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Abstract: With the current state-of-the-art computer aided manufacturing tools, the spatial resolution
of hyperspectral sensors is becoming increasingly higher thus making it easy to obtain much more
detailed information of the scene captured. However, the improvement of the spatial resolution
also brings new challenging problems to address with signal dependent photon noise being one
of them. Unlike the signal independent thermal noise, the variance of photon noise is dependent
on the signal, therefore many denoising methods developed for the stationary noise cannot be
applied directly to the photon noise. To make things worse, both photon and thermal noise
coexist in the captured hyperspectral image (HSI), thus making it more difficult to whiten noise.
In this paper, we propose a new denoising framework to cope with signal dependent nonwhite
noise (SDNW), Pre-estimate—Whitening—Post-estimate (PWP) loop, to reduce both photon and
thermal noise in HSI. Previously, we proposed a method based on multidimensional wavelet packet
transform and multi-way Wiener filter which performs both white noise and spectral dimensionality
reduction, referred to as MWPT-MWF, which was restricted to white noise. We get inspired from
this MWPT-MWF to develop a new iterative method for reducing photon and thermal noise. Firstly,
the hyperspectral noise parameters estimation (HYNPE) algorithm is used to estimate the noise
parameters, the SD noise is converted to an additive white Gaussian noise by pre-whitening procedure
and then the whitened HSI is denoised by the proposed method SDNW-MWPT-MWF. As comparative
experiments, the Multiple Linear Regression (MLR) based denoising method and tensor-based
Multiway Wiener Filter (MWF) are also used in the denoising framework. An HSI captured by
Reflective Optics System Imaging Spectrometer (ROSIS) is used in the experiments and the denoising
performances are assessed from various aspects: the noise whitening performance, the Signal-to-Noise
Ratio (SNR), and the classification performance. The results on the real-world airborne hyperspectral
image HYDICE (Hyperspectral Digital Imagery Collection Experiment) are also presented and
analyzed. These experiments show that it is worth taking into account noise signal-dependency
hypothesis for processing HYDICE and ROSIS HSIs.

Keywords: hyperspectral image; signal-dependent noise; multiway Wiener filtering; denoising;
classification; wavelet packet transform

1. Introduction

Hyperspectral images consist of a considerably large number of narrow spectral bands which
are uniformly distributed over a wide spectral range. For each pixel, the almost continuous spectral
signature adds the third orthogonal spectral dimension to the two-dimensional spatial domain and
constitutes the well-known 3D data cube. Thus, hyperspectral signatures offer the capability to identify
and discriminate ground cover types. To benefit from the additional spectral dimension, specific
processing methods of hyperspectral images, for instance spectral signatures unmixing, target detection
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and classification, etc., have been developed. For these methods to operate well, the reduction of the
noise affecting hyperspectral images (HSIs) should be incorporated into them.

The noise in HSIs can be distinguished into two classes [1]: random noise and fixed pattern
noise. Photon and thermal noise are examples of random noise in HSIs, while striping, periodic and
interference noise are examples of fixed pattern noise, which is generated by errors in the calibration
process and can be removed from the HSI by suitable procedures [2]. However, random noise, due to
its stochastic nature, cannot be removed by those procedures and influences the performance of the
algorithms adopted in hyperspectral data exploitation. Note that, in this paper, we only focus on the
random noise and will later refer to it as noise. For sensors used in hyperspectral imagery, the theory
predicts that random noise mainly comes from two aspects: signal-independent (SI) electronic noise
and signal-dependent (SD) photon noise [3]. The widely accepted SI noise model is white Gaussian
one [1,3]. In [4,5], it was shown that the SI noise in some HSIs is colored, i.e., spectrally non-white.
With the improvement of the sensitivity in the electronic components [6], the resolution of the charged
coupled device (CCD) camera has improved significantly, so that the photon noise has become
as dominant as the signal-independent electronic noise in HSI data collected by new-generation
hyperspectral sensors [7–10]. In this case, the assumption of additive and stationary noise model is
not appropriate although this hypothesis is plausible for HSIs where the SI noise is dominant while
SD noise, which depends on the useful signal level, is negligible. Therefore, in this paper, we use the
widely accepted noise model in [7–10] including both signal-dependent and signal-independent noise.
There are few denoising algorithms based on the photon noise model. The tensor-based denoising
methods were proposed only for the white noise situation. According to the different statistical
properties of SI and SD noise, in this paper, we propose a method to remove the SD photon noise as
well as the SI thermal noise in the HSI.

In the literature, two widely used models for the random noise in HSIs are the additive white
noise along both spectral and spatial dimensions [8,11–14], and the Additive White Gaussian Noise
(AWGN) along the spatial dimensions but non-stationary in the spectral dimension [15,16]; these are
pretty reasonable processes when the thermal noise is dominant [8]. However, when the SD photon
noise is taken into account, these two noise models become appropriate. The SD photon noise in
digital images was discussed in [17,18], where the noise parameters were estimated by utilizing a
scatter plot-based estimation procedure. Nonetheless, the discussion of these two papers was only
limited to the pure SD noise, which is not suitable for the noise in HSIs. A more accurate generalized
SD noise model for digital images was introduced in [19], where the noise parameters were estimated
by the Linear Minimum Mean Square Error (LMMSE) in the wavelet domain. In addition, the same
noise model was employed in [20] under the name Poissonian-Gaussian noise model, where the
noise in HSIs was modeled as two parts: the Poissonian part for modeling the photon noise and
the Gaussian part for modeling the remaining stationary distribution in the output data. Images
were firstly transformed into the wavelet domain; then, the expectation/standard-deviation pairs
were estimated by employing a local estimation method. Finally, the Maximum Likelihood (ML)
method was applied to the locally estimated expectation/standard-deviation pairs to estimate the
global parameters. Based on the generalized SD noise model, a scatter plot-based estimation method
was proposed in [7] to estimate the parameters of the noise generated by the new-generation imaging
spectrometers.

The generalized SD noise model was then introduced in the HSI framework in [3]. In this paper,
the 2D fractal Brownian motion (fBm) model was employed as a statistical model for intra-band image
texture correlation, which has made it possible to estimate additive noise variance locally both from
homogeneous and textural images Scanning Widow (SW). Then, the noise parameters were estimated
by a linear fit in each band. The spectral textural correlation was also considered, and each SW in
a Multicomponent Scanning Window (MSW) was treated as a mixture of fBm-samples and noise.
Finally, the global noise parameters were estimated by ML estimation.
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The generalized SD noise model was also used in [8], where the HYperspectral Noise Parameter
Estimation (HYNPE) algorithm was proposed. Unlike [3], HYNPE utilized the assumption that
the noise in each band after being whitened followed a standard Gaussian distribution. The joint
probability density function (PDF) of the whitened noise values was used to form the ML criterion.
Nonetheless, the signal and noise values were assumed to be known in the ML criterion, which was
not true in practical situations. Hence, the MLR-theory based approach was exploited to estimate
them. However, MLR calculates the parameters by minimizing the Least Square Error (LSE), which is
a biased estimator when the noise is not white. Thus, the estimates of MLR are not accurate in HYNPE,
leading to the inaccuracy of the final parameter estimates. In this paper, we investigate the relevance
of a new denoising framework for reducing simultaneously the SD photon noise and the SI thermal
noise in HSIs on classification [21]. Considering that the noise variance is entangled with the signal,
a denoising loop is proposed to remove the noise from HSIs. Each iteration of the loop consists three
steps: firstly, we do the pre-estimate, i.e., use MWPT-MWF to directly denoise the HSI containing
the photon and thermal noise. Secondly, use the pre-estimate to estimate the noise parameters by
employing the ML criterion, and then whiten the noise. Finally, apply MWPT-MWF to the whitened
HSIs to obtain the post-estimate. Then, in the next iteration, use the post-estimate of the last iteration
as the pre-estimate of current iteration. After several iterations, the HSIs will be well denoised and the
resulting classification results are improved.

The remainder of this paper is organized as follows: Section 2 gives the signal model used in
this paper. Appendix A presents the Multilinear Algebra Tools. Appendix B overviews the HYNPE
algorithm. Appendix C presents the MWPT-MWF method. Section 3 presents the proposed iterative
denoising method: considering that the noise variance is dependent on the signal, a denoising loop
is proposed to remove the noise from HSIs. Each iteration of the loop consists of three steps: (i) we
perform a pre-estimation, i.e., use MWPT-MWF [22,23] to directly denoise the HSI containing the
photon and thermal noise, (ii) we use the pre-estimation process to estimate the noise parameters
by employing the ML criterion, and then whiten the noise and (iii) we apply MWPT-MWF to the
whitened HSIs to obtain the post-estimate results. Then in the next iteration, we use the post-estimate
of the last iteration as the pre-estimate of current iteration. After several iterations, the HSIs will be
well denoised. Section 4 gives some comparative experimental results. The real-world HSI reflective
optics system imaging spectrometer (ROSIS) is used in the experiments to evaluate the performances
of denoising and classification processes. Finally, Section 6 provides details of the conclusions of the
research undertaken.

In this paper, we denote by

x ∈ R a scalar
x ∈ RI1 a vector
X ∈ RI1×I2 a matrix
X ∈ RI1×I2×...IN a N-order tensor
Xn n-mode unfolding matrix
XXT a tensor obtained by calculating the square root of each element of X
In n-mode dimension
‖X‖ the Frobenius norm of X
◦ the vector outer product
� the Khatri-Rao product
~ the Hadamard product
< X ,Y > the inner product between X and Y
E[·] the mathematical expectation
(.)T the transposition.

2. Signal Modeling with Thermal and Photon Noise

An HSI is a three-dimensional data cube and can be modeled as a tensorR ∈ RI1×I2×I3 , with the
first two dimensions being the spatial domain and with the third dimension being the spectral domain.
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In fact, a hyperspectral sensor captures a HSI as a series of two-dimensional images of the spatial
domain by a sensor array. By extending the data model in [7] to the 3D representation, a noisy
HSI can be expressed as a third order tensor R ∈ RI1×I2×I3 composed of a multidimensional signal
X ∈ RI1×I2×I3 impaired by an additive random noise N ∈ RI1×I2×I3 :

R = X +N , (1)

where N accounts for both thermal and photon noise and its variance depends on the pixel xi1,i2,i3 in
the useful signal X . The photon noise is caused by the random fluctuation of photon flux arriving
at the CCD sensor, and it follows a Poisson model [24]. As the pixel size becomes smaller in the
new-generation hyperspectral sensor, the number of photons that reach a pixel per unit time becomes
smaller as well. Hence, the photon noise cannot be neglected anymore [20]. For a given entry xi1,i2,i3
of the pure signal HSI tensor X ∈ RI1×I2×I3 , the corresponding photon noise element pi1i2i3 of tensor
P ∈ RI1×I2×I3 can be expressed as [25]:

pi1i2i3 =
√

xi1i2i3 ui1i2i3 , (2)

where ui1,i2,i3 is a stationary, zero-mean uncorrelated random process independent on xi1,i2,i3 with
variance σ2

u,i3
. The thermal noise component in each sensor is electronics noise, denoted by ti1,i2,i3

which can be modeled as an additive zero-mean white Gaussian noise in each band with variance
σ2

t,i3
, while the noise variance changes from sensor to sensor due to different states of the electronic

components in the sensors. Elementwise, the data model is [7]:

ri1,i2,i3 = xi1,i2,i3 +
√

xi1,i2,i3 · ui1,i2,i3 + ti1,i2,i3 . (3)

Then, we can define N = P + T , and Equation (1) can be correspondingly rewritten as

R = X + P + T . (4)

The unfolding matrix R3 ∈ RI3×M3 of the HSI data tensorR ∈ RI1×I2×I3 (with M3 = I1 I2) can be
expressed as :

R3 = X3 + N3, (5)

where X3 is the mode-3 unfolding matrix of the multidimensional signal tensor X and

N3 = P3 + T3, (6)

with P3 and T3 being the mode-3 unfolding matrices of P and T , respectively.

3. Proposed Method

The aim of this paper is to obtain the pure signal estimate X̂ , which is necessary to determine the
noise variance. Nonetheless, since the noise is signal-dependent, the noise variances of the entries of
R are different from each other and are related to the signal entries xi1i2i3 . It is worth noting that, for a
given entry xi1i2i3 , the noise ni1i2i3 is a summation of two Gaussian-distributed variables ui1i2i3 and
ti1i2i3 . Hence, ni1i2i3 =

√xi1i2i3 ui1i2i3 + ti1i2i3 is a conditional zero-mean Gaussian-distributed random
variable, i.e.,

ni1i2i3 ∼ N
(

0, σ2
ni1 i2 i3

)
, (7)

where N (·) denotes the normal distribution, and σ2
ni1 i2 i3

is the noise variance, which can be expressed
as [3,7,8]:

σ2
ni1 i2 i3

= E[(
√

xi1i2i3 ui1i2i3 + ti1i2i3)
2|xi1i2i3 ]

= xi1i2i3 σ2
u,i3 + σ2

t,i3 .
(8)
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This is to say that a precise noise variance estimate σ̂2
i1i2i3

needs the precise signal estimate x̂i1i2i3 .
Hence, the signal estimate and noise variance estimate problems are inter-related, thus making the
signal estimate problem difficult to solve. In HYNPE, the noise parameters are estimated by using the
signal estimate generated by the MLR theory based method, which estimates the signal by minimizing
LSE. However, the LSE estimator requires that the signal and noise should be statistically independent,
which is not satisfied in the SD photon noise situation. Thus, the estimates of the signal and noise are
not precise, which makes the parameter estimate result unreliable as well. Moreover, since there is
only one step for estimating the signal, the imprecise estimate degrades the performances of noise
parameter estimation.

To use the classical parameter estimation algorithms, such as LSE and LMMSE, it is necessary to
make the noise “independent of” the signal.

From Equation (8), it is evident that the noise variance σ2
ni1 i2 i3

is dependent on signal xi1i2i3 . To cut
off this relation, we need to whiten the noise:

ni1i2i3 =
ni1i2i3
σni1 i2 i3

∼ N (0, 1) , (9)

where the underlined is used to distinguish the whitened data from the original data. After the
whitening operation, we can consider that the noise ni1i2i3 is independent from the whitened signal

xi1i2i3 =
xi1 i2 i3

σni1 i2 i3
.

It is worth noting that, in the likelihood function Equation (A13), the signal value xi1i2i3 is assumed
to be known. However, we cannot get this prior information in realistic situations; therefore, the signal
value xi1i2i3 should be replaced by its estimate x̃i1i2i3 , as is presented in Appendix B.

Referring to [22], the wavelet-tensor-based algorithm MWPT-MWF yields the most accurate signal
estimate x̃i1i2i3 . In addition, the well-known HYNPE algorithm permits obtaining the ML estimates
of σ̂2

u,i3
and σ̂2

t,i3
. Hence, in this paper, we choose to combine these two methods to get more accurate

estimation of noise variance for each element of N , which can be calculated by:

σ̂2
ni1 i2 i3

= x̃i1i2i3 σ̂2
u,i3 + σ̂2

t,i3 . (10)

When the noise variance of each entry ofR is obtained, the noise can be whitened by:

ri1i2i3 = xi1i2i3 + ni1i2i3 =
xi1i2i3
σ̂ni1 i2 i3

+
ni1i2i3
σ̂ni1 i2 i3

(11)

and the whitened hyperspectral image can be written as

R = X +N . (12)

However, MWPT-MWF was proposed for the white noise situation, therefore, when we use it
to estimate x̃i1i2i3 directly without noise whitening, the estimate result is not accurate. To distinguish
it with the signal estimate after noise whitening, x̃i1i2i3 is named as pre-estimate. Correspondingly,
the estimate x̂i1i2i3 obtained after the noise whitening procedure is more accurate than x̃i1i2i3 , so we
name it as post-estimate. The PWP process needs to be repeated several times to improve the
performance of estimation. In fact, HYNPE only takes the first pre-estimation step in the PWP
procedure, which degrades its performance when estimating the parameters. However, we utilize the
more accurate post-estimate of current PWP iteration as the pre-estimate of the next PWP iteration.
Therefore, the estimate accuracy can be improved in the PWP loop.
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To adaptively stop the PWP loop according to the processed HSI, we need to find a stop criterion.
The RMSE between the pre-estimate X̃ and the post-estimate X̂ is given as follows:

RMSEX =
‖X̂ − X̃ ‖2

I1 I2 I3‖X̂ ‖2
, (13)

where X̃ and X̂ are the tensor forms of the pre-estimate and post-estimate, respectively. With the
iteration times increasing, the RMSEX becomes asymptotically stable. Hence, we can use the relative
error of RMSEX between two adjacent iterations as the stop criterion:

e =
|RMSEX − RMSE0

X |
RMSE0

X
, (14)

where RMSE0
X is the RMSE of last iteration. If e is less than a given value ε, the loop

should be terminated. This newly proposed method is called Signal-Dependent-Noise-Whitening
MWPT-MWF(SDNW-MWPT-MWF), and, to make it easy to understand, its pseudo-code and flowchart
are also supplied in Algorithm 1 and Figure 1, respectively.

Algorithm 1: SDNW-MWPT-MWF algorithm

1. procedure SDNW-MWPT-MWF TensorR
2. Set the maximum iteration times J.
3. Set RMSE0

X = 1.
4. Compute the signal pre-estimate X̃ by performing the MWPT-MWF to the data tensorR.
5. for j = 1; j <= J; j++ do
6. Compute the SD and SI noise variance estimates σ̂2

u,i3
and σ̂2

t,i3
by using Equation (A12).

7. Compute the noise variance σ̂2
ni1 i2 i3

of each element ofR: σ̂2
ni1 i2 i3

= x̃i1i2i3 σ̂2
u,i3

+ σ̂2
t,i3

.

8. Compute the whitened tensorR by whitening each element ri1i2i3 ofR: ri1i2i3 =
ri1 i2 i3

σ̂ni1 i2 i3
.

9. Compute the whitened signal post-estimate X̂ by performing the MWPT-MWF to the
whitened tensorR.

10. Compute the signal post-estimate X̂ by performing the inverse whitening operation to X̂ :
x̂i1i2i3 = x̂i1i2i3 × σ̂ni1 i2 i3

.
11. Compute RMSEX by using Equation (13).
12. Compute e by using Equation (14).
13. if e < ε then
14. Break.
15. end if
16. Use the post-estimate X̂ in this iteration as the pre-estimate X̂ in next iteration: X̃ ← X̂ .
17. Refresh the value of RMSE0

X : RMSE0
X ← RMSEX .

18. end for
19. return tensor X̂ .
20. end procedure
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Figure 1. Flowchart of the SDNW-MWPT-MWF algorithm.

4. Experimental Results

The data set used in the experiments is the HSI captured by the ROSIS during a flight campaign
over Pavia University, Northern Italy.

The ROSIS owns 103 spectral bands and 610× 340 pixels with the geometric resolution being
1.3 m. In this paper, only a part of 250× 250 pixels of this image is used. Hence, it is modeled as a
250× 250× 103 tensor in the experiments. The SD photon noise P and the SI thermal noise T are
both taken into account. In order to reproduce different noise scenarios, the SNR ranged from 20 dB
to 40 dB with a step of 5 dB. As the power of the SD photon noise and that of the SI thermal noise
are of the same level, in this paper, only the case E[‖XXT ~P‖2] = E[‖T ‖2] is taken into account.
The random noise is generated with a variance depending on the value of the useful signal according
to Equation (8) and added into the signal X as Equation (3) to create the noisy HSI dataR. The raw
HSI has SNR between 35 and 40 dB [26,27]. This high-SNR HSI could be viewed as a noise-free data
cube, so, in this experiment, the raw image can be taken as a reference data cube X .

The RGB composites of X andR are shown in Figure 2. Correspondingly, Figure 3 presents the
curve of the mean noise variance versus the band number.

(a) (b)

Figure 2. RGB composites of X andR (band 20, 35 and 45 for red, green and blue): (a) RGB composites
of X ; (b) RGB composites ofR.
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Figure 3. Mean noise variance in each band (SNRINPUT = 20 dB).

In the experiments, the wavelet db3 and transform level [1 1 0] are employed in the
SDNW-MWPT-MWF. It is worth noting that various denoising methods can be used to replace
the MWPT-MWF in the proposed SDNW-MWPT-MWF method. MWF is a classical tensor-based
denoising method and MLR was used in the HYNPE method. Therefore, MWF and MLR have been
considered to replace the MWPT-MWF as comparative experiments and are named as SDNW-MWF
and SDNW-MLR, respectively. In this paper, the value of ε is set to 10−3 for these three methods.

4.1. Noise-Whitening Performance Evaluation and Comparison

According to the relationship given in Equation (10), the noise variance estimate σ̂2
ni1 i2 i3

relies on

the SD noise variance estimate σ̂2
u,i3

and the SI noise variance estimate σ̂2
t,i3

. Hence, the performance
of estimating σ̂2

u,i3
and σ̂2

t,i3
influences directly the noise variance estimation result. Thus, we firstly

consider the evolution of σ̂2
u,i3

and σ̂2
t,i3

in the estimation loop. The RMSE is employed to analyze the
accuracy of σ̂2

u,i3
and σ̂2

t,i3
. The RMSE of the SD photon noise variance and the SI thermal noise variance

are calculated by

RMSESD =
1
I3

I3

∑
i3=1

(
σ̂2

u,i3
− σ2

u,i3
σ2

u,i3

)2

, (15)

RMSESI =
1
I3

I3

∑
i3=1

(
σ̂2

t,i3
− σ2

t,i3
σ2

t,i3

)2

. (16)

Notice that low values for RMSESD and RMSESI denote good estimation accuracy.
A comparative analysis of SDNW-MWF, SDNW-MLR and SDNW-MWPT-MWF have been

carried out by analyzing RMSESD and RMSESI with the maximum iteration times being set as
10. Figures 4 and 5 present the evolution of RMSESD and RMSESI (in logarithmic scale) with the
iteration times. From these two figures, it can be seen that, in the case where SNRINPUT = 20 dB,
SDNW-MLR performs better than SDNW-MWF in estimating both σ2

u,i3
and σ2

t,i3
. However, in the

case where SNRINPUT = 40 dB, SDNW-MWF outperforms SDNW-MLR. Nonetheless, in both cases,
the proposed SDNW-MWPT-MWF can improve the estimation performance significantly according
to the lowest RMSESD and RMSESI it obtains. Moreover, RMSESD and RMSESI are greater than the
initial error in SDNW-MLR and SDNW-MWF, whereas RMSESD and RMSESI are well constrained in
SDNW-MWPT-MWF.



Remote Sens. 2018, 10, 1330 9 of 25

(a) (b)

Figure 4. Evolution of RMSESD with iteration times according to different values of SNRINPUT :
(a) 20 dB; (b) 40 dB.

(a) (b)

Figure 5. Evolution of RMSESI with iteration times according to different values of SNRINPUT :
(a) 20 dB; (b) 40 dB.

Apart from σ2
u,i3

and σ2
t,i3

, the estimate of the signal also influences the accuracy of the noise
variance estimate of a pixel (see Equation (10)). Since the post-estimate x̂i1i2i3 of current PWP iteration
is used as the pre-estimate x̃i1i2i3 of the next PWP iteration, we only analyze the estimation performance
of the post-estimate x̂i1i2i3 . To assess the performance of the signal estimator x̂i1i2i3 , we resort to the
SNRINPUT , which will be presented in Section 4.2.

To intuitively present the noise whitening results, Figure 6 shows the mean noise variance of
each band after the noise whitening operation. It is evident that the mean noise variance generated
by SDNW-MWPT-MWF changes slightly around 1 and is quite constant with respect to the band
number. However, the mean noise variance generated by SDNW-MLR and SDNW-MWF is not very
satisfactory. In Figure 6a, it can be seen that the trend of the mean noise variances in the lower bands is
similar to that in Figure 3 thus implying that the noise in the lower bands (from 1 to 20) is not well
whitened. On the other hand, in the bands from 20 to 100, the noise variances are relatively constant,
the mean noise variance value is not 1. In Figure 6b, the noise whitening results by SDNW-MLR and
SDNW-MWF are worse than that in Figure 6a. Hence, the whitening results in Figure 6 are strongly in
favor of the proposed method SDNW-MWPT-MWF.
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(a) (b)

Figure 6. Curves of noise variance versus band number with SNRINPUT : (a) 20 dB; (b) 40 dB.

The normal probability plot is usually used to visually ascertain whether or not a dataset is
approximately normally distributed, which means that the values in the dataset have the same noise
variance. Hence, we supply the normal probability plots of the noise before and after whitening
in Figure 7. It is obvious that the noise before whitening (Figure 7a) is not normally distributed.
After whitening by SDNW-MWF (Figure 7b), the noise approaches towards the normal distribution
though there still remain some values not well whitened as can be observed in the interval [−5, 0].
Nonetheless, the noise values after whitening by SDNW-MLR (Figure 7c) and SDNW-MWPT-MWF
(Figure 7d) form a straight line and as such they can be considered as normally distributed.
Correspondingly, Figure 8a presents the noise distribution situation in the noise environment where
SNRINPUT = 40 dB. It can be seen that the noise values after whitening by SDNW-MLR (Figure 8b) and
SDNW-MWF (Figure 8c) are still not normally distributed, while the noise values after whitening by
SDNW-MWPT-MWF (Figure 8d) are well normally distributed. The results in Figures 7 and 8 validate
once again that the proposed SDNW-MWPT-MWF performs well in both lower (SNRINPUT = 20 dB)
and higher (SNRINPUT = 40 dB) SNR noise environments.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Normal probability plot for the noise: (a) before whitening, and whitening after
(b) SDNW-MWF; (c) SDNW-MLR; (d) SDNW-MWPT-MWF, with SNRINPUT = 20 dB.

(a) (b)

(c) (d)

Figure 8. Normal probability plot for the noise: (a) before whitening, and after whitening using
(b) SDNW-MLR; (c) SDNW-MWF; (d) SDNW-MWPT-MWF, with SNRINPUT = 40 dB.

4.2. Denoising Performance

In Section 4.1, we have discussed in detail the SD and SI noise variance estimates RMSESD
and RMSESI . In this subsection, we show some results about the denoising performance. Figure 9
presents the noise removed in band 10 from the ROSIS HSI by SDNW-MLR, SDNW-MWF and
SDNW-MWPT-MWF in the noise environment where SNRINPUT = 20 dB. It is obvious that the
removed noise is SD noise by comparing visually Figure 9 with the original image Figure 2a.
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The experimental results in Figure 9 imply that the proposed denoising framework is efficient in
removing the SD photon noise in the HSI.

(a)

(b) (c)

Figure 9. Noise removal using: (a) SDNW-MLR; (b) SDNW-MWF; (c) SDNW-MWPT-MWF, band 10,
SNRINPUT = 20 dB.

Additionally, we have assessed the denoising performance of various methods by analyzing
the criterion SNROUTPUT . Figure 10 presents the evolution of the SNROUTPUT in various noisy
environments. It is obvious that the SNROUTPUT generated by SDNW-MWPT-MWF reaches a higher
stable value after several iterations. Conversely, the SNROUTPUT of SDNW-MLR and SDNW-MWF
are relatively lower than that of SDNW-MWPT-MWF due to the highest estimation errors of RMSESD
and RMSESI as shown in Figures 4 and 5, respectively. When SNRINPUT = 20 dB, the SNROUTPUT
generated by SDNW-MWF is only improved marginally compared to the SNRINPUT . On the other
hand, when SNRINPUT = 40 dB SDNW-MWF improves the SNR significantly but the SNROUTPUT is
not stable in the evolution when the iterations are increased. The SDNW-MLR performs well when
SNRINPUT = 20 dB, but when SNRINPUT = 40 dB the denoising performance of SDNW-MLR is
not good compared to that of SDNW-MWF and SDNW-MWPT-MWF. This trend becomes worse as
the SNROUTPUT of SDNW-MLR is lower than the SNRINPUT . Moreover, Figure 11 compares the
SNROUTPUT of each method from 20 dB to 40 dB with a step of 5 dB. It shows that SDNW-MLR can
improve the SNR from 20 to 30 dB, while degrading the SNR from 35 to 40 dB. The SDNW-MWF
is even worse as there is only a marginal improvement of the SNR in 20 dB. From 25 to 40 dB,
it degrades the SNR. Nonetheless, from the results presented in Figures 10 and 11, we can conclude
that SDNW-MWPT-MWF is a stable and reliable denoising method in various noisy environments.
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(a) (b)

Figure 10. Evolution of SNROUTPUT with iteration times according to different values of SNRINPUT :
(a) 20 dB; (b) 40 dB.

Figure 11. Comparison of denoising results based on SNROUTPUT versus SNRINPUT .

4.3. Classification after Denoising

In Section 4.2, we have mainly compared various methods with the capability of improving the
SNR. However, some methods might also modify the useful signal severely in the denoising process
and which cannot be reflected by the SNR. The classification is employed to distinguish different
materials in HSIs [21], and it is sensitive to the signal distortion. Hence, in this paper, we take into
account the classification improvement ability of the various methods considered.

Two real-world images are considered for this investigation. The first one, referred to as ROSIS
HSI, is described in the beginning of this section.

In the ROSIS HSI, there are nine classes: bitumen, self-blocking bricks, trees, shadows, gravel,
bare soil, asphalt, painted metal sheets, and meadows, which are shown in Figure 2b and in the ground
truth in Figure 12 with different colors. A proportion of 10% of the reference data of each class is
randomly selected as the training samples. The numbers of training and testing samples are shown in
Table 1. The SVM classifier is employed to do the classification and its kernel function is RBF with
γ = 1 and the penalty parameter C = 100.
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(a) (b)

Figure 12. Classification reference data:(a) ground truth of the area; (b) nine classes in ROSIS HSI.

Table 1. Training and testing samples used in the classification.

ID Class Training Samples Testing Samples

1 Bitumen 133 1330
2 Self-Blocking Bricks 171 1709
3 Trees 70 697
4 Shadows 49 486
5 Gravel 93 929
6 Bare Soil 503 5029
7 Asphalt 187 1868
8 Painted metal sheets 135 1345
9 Meadows 201 2005

Total 1542 15,398

The second one, referred to as HYDICE HSI, was acquired by the HYperspectral Digital Imagery
Collection Experiment (HYDICE) and has 148 spectral bands (from 435 to 2326 nm), 310 rows,
and 220 columns. The scene is shown in Figure 13a. This HSI is modeled as a tensor R ∈ R310×220×148

and its ground truth is shown in Figure 13b. According to the ground truth, there are seven land cover
classes in HYDICE HSI: field, trees, road, shadow and three different targets. A proportion of 30% of
the reference data of each class is randomly selected as the training samples. The numbers of training
and testing samples are shown in Table 2.

Table 2. Training and testing samples used in the classification.

ID Class Training Samples Testing Samples Color

1 Field 12,174 40,811 Green
2 Trees 1361 5537 Sea green
3 Road 1146 3226 White
4 Shadow 1363 5036 Maroon
5 Target 1 138 519 Red
6 Target 2 78 285 Blue
7 Target 3 67 223 Yellow

Total 16,327 55,637
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(a) (b)

Figure 13. HSI images: (a) ground truth; (b) classes in HYDICE HSI.

The classification is applied to the denoised HSIs using various methods in order to compare
their abilities of improving the classification performance. Figure 14 presents the classification results
obtained in the noisy environment where SNRINPUT = 30 dB. It can be seen from the “bare soil” class
that there are less misclassified pixels in the results obtained by SDNW-MWPT-MWF compared to the
other results. To make it easy to compare, we give the Overall Accuracy (OA) and Kappa coefficient
(K) results for the various methods used in Table 3. It can be seen that if the classification is applied
directly to the noisy HSI, the OA is only 91.33% and K = 0.71. After denoising by SDNW-MLR, there is
a marginal improvement of OA resulting in 91.88% and K = 0.81. SDNW-MWF performs better than
SDNW-MLR, and its OA is increased to 94.20% and K to 0.94. The proposed SDNW-MWPT-MWF
makes the most significant improvement among the denoising methods. Indeed, its OA is 98.51% and
its K is 0.97. The classification result clearly shows that the proposed SDNW-MWT-MWF is efficient in
improving the classification performance.

To investigate how the number of training samples affects the performance of our method and
other comparison methods, we considered a proportion of 50% of the reference data of each class
is randomly selected as the training samples. Table 4 shows the OA and Kappa coefficient results.
As shown from Tables 3 and 4, our proposed method outperforms all other methods. In particular,
with the number of training samples reducing (10%), our method could obtain bigger accuracy gains
than other comparison methods.

Table 3. OA (%) and Kappa of the classification of the denoised ROSIS HSI, SNRINPUT = 30 dB.

Methods Without Denoising SDNW-MLR SDNW-MWF SDNW-MWPT-MWF

OA 91.33 91.88 94.20 98.51
Improvement 0 0.55 2.87 7.18

Kappa 0.79 0.81 0.91 0.96
Improvement 0 0.02 0.12 0.17
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(a) (b)

(c) (d)

Figure 14. Classification results of the ROSIS HSI after denoising by: (a) SDNW-MLR; (b) SDNW-MWF;
and (c) SDNW-MWPT-MWF. The classification result without denoising (d) is supplied as a benchmark.
(SNRINPUT = 30 dB).

Table 4. OA (%) and Kappa of the classification of the denoised ROSIS HSI, SNRINPUT = 30 dB.

Methods Without Denoising SDNW-MLR SDNW-MWF SDNW-MWPT-MWF

OA 91.98 92.73 95.92 99.06
Improvement 0 0.75 3.94 7.08

Kappa 0.81 0.84 0.94 0.98
Improvement 0 0.03 0.13 0.16

Figure 15 shows the OA values obtained from the denoised HYDICE HSI and shows that the
SDNW-MWPT-MWF method permits reduction of the noise, which is of great interest for SVM
classifier. The comparison of the OA and Kappa values (see Table 5) calculated for each preprocessing
of denoising shows that the multilinear algebra-based method SDNW-MWPT-MWF leads to better
classification results than the considered methods in this experiment.

Table 5. OA (%) and Kappa of the classification of the denoised HYDICE HSI, SNRINPUT = 30 dB.

Methods Without Denoising SDNW-MLR SDNW-MWF SDNW-MWPT-MWF

OA 95.60 95.66 97.22 99.94
Improvement 0 0.06 1.62 4.34

Kappa 0.894 0.895 0.945 0.989
Improvement 0 0.01 0.51 0.95
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(a) (b)

(c) (d)

Figure 15. Classification results of the HYDICE HSI after denoising by: (a) SDNW-MLR;
(b) SDNW-MWF; and (c) SDNW-MWPT-MWF. The classification result without denoising (d) is
supplied as a benchmark. (SNRINPUT = 30 dB).

To make the experimental results more convincing, we have compared the classification
improvement performance of SDNW-MLR, SDNW-MWF and SDNW-MWPT-MWF in varying noisy
environments, i.e., SNRINPUT varies from 20 dB to 40 dB with a step of 5 dB. The classification result
of the noisy HSI without denoising is also supplied as a benchmark. Figure 16 presents the curves of
OA versus SNRINPUT . In the cases where the HSI is impaired severely (SNRINPUT = 20 and 25 dB),
the classification result can be improved significantly after denoising, which implies that the denoising
is a necessary preprocessing procedure prior to the classification. Above 30 dB, SDNW-MLR can only
improve the classification result marginally and the same is valid for SDNW-MWF with more than
35 dB. Nonetheless, SDNW-MWPT-MWF performs better than SDNW-MLR and SDNW-MWF and it
improves the OA significantly for SNRINPUT values from 20 dB to 40 dB.
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Figure 16. Classification OA with respect to SNRINPUT .

5. Discussion

Hyperspectral sensors collect data in hundreds of narrow contiguous spectral bands, providing
a powerful means to discriminate different materials by their spectral features. In the last decade,
for improving the classification, several denoising algorithms for hyperspectral images were proposed.
Most were derived assuming the spatial stationarity of the noise that affects hyperspectral images,
meaning that the noise characteristics are assumed to be the same in each hyperspectral image
region. The existing algorithms are proposed to remove the signal independent noise for enhancing
hyperspectral image applications. In this study, we have proved that assumption is not valid for
new-generation hyperspectral sensors, where photon noise, which depends on the spatially varying
signal level, is not negligible. We are thus studying the possible impacts of signal-dependent noise
on the performance of existing classification algorithms. By assuming a signal-dependent noise
model, we have proposed a novel multilinear algebra-based algorithm to remove simultaneously
the signal-independent noise and signal-dependent noise. This result has inspired a new iterative
procedure noise-whitening (SDNW-MWPT-MWF) which improves the SVM’s robustness in the
presence of signal-dependent noise. The noise-whitening is achieved by exploiting estimates of the
noise variance for each band and for each pixel. The performance of the proposed SDNW-MWPT-MWF
method are validated on the simulated HSIs disturbed by both SD and SI noise and on the real-world
ROSIS and HYDICE HSIs. From the analysis and the comparative study against other similar methods
in the experiments, it can be concluded that SDNW-MWPT-MWF method can effectively reduce
both SD and SI noise from HSIs. It is also necessary to take into account the signal-dependent
noise in the denoising when dealing with HSIs that were collected by a new-generation airborne
hyperspectral sensors. Indeed, this study demonstrated that the signal-dependent noise may affect
the properties of existing classification algorithms, thus encouraging future work about the impact
of SD noise. Our ongoing activity is aimed at demonstrating the benefits arising from using the
SDNW-MWPT-MWF algorithm in mitigating the impact of the SD noise in different algorithms for
hyperspectral data exploitation.

Since in this study the optimal parameter combination is found by time-consuming brute force
searching, future works will be focused on the reduction of the computational load. A heuristic
algorithm can be used to search for the optimal (sub-optimal) parameter combination such as a
genetic algorithm.
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6. Conclusions

In this paper, a denoising method SDNW-MWPT-MWF has been proposed under the PWP
denoising framework for the purpose of reducing the SD photon and SI thermal noise in HSIs.
Two other adapted denoising methods SDNW-MLR, SDNW-MWF are also used as comparative
methods. The performances of these methods are compared in the case of photon noise whitening,
denoising and improvement of classification. The photon noise whitening experiment, the denoising
experiment and the classification experiment are designed to assess the parameter estimation
performance, the improvement of the SNR and the distortion of the spectra in the HSI, respectively.
From the experimental results obtained, it can be concluded that the SDNW-MLR performs well in
removing the noise, though it also changes the signal severely in the denoising process as shown from
the lower classification result OA. In contrast, SDNW-MWF performs well in preserving the signal
though it cannot remove the noise well from the images. However, the proposed SDNW-MWPT-MWF
is able to obtain high SNROUTPUT as well as the high OA, thus implying that it is able to remove noise
well while still preserving the signal.

These promising results encourage us to extend our experiments on other hyperspectral data
such as Indian Pines and Salinas HSIs.

In this study, we employed the HYNPE algorithm to estimate the noise parameters, and then
filtered noise by the proposed method SDNW-MWPT-MWF. Nonetheless, SDNW-MWPT-MWF
converts SD noise to additive white Gaussian noise by a pre-whitening procedure and then applied
MWPT-MWF. Due to the parameter estimate errors, the whitened noise is only approximately white,
therefore the performance of filters developed for the white noise might degrade. Thus, it is interesting
to develop a filter that can directly process the SD noise without the noise whitening procedure.
For example, the tensor-based filtering method using a PARAFAC tensor decomposition could be
carried out in the future.
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Appendix A. Multilinear Algebra Tools

Since multilinear algebra is used in this paper, we present some basic definitions in this section to
make it easy to understand the discussions in the following sections. More details about multilinear
algebra can be found in [28–31].

Appendix A.1. Definition of a Tensor

An N-th order tensor is an N-dimensional array, X ∈ RI1×...×IN , in which R indicates the real
manifold, and N is the number of dimensions. The elements in this tensor can be expressed as xi1 ...iN ,
with i1 = 1, . . . , I1; · · · ; iN = 1, . . . , IN . The nth dimension of this tensor is called mode-n.

Appendix A.2. Unfolding

Unfolding is also known as matricization or flattening. It can convert a tensor into its matrix
form for the conveniency of using matrix-based data analyzing methods. A tensor can be unfolded in
different ways according to the mode in which the unfolding is performed. The unfolding in mode-n
is called mode-n unfolding.

Let Xn ∈ RIn×Mn denote the mode-n unfolding matrix of a tensor X ∈ RI1×...×IN , where Mn =

In+1 In+2 . . . IN I1 . . . In−1. The columns of Xn are the In-dimensional vectors obtained from X by
varying index in while keeping the other indices fixed.
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Appendix A.3. Mode-n Tensor Product ×n

The mode-n product is defined as the product between a data tensor X ∈ RI1×...×IN and a matrix
B ∈ RJ×In in mode n. This mode-n product is denoted by C = X ×n B, whose entries are given by

ci1 ...in−1 jin+1 ...iN ,
In

∑
in=1

xi1 ...in−1inin+1 ...iN bjin , (A1)

where C ∈ RI1×...×In−1×J×In+1×...×IN .

Appendix A.4. Element Extraction

For a given tensor X ∈ RI1×I2×...×IN , we define the following element extraction operation:

X (i1, i2, . . . , iN) , xi1i2 ...iN . (A2)

Appendix A.5. Hadamard Product ~

The Hadamard product is defined as the product of two equal-size tensors X ∈ RI1×I2×...×IN and
Y ∈ RI1×I2×...×IN . The entries of the Hadamard product Z = X ~Y can be computed as:

zi1 ...in−1inin+1 ...iN = xi1 ...in−1inin+1 ...iN yi1 ...in−1inin+1 ...iN , (A3)

where Z ∈ RI1×I2×...×IN .

Appendix A.6. Mode-n Rank of a Tensor

The term mode-n rank Kn of a tensor X ∈ RI1×I2×...×IN , denoted by Kn = rankn(X ), is the
dimension of the column space of the mode-n unfolding matrix Xn [29], i.e.,

Kn = rankn(X ) = rank(Xn). (A4)

The term mode-n rank is another way to extend the notion of the matrix rank to the tensor case.
The mode-n rank is actually a rank of a matrix, therefore it can be analyzed by using matrix based
techniques. Nevertheless, for a matrix X, the ranks of its column space and row space are similar,
rank(X) = rank(XT), but, for the tensor X , the different mode-n ranks are not necessarily the same.
This means that the mode-n rank of tensor X is not a unique value but a set of N values {K1, . . . , KN}.

Appendix B. Overview of HYNPE

HYNPE was proposed in [8] to estimate the parameters of the photon noise which has aroused
recently much research interest in the new generation hyperspectral sensors. HYNPE assumes that the
noise sources are independent from one another and spectrally uncorrelated, which is the same noise
model as the one introduced in Section 2. There are mainly two steps of HYNPE for estimating the
noise parameters.

The first step is to estimate the noise and signal by employing the MLR theory. For a given
noisy HSIR, we consider its mode-3 unfolding matrix R3 ∈ RI3×I1 I2 , which consists of I3 row vectors
(see Appendix A):

R3 =
[
rT

1 rT
2 . . . rT

I3

]T
. (A5)

Denote the estimate of pure HSI X by X̂ and noise N by N̂ . Then, the mode-3 unfolding matrix
of X̂ and N̂ are X̂3 and N̂3, respectively, and their row-vector forms can be expressed as:

X̂3 =
[
x̂T

1 x̂T
2 . . . x̂T

I3

]T
, N̂3 =

[
n̂T

1 n̂T
2 . . . n̂T

I3

]T
. (A6)
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The MLR theory estimates the signal by exploiting the strong spectral correlation of the useful
signal and the weak between-band correlation of the random noise in the HSI. It assumes that the
signal estimate row vector x̂T

i3
in band i3 can be expressed as a linear combination of the noisy data

row vectors rT
j3

(j3 = 1, . . . , i3 − 1, i3 + 1, . . . , I3) in the other I3 − 1 bands:

x̂i3 = Θi3 wi3 , (A7)

where Θi3 =
[
r1, . . . , ri3−1, ri3+1, . . . , rI3

]
and wi3 ∈ R(I3−1) is the combination weight vector. Then,

the optimal weight vector can be estimated by minimizing the LSE:

ŵi3 = arg min
wi3

‖ri3 − x̂i3‖
2. (A8)

The solution of the LSE problem is well known and can be expressed as:

ŵi3 =
(

ΘT
i3 Θi3

)−1
ΘT

i3 ri3 , (A9)

and the corresponding signal estimate x̂i3 and noise estimate n̂i3 can be computed by:

x̂i3 = Θi3 ŵi3 , (A10)

n̂i3 = ri3 − x̂i3 . (A11)

After the estimation of the signal and noise, the noise variances σ̂2
u,i3

and σ̂2
t,i3

are estimated by
maximizing the likelihood function [8]:

{σ̂2
u,i3 , σ̂2

t,i3} = arg max
σu,i3>0
σt,i3>0

ln
(
σu,i3 , σt,i3

)
, (A12)

with

ln
(
σu,i3 , σt,i3

)
= −M

2
ln(2π)

− 1
2

I1

∑
i1=1

I2

∑
i2=1

ln
[
σ2

u,i3 · xi1i2i3 + σ2
t,i3

]
− 1

2

I1

∑
i1=1

I2

∑
i2=1

n2
i1i2i3

σ2
u,i3
· xi1i2i3 + σ2

t,i3

.

(A13)

Since xi1i2i3 and ni1i2i3 are unknown in a realistic scenario, they are replaced by the estimates
computed in Equations (A10) and (A11), respectively.

Appendix C. Multiway Wiener Filter in Multidimensional Wavelet Packet Domain

In this section, we remind the main principles of the multidimensional wavelet packet transform
(MWPT) and of the MWF in multidimensional wavelet packet domain [22].

Appendix C.1. MWPT

MWPT can be computed by performing 1D wavelet packet transform in each mode [32]. Therefore,
the wavelet packet coefficient tensor CRl can be computed as

CRl = R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 , (A14)
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and the reconstruction can be written as

R = CRl ×1 (W̃
l1
1 )

T ×2 (W̃
l2
2 )

T ×3 (W̃
l3
3 )

T , (A15)

where l = [l1, l2, l3]T , and l1, l2, l3 ≥ 0. In particular, when l1, l2, l3 > 0, MWPT indicates the 3D wavelet
packet transform. W̃lk

k denotes the lk level wavelet packet transform to kth mode ofR. CRl,m is defined
as the coefficient subtensor of CRl , where m = [m1, m2, m3]

T is the index vector, and 0 ≤ mk ≤ 2lk − 1,
k = 1, 2, 3. Then, for each element of CRl,m, we can define:

CRl,m(j1, j2, j3) , CRi (J1(j1), J2(j2), J3(j3)), (A16)

where {
Jn =

[
mn In

2l , . . . ,
(mn + 1)In

2l − 1
]T

, n = 1, 2, 3

}
(A17)

and

jn ∈
{

1, . . . ,
In

2l

}
, n = 1, 2, 3. (A18)

The notation CRl,m(j1, j2, j3) indicates the element of tensor CRl,m in position (j1, j2, j3) as defined
in Equation (A2). From the properties of the wavelet packet transform, we know that mn indicates
the “frequency” of mode n. Thus, m is the frequency index of coefficient block CRl,m. For convenience,
a component tensor ofR is referred to as CRl,m in this paper.

Appendix C.2. Multiway Wiener Filter in Multidimensional Wavelet Packet Domain

In the existing MWF algorithm, the filter is applied to the whole hyperspectral imageR. As the
calculation of the filters needs the estimation of the signal subspace or rank in each mode for
suppressing the smallest eigenvalues [33], some weak signal might be removed in this procedure.
Therefore, the SNR is an important factor influencing the rank. When SNR is higher, the rank estimated
is greater, therefore more signal is preserved in the filtering process. In the contrast condition,
more signal is lost. When the noise is white, the power of noise in each component CRl,m is the
same, whereas the signal concentrates in the lower frequency component. That is to say, in different
components, the SNR is different. When MWF is applied to each component, more signal can be
preserved. Performing MWPT to tensorR, X and N in Equation (1), we obtain:

R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3

= (X +N )×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3

= X ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 +N ×1 W̃l1

1 ×2 W̃l2
2 ×3 W̃l3

3 .

(A19)

The coefficient tensor of each part

CRl = R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 , (A20)

CXl = X ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 , (A21)

CNl = N ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 , (A22)

and the coefficient tensor of the estimate X̂ :

ĈXl = X̂ ×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 . (A23)
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Extracting the components of each frequency CRl,m, CXl,m and CNl,m from CRl , CXl and CNl respectively
by using Equation (A16), we obtain:

CRl,m = CXl,m + CNl,m. (A24)

From Parseval’s theorem, the following expression can be obtained:

‖X − X̂ ‖2 = ‖CXl − ĈXl ‖2 = ∑
m
‖CXl,m − ĈXl,m‖2, (A25)

which means that minimizing the MSE between X and its estimate X̂ is equivalent to minimizing the
MSE between CXl,m and ĈXl,m for each m. If ĈXl,m is estimated by Tucker3 decomposition of CRl,m:

ĈXl,m = CRl,m ×1 H1,m ×2 H2,m ×3 H3,m, (A26)

then H1,m, H2,m, H3,m are the mode-n filters of the multiway Wiener filter [33]. After estimating ĈXl,m
for each m, we obtain ĈXl by concatenating ĈXl,m. Furthermore, the estimate X̂ can be obtained by
inverse MWPT, i.e.,

X̂ = ĈXl ×1 (W̃
l1
1 )

T ×2 (W̃
l2
2 )

T ×3 (W̃
l3
3 )

T . (A27)

Appendix C.3. Best Transform Level and Basis Selection

In MWPT-MWF algorithm, several parameters should be determined:

1. Level of transform: the performance of the algorithm is affected by the level of transform,
which depends on the size of tensorR. The maximum level can be calculated by:

NLk = dlog2 Ike − 5, k = 1, 2, 3, (A28)

where d·e rounds a number upward to its nearest integer, and the constant 5 is reduced from
dlog2 Ike to make sure there are enough elements in each mode so that the transform is meaningful.
Then, the set of possible transform levels can be expressed as:

Lk = {0, 1, · · · , NLk}, k = 1, 2, 3, (A29)

where {·} denotes a set.
2. Basis of transform: there are many wavelet bases designed for different cases. For the simplicity

of expression, we define:
W = {w1, w2, · · · , wNW} (A30)

to denote the set of possible wavelet bases, where NW is the number of wavelets in this set.

The best transform level and basis should minimize the MSE or risk Rc(X , X̂ ) =

E
[
‖X − X̂ ‖2] [34], whose equivalent form using the coefficients can be expressed as

Rc(X , X̂ ) = ∑
m

E
[
‖CXl,m − ĈXl,m‖2

]
. (A31)

Then, the best transform level and basis can be selected by

l, w = arg min
lk∈Lk , w∈W

∑
m

E
[
‖CXl,m − ĈXl,m‖2

]
, k = 1, 2, 3. (A32)

As the selection of the optimal l, w depends on X , which is generally unknown, to overcome this
drawback, an alternative solution should be found. Denoting by ĈXl,m[d] the estimate of CXl,m at the dth
ALS loop and noticing that when ‖ĈXl,m[d]− ĈXl,m[d− 1]‖2 is minimized, ĈXl,m , ĈXl,m[d] is the optimal
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estimate of CXl,m obtained by MWF, and at the same time E
[
‖CXl,m − ĈXl,m‖2

]
is minimized. Therefore,

Equation (A32) can be replaced by:

l, w = arg min
lk∈Lk , w∈W

R̂c, k = 1, 2, 3, (A33)

where
R̂c = ∑

m
‖ĈXl,m[d]− ĈXl,m[d− 1]‖2. (A34)

Appendix C.4. Summary of the MWPT-MWF Method

The algorithm MWPT-MWF, can be summarized as presented here.

1. Find the optimal l1, l2, l3 ∈ L and w ∈W. Loop l1, l2, l3 and w:

(a) Decompose the dataR by MWPT: CRl = R×1 W̃l1
1 ×2 W̃l2

2 ×3 W̃l3
3 .

(b) Extract component CRl,m from CRl using Equation (A16), for m = [m1, m2, m3]
T , where

0 ≤ mk ≤ 2lk − 1, k = 1, 2, 3.

(c) Filter component CRl,m by MWF: ĈXl,m = CRl,m ×1 H1,m ×2 H2,m ×3 H3,m.

(d) Calculate the risk R̂c using Equation (A34). If R̂c reaches a fixed threshold, return the optimal
l1, l2, l3, w and ĈXl,m.

2. Concatenate ĈXl,m to obtain CXl and perform inverse MWPT: X̂ = ĈXl ×1 (W̃
l1
1 )

T×2 (W̃
l2
2 )

T×3 (W̃
l3
3 )

T.
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