intersects
the conglomerate of clouds CO, located along the OX axis, see Figure 3b. The results, described
in Section 3.1, suggest that Rcld increases relative to Rclr, as shown in Figure 3c,d. Depending on
illumination conditions, clouds in the vicinity of D and CO may, on the one hand, reduce the amount
of direct solar radiation reaching them, and, on the other hand, favor an increased re-reflection of
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scattered solar radiation between them. Following from the calculation results, these factors may be
manifested in the angular dependence Rcld(SZA, SAA), as shown in Figure 3c,d.
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Figure 3. (a,b) Schematic image of two cloud realizations, and the dependence of reflectance on solar
azimuth angles at (c) VZA = 0 and (d) VZA = 60◦ for different solar zenith angles, 0 ≤ SAA ≤ 180◦;
CF = 3, λ = 2.15 µm. Note: VZA is the viewing zenith angle, SAA is the solar azimuth angle and CF is
the cloud fraction.

Figure 4a,b presents two cloud realizations at CF = 6.
As for CF = 3, the specific features of the field configurations are the absence (Realization 3) and

presence (Realization 4) of clouds over the observation point.
In nadir-looking sensing, shown in Figure 4c, the reflection functions in Realization 3 depend

on solar azimuth: Relationship Rcld(SAA) ≤ Rclr(SAA) in certain SAA ranges is a consequence of the
effects of shadowing of the direction “toward the Sun.” A specific feature of Realization 4 is that the
cloud over the OP is surrounded by a densely populated circle of other clouds. High reflectance of
this section of the cloud field leads to an increase of Rcld relative to Rclr, independent of the solar
zenith angle.

At oblique viewing angle VZA = 60◦, the line of sight intersects the clouds in both realizations.
In addition to the obvious relationship Rcld ≥ Rclr, presented in Figure 4d, the fanciful character of
azimuth dependencies Rcld(SAA) in both cloud fields stems from the joint effect of mutual shadowing
and re-reflection of radiation between the clouds, among which the key role is played by clouds located
near the line of sight and in the direction “toward the Sun.”

We note that the radiation simulations using the mono-directional receiver make it possible to
describe all details of the angular structure of reflected radiation. Obviously, passing to a receiver with a
finite angular extent leads to a smoothing of the bidirectional reflectance, which in turn depends on the
chosen spatial resolution and cloud sizes. In our work, we nonetheless considered a mono-directional
receiver, which allowed us to understand precisely what factors influence the angular characteristics
of reflected radiation in 3D cloud fields, and to what extent.
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3.3. Averaging over Realizations

We will consider the results of simulations of reflection functions averaged over the set of cloud
realizations (λ = 0.55 µm).

Figure 5 compares 〈R〉 with reflectance calculations in Realizations 1 and 2, shown in Figure 3a,b.
First, the dependence of 〈R〉 on solar azimuth is smoothed out as compared to individual realizations
because of averaging over the set of cloud configurations. Second, variations in the angular dependence
of 〈R(SAA)〉 in the scattering phase function of cloud particles gcld(θ), shown in the inset of Figure 6a;
θ is the scattering angle, and, to a lesser degree, in R(SAA) within Realization 2 (LS intersects the
cloud) are quite matched. For instance, at VZA = 60◦, the increase of SAA from 0◦ to 180◦ corresponds
to a change of the scattering angles in the range 90◦ ≤ θ ≤ 150◦ at SZA = 30◦ and in the range
60◦ ≤ θ ≤ 180◦ at SZA = 60◦, as shown in Figure 5b. The “backscatter” peak of the phase function
causes an increase in cloud reflectance for the condition SZA = VZA = 60◦. Local maxima at SAA
~140–145◦ are associated with an increase of gcld(θ) in the rainbow region θ~142◦.

Next we consider the dependence of mean reflectance on cloud fraction, aspect ratio
γ = Hcld/(2px), and optical depth for different viewing angles and illumination conditions.

Figure 6 shows the zenithal dependence of 〈R〉 in the principal plane for different cloud fractions.
When solar zenith angle is 30◦, the simulation results in overcast clouds show a slight backscattering
peak and darkening at SAA = 0 and SAA = 180◦ with increasing VZA (analogous results for small
solar zenith angles (SZA ≤ 30◦) from observations and simulations were presented in [35,63]).

A slightly different situation is observed in broken clouds. The formation of an angular structure
of reflected radiation is affected by the presence of non-horizontal cloud surfaces: Radiation leaving
through lateral cloud sides undergoes less scattering events and, as such, is more sensitive to the
angular structure of the scattering phase function. Therefore, at SAA = 180◦, owing to the presence of
a gcld(θ) peak in the rainbow region θ = 142◦, mean reflectance increases as the viewing zenith angle
grows from VZA = 60◦ to VZA = 70◦ at CF = 3 and CF = 6, in contrast to overcast clouds, as shown in
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Figure 6a. In the antisolar location (SAA = 0), the growth of gcld(θ) with decreasing scattering angle
causes mean reflectance to increase with growing VZA.

If SZA = 60◦, the reflection functions have definite forward scatter and backscatter maxima, see
Figure 6b. The peak in the “backward” direction (VZA = 60◦, SAA = 180◦) is most significantly
manifested under the conditions of overcast clouds, and gradually decays with decreasing CF.
Supposedly this is because the effect of peak gcld(θ = 180◦) is smoothed out in view of the decreased
optical path in clouds directed “toward the receiver” at the small cloud fraction.
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Figure 6. Reflectance under the conditions of clear sky and overcast clouds and mean reflectance at
CF = 3, CF = 6, and CF = 8. The cross section in the principal plane; (a) solar zenith angle (SZA) = 30◦

and (b) SZA = 60◦. The negative viewing zenith angles are toward the Sun (SAA = 180◦) and the
positive angles are toward the antisolar location (SAA = 0), τcld = 10. The inset in panel (b) shows
scattering phase functions of cloud and aerosol particles ([55], λ = 0.55 µm).

We will discuss how the azimuthal dependence of mean reflectance on aspect ratio γ = Hcld/(2px)

changes for a fixed cloud geometrical thickness Hcld.
General considerations dictate that for small solar and viewing zenith angles, the relative role

of cloud lateral sides in the formation of a radiation field of individual clouds is fairly minor, and
the main part of reflected radiation leaves through cloud tops. When CF and H are kept fixed, with
an increase of SZA and/or VZA, the effect of lateral sides becomes stronger due to changes in the
illumination conditions of clouds and in the optical path within cloud elements. In addition, the
larger the cloud base, the longer the mean distance between the clouds, hence the smaller effect of the
radiation interaction of the clouds.
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The joint effect of these competing factors can be estimated only on the basis of the numerical
simulation results. We will consider examples of calculations for 0.5 ≤ γ ≤ 2, see Figure 7.
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Figure 7. Dependence of the mean reflectance on aspect ratio γ = Hcld/(2px) at τcld = 10 for
(a) SZA = 30◦, CF = 3 and (b) SZA = 75◦, CF = 6.

Assume that CF = 3, see Figure 7a. When SZA = VZA = 30◦, 〈R(γ = 0.5)〉 exceeds 〈R(γ = 2)〉 by
about 10% owing to the dominating role of cloud top in the formation of the field of reflected radiation.

With a decreasing cloud base diameter at a fixed cloud fraction (CF = 6), the field of reflected
radiation is formed under the influence of the above-mentioned competing factors. On the one hand,
as SZA increases, the direct solar rays predominantly illuminate the upper part of the cloud. On the
other hand, the optical path of radiation within the cloud directed “toward the receiver” decreases on
average. The effects caused by the increase in aspect ratio mutually compensate each other at small
viewing angles: At VZA = 30◦ the values 〈R(γ = 0.5)〉 and 〈R(γ = 2)〉 are comparable, see Figure 7b.
As the viewing angle increases (VZA = 60◦), the effect of increasing the optical path in clouds of large
(2 km) diameter leads to a decrease of 〈R(γ = 0.5)〉 relative to 〈R(γ = 2)〉 by about 20% for SAA = 0,
diminishing to ~3% at SAA = 180◦.

In conclusion, we will consider how the optical depth of broken clouds influences 〈R(SZA, SAA)〉
for 5 ≤ τcld ≤ 20, see Figure 8. In the entire τcld variability range considered here, a weak dependence of
mean reflectance on solar azimuth at SZA = 30◦ changes to a pronounced anisotropy of 〈R(SZA, SAA)〉
at SZA = 75◦. Obviously, the largest variability range of the mean reflection functions is observed at
small optical depths (τcld = 5). Owing to the fact that less multiple scattering occurs in optically thinner
clouds, reflectance is more sensitive to the cloud-scattering phase function, which is highly anisotropic.
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4. Conclusions

In this study, we investigated the influence of the 3D effects of clouds on specific features of the
formation of the bidirectional reflectance of liquid water clouds.

Bidirectional reflectances were simulated using original statistical algorithms entered into the
MATHART software package. These algorithms ensure simulations of brightness fields of broken
clouds, taking into account the effects of atmospheric sphericity. Molecular absorption in the UV, visible,
and near-IR spectral ranges is accounted for using the k-distribution method. Effective coefficients
of molecular absorption are calculated using modern databases of spectroscopic information for any
spectral resolution. (The procedure of calculating the effective molecular absorption coefficients is
not included in the MATHART software package and precedes the radiation calculations.) The cloud
fields are simulated using the model of Poisson point fluxes in space; cloud elements are approximated
by truncated paraboloids of rotation. The calculation of the average bidirectional reflectance is based
on the numerical averaging of stochastic RTE. We note that in this paper we confined ourselves to the
consideration of a mono-directional receiver, which allowed us to describe the detailed structure of a
reflected radiation field.

Among the main factors influencing the reflection function formation in the 3D cloud field, we
note the following.

With the appearance of an isolated cloud in the sky, reflectance is determined by the presence or
absence of clouds on the line of sight, shading by clouds/non-obscuring directed “toward the Sun,”
and illumination of the LS by cloud-reflected radiation. If the LS intersects the cloud, the reflection
function substantially exceeds that obtained in clear-sky observations, especially if the point of LS
entry into the cloud is sunlit. The reflectance decreases due to the effects of cloud shading of the LS
and the observation point on the Earth’s surface.

The regularities of reflection formation in cloud fields are illustrated by the example of four
different cloud realizations for small and moderate cloud fractions. Taking into account the
random character of the distribution of cloud elements, reflectance for the specified illumination
and observation conditions changes from one realization to another and, depending on the cloud
configuration, may be either higher or lower than the clear-sky radiance. In addition to the
above-mentioned 3D effects of isolated clouds, there are also the effects of radiation interaction,
i.e., mutual shading and the effects of multiple scattering between clouds. The presented results show
that the specific features of reflectances in a 3D cloud field are mainly determined by the localization
of clouds relative to the line of sight and directed “toward the Sun.”

Passing from individual realization to averaging over an ensemble of cloud fields shows that,
for specified viewing and solar zenith angles, the azimuthal dependence of the mean bidirectional
reflectance is a smooth function. Also, an important circumstance is that for a fixed sensing geometry,
the mean bidirectional reflectance may differ several-fold from the bidirectional reflectance in a specific
cloud field. This may become important in interpreting the retrieval of such cloud characteristics as
optical depth and effective particle size from the data of satellite sensing.

In the present work, we confined ourselves to the consideration of viewing geometries in which
the solar and viewing zenith angles did not exceed 80◦. At the same time, it should be noted that
MATHART’s algorithms ensure the simulation of reflectance functions, taking into account the
effects of atmospheric sphericity. Calculating the radiation characteristics for sensing geometries
involving large viewing and solar zenith angles is highly important for interpreting data from
a new NASA/NOAA/Air Force Deep Space Climate Observatory (DSCOVR) mission ([64,65].
A seemingly no less important aspect is the possibility of using the stochastic radiative transfer
theory in a cloudy atmosphere to analyze spectral observations of variability in the Earth’s global
reflectance, obtained from NASA’s Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s
DSCOVR. The expedience of applying the stochastic radiative transfer equations was demonstrated
previously [64,66] in estimating the sunlit leaf area index from DSCOVR EPIC data.
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Abbreviations

LOC local coordinate system
LS line of sight
MATHART Monte CArlo Codes for THree-DimensionAl Radiative Transfer
OP observation point
RTE radiative transfer equation;
SAA solar azimuth angle
SZA solar zenith angle
TOA top of the atmosphere
VZA viewing zenith angle
As surface albedo
CF cloud fraction

Dcld
distance between the observation point and projection of paraboloid center onto Earth in
local coordinate system

Hcld cloud geometrical thickness
I intensity of solar radiation
〈I〉 intensity of solar radiation, averaged over an ensemble of cloud realizations
Nκ number of cloud field realizations
Nχ number of photon trajectories
px, py semiaxes of cloud base
R reflectance in an individual cloud realization
〈R〉 reflectance, averaged over an ensemble of cloud realizations
Rclr clear-sky reflectance
R0 the Earth’s radius
re f effective radius of cloud particles
S cloud field area
Zcld height of cloud bottom boundary
γ cloud aspect ratio

ϕcld
azimuth angle, characterizing the position of projection of paraboloid center onto the Earth
in local coordinate system

σcld cloud extinction coefficient
τcld cloud optical depth
λ wavelength

Appendix A.

The efficiency of the algorithms can be increased, in particular through the use of modern
technologies such as those based on graphic processors. However, here we discuss how the
laboriousness of sequential programming codes can be decreased. In Appendix A we briefly dwell
on issues determining the laboriousness of mean intensity 〈I〉 computations (Appendix A.1), and the
choice of the sizes and position of the cloud field in space (Appendix A.2).

Appendix A.1. Laboriousness of Mean Intensity Computations

The above-described scheme for calculating the mean intensity using randomization envisages
the simulation of a large number of cloud field realizations (Section 2.2.2).
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The Poisson cloud model is quite economical because it requires the simulation of a comparatively
small number of random quantities with prescribed distributions, i.e., the number of cloud centers,
their coordinates, and, if necessary, the cloud sizes.

Another factor determining the efficiency of the algorithm of the 〈I〉 calculation is the number of
cloud realizations Nκ and photon trajectories Nχ used for an approximate RTE solution in deterministic
clouds. In addition to the statistics (Nκ , Nχ) ensuring the required accuracy of mean intensity
calculations, we should also keep in mind the capabilities of the available calculation facilities
determining computer time consumptions. Therefore, before solving specific tasks (sensing in
near-nadir or near-horizon regions, twilight conditions, etc.), it is necessary to carry out a cycle
of numerical experiments.

Using as an example the calculations in two wavelength intervals (0.67 and 0.94 µm) with two
cloud fractions (CF = 3 and CF = 6), it was shown that the relative error of 〈I〉 calculations, averaged
over the broad set of observation and illumination conditions 〈Dη〉, mainly does not exceed 2–3%,
provided that Nκ × Nχ > 106 and Nκ ≥ 104 [52]. The numerical experiments were performed using
a computer with an Intel Core i7-6700 processor and a clock rate of 3.4 GHz. For a fixed VZA (30◦,
60◦, 80◦), a set of three SZA values (30◦, 60◦, 80◦), three SAA values (0◦, 90◦, 180◦), Nκ = 104, and
Nη = 102, laboriousness Lab = 〈Dη (%)〉 × Time (min) did not exceed ~50–60 (% ×min) for CF = 3
and ~200 (% ×min) for CF = 6.

Appendix A.2. Size of Cloud Field and Its Position in Space

In intensity calculations both in a given cloud realization and in ensemble average, it is important
to choose the sizes and positions of the cloud fields in space.

If research is aimed at identifying specific features of the formation of the angular structure of a
radiation field as a function of a specific cloud configuration, the sizes of this field should be selected
such that the photon trajectories would be simulated and the local estimates [60] would be calculated
in a spatial domain containing the cloud field. For instance, for large solar zenith angles, the use
of a small area S in calculating the field may result in, upon a photon reflection from underlying
surface, the direction “toward the Sun” being free of clouds in most cases, somewhat distorting the
simulation results.

On the other hand, the use of a cloud field with a large area in the calculations unavoidably
leads to an increased laboriousness of the calculations. In intensity calculations within a spherical
atmospheric model we suggest a trick, which is an analog of periodic conditions in the plane-parallel
atmospheric model, making it possible to reduce the time to calculate the radiative characteristics.
With this approach, it is essentially proposed that cloud fields of a large area S* are not to be simulated,
but rather realizations of a smaller area S should be simulated and then “constructed” along (1) the
direction of photon travel from one collision point to another and (2) the direction “toward the Sun.”
We will explain this procedure with an example of photon trajectory modeling.

All cloud fields are simulated within cones Ki between two segments of sphere with radii defined
by the cloud bottom boundary (CBB) and cloud top boundary (CTB). Cloud field 1 (the initial field)
with area S is constructed such that the OA1 axis of the cloud-containing cone K1 passes through the
center of the Earth (O) and the point where the photon trajectory first intersects CTB, as shown in
Figure A1a. Trajectory modeling is performed according to standard procedures within the initial field
until the photon leaves it through (i) CTB; (ii) CBB; and (iii) lateral edges (cone surface), as shown in
Figure A1a.

In situation (i), the photon that has travelled further may either escape from the atmosphere
without returning to the cloud layer, or cross the cloud top boundary again. In the latter case, the
intersection point of the trajectory and CTB will define the axis of the next cloud cone. Provided that
the photon left the cloud layer through its bottom boundary (situation (ii)), it unavoidably will cross
it again while traveling in the direction from subcloud layer to higher atmospheric layers (points
P1 and P2). If P2 is outside the initial field, we simulate the next cloud cone K2 with the axis OA2
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(A2 = P2). Finally, after the photon leaves through the lateral side at point P3 (situation (iii)), we
construct cone K3 with the generatrix OP3: Cones K2 and K3 “touch” each other along the generatrix
OP3. All cones at the CBB level have identical cross-sections and only differ by the directions of the
OPi axes. Cloud realizations within new cones are “clones” of cloud field 1, and they are constructed
through affine transformations of the coordinates of cloud centers in the initial field, see Figure A1b.
This method of increasing the area of the cloud field for photon trajectory modeling can be considered
an analog of periodic conditions in the plane-parallel model of the atmosphere. It is equally applicable
to calculations of both intensity I and mean intensity 〈I〉.
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Figure A1. Scheme of simulating (a) the set of cones (projection in the XOZ plane) and (b) cloud fields
(projection in XOY plane).

We will estimate the efficiency of this approach using as an example the 〈I〉 calculations at a
wavelength of 0.55 µm for different cloud field areas S. Figure A2a presents the deviations of 〈I〉S
values calculated for S = 100, 300, and 450 km2, from reference values calculated for S* = 3000 km2:
DifS = 100%(〈I〉S∗ − 〈I〉)/〈I〉S∗. Symbols in the figure for the same SZA values correspond to the
calculations for different cloud fractions (CF = 3 and CF = 6), surface albedos (As = 0.11 (grass) and
As = 0.74 (snow)), and viewing zenith angles (VZA = 0◦ and VZA = 70◦). For each of these fixed sets of
CF, As, and VZA we performed averaging over solar azimuth angles (SAA = 0◦, 90◦, 180◦, 270◦).
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Figure A2. (a) Relative differences in the mean intensity for different cloud field areas S from the
reference calculations with S* = 3000 km2 and (b) laboriousness of the calculations as a function
of S. Diameter of the base and geometrical thickness of the cloud are 1 km; extinction coefficient
σcld = 10 km−1.
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From Figure A2a, it follows that with increasing cloud field area, there is a tendency for the
difference |DifS| to decrease, on average, from ~8% at S = 100 km2 to ~3% at S = 450 km2. Considering
that the intensity computation error

∣∣Dη

∣∣ did not exceed 2–3% in most cases, modification of the
algorithm based on the use of our approach insures a calculation accuracy no worse than that of the
initial algorithm with a larger cloud field area. At the same time, the efficiency of the new algorithm
increases by about a factor of two when the cloud field area decreases to 450 km2, as shown in
Figure A2b. We note that this same trick can also be used to calculate the intensity in an individual
realization; however, in this case the general information on the cloud field is lost, complicating the
interpretation of the simulation results.
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