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Abstract: Optical methods require model inversion to infer plant area index (PAI) and woody area 

index (WAI) of leaf-on and leaf-off forest canopy from gap fraction or radiation attenuation 

measurements. Several inversion models have been developed previously, however, a thorough 

comparison of those inversion models in obtaining the PAI and WAI of leaf-on and leaf-off forest 

canopy has not been conducted so far. In the present study, an explicit 3D forest scene series with 

different PAI, WAI, phenological periods, stand density, tree species composition, plant functional 

types, canopy element clumping index, and woody component clumping index was generated 

using 50 detailed 3D tree models. The explicit 3D forest scene series was then used to assess the 

performance of seven commonly used inversion models to estimate the PAI and WAI of the leaf-on 

and leaf-off forest canopy. The PAI and WAI estimated from the seven inversion models and 

simulated digital hemispherical photography images were compared with the true PAI and WAI of 

leaf-on and leaf-off forest scenes. Factors that contributed to the differences between the estimates 

of the seven inversion models were analyzed. Results show that both the factors of inversion model, 

canopy element and woody component projection functions, canopy element and woody 

component estimation algorithms, and segment size are contributed to the differences between the 

PAI and WAI estimated from the seven inversion models. There is no universally valid combination 

of inversion model, needle-to-shoot area ratio, canopy element and woody component clumping 

index estimation algorithm, and segment size that can accurately measure the PAI and WAI of all 

leaf-on and leaf-off forest canopies. The performance of the combinations of inversion model, 

needle-to-shoot area ratio, canopy element and woody component clumping index estimation 

algorithm, and segment size to estimate the PAI and WAI of leaf-on and leaf-off forest canopies is 

the function of the inversion model as well as the canopy element and woody component clumping 

index estimation algorithm, segment size, PAI, WAI, tree species composition, and plant functional 

types. The impact of canopy element and woody component projection function measurements on 

the PAI and WAI estimation of the leaf-on and leaf-off forest canopy can be reduced to a low level 

(<4%) by adopting appropriate inversion models. 
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1. Introduction 

Understanding the energy and gas exchanges between forest ecosystems and the atmosphere is 

crucial in modelingmodeling terrestrial carbon cycle and global environmental change [1–4]. Leaf 

area index (LAI), which is defined as half of the total green leaf area per unit of flat ground area [5,6], 

is typically used to quantify the exchange between forest ecosystems and the atmosphere. LAI is a 

key parameter in biophysical and physiological processes, including photosynthesis, respiration, 

transpiration, carbon cycling, net primary productivity, and energy exchange. The LAI 

measurements of forest canopy are extensively used in many scientific areas, such as remote sensing, 

forestry, ecology, and global change [2,7,8]. 

Indirect methods are more frequently used than direct methods in estimating the LAI of leaf-on 

forest canopy because of their high efficiency, low cost, and nondestructive character [2,8,9]. Optical 

methods are amongst the most commonly used indirect methods, including LAI-2000/LAI-2200 (Li-

Cor, Lincoln, NE, USA), digital hemispherical photography (DHP) [2,9], Tracing Radiation and 

Architecture of Canopies (TRAC) (3rd Wave Engineering, Winnipeg, Manitoba, Canada), DEMON 

(CSIRO, Canberra, Australia), and SunScan (Delta-T Devices, Cambridge, UK). Estimates obtained 

from optical methods rely upon the gap fraction measurements and inversion models. As most 

optical methods are unable to distinguish between leaves or shoots and woody components (e.g., 

stems, branches, flowers, and fruits), the estimates obtained from optical methods are often referred 

to as plant area index (PAI). PAI is the sum of LAI and woody area index (WAI). 

Various inversion models have been proposed and applied to estimate the PAI and LAI of leaf-

on forest canopy from optical methods, such as the Beer law or Poisson model [10–15], Miller theory 

[15–19], Look-Up Table (LUT) [15,20], and iterative optimization technique [21]. Amongst these 

inversion models, Miller theory and Beer law are the most widely used. Miller theory estimates the 

PAI and LAI of the leaf-on forest canopy by integrating the gap fraction measurements over the upper 

hemisphere or a specific zenith angle range. The iterative and optimization method estimates the PAI 

and LAI of the leaf-on forest canopy by searching the designed gap fraction values that closely match 

the measured gap fraction values, and the estimates calculated based on the target designed gap 

fraction are the PAI and LAI of the leaf-on forest canopy [21]. The LUT method estimates the PAI and 

LAI of the leaf-on forest canopy using the principle similar to the iterative and optimization method, 

but it simplifies the optimization process of the iterative and optimization method using a table with 

limited combinations of PAI, LAI, and gap fraction [15,20]. Different zenith angle ranges have been 

used by the aforementioned inversion models to estimate the LAI or PAI of leaf-on forest canopy 

from optical methods, such as 0–45° [22,23], 10–65° [18], 0–74° (five annulus, LAI-2000, or LAI-2200), 

0~80° [16,17,22,24], 20–70° [25], 30–60° [22,26], and 57.3° [18,24,27,28]. For optical methods, such as 

LAI-2000 or LAI-2200 and DHP, various inversion models and zenith angle ranges were also 

employed to estimate the PAI or LAI of leaf-on forest canopy [10,17,18,22–26,29,30]. In addition to 

the PAI or LAI estimation, some studies attempted to obtain the effective woody area index (
eWAI ) 

during leaf-off season to represent the WAI of the leaf-on forest canopy using optical methods, such 

as LAI-2000 [9,31,32] and DHP [22]. 

Previous studies showed that the PAI and LAI estimation of the leaf-on forest canopy from 

optical methods were largely affected by the applied inversion models and zenith angle ranges 

[15,16,18,22,23]. Significant differences were observed between the PAI and LAI which were 

estimated from different inversion models with the same zenith angle range [16,33], and from the 

same inversion model with different zenith angle ranges [18,22,24]. For example, Ryu et al. [33] 

pointed out large variations in the proportion between the effective plant area index (
ePAI ) estimated 

from two inversion models covered with the same zenith angle range at 41 forest sites with a range 
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of 1–40%. Liu et al. [22] found that the variations in proportion between the 
ePAI  which were 

estimated from the four zenith angle ranges and Poisson model in a mixed broadleaved Korean pine 

forest canopy with a range of 0–37%. Therefore, the inversion model and zenith angle range play key 

roles in the PAI and LAI estimation of leaf-on forest canopy from optical methods. To date, no studies 

attempted to evaluate the impact of inversion models and zenith angle ranges on the estimation of 

WAI of the leaf-off forest canopy from optical methods. Considering the nonrandom distribution of 

the woody component of leaf-off forest canopy in space, which is similar to the spatial distribution 

of canopy element of leaf-on forest canopy, the inversion models and zenith angle ranges would be 

also the key factors that affect the WAI estimation of leaf-off forest canopy from optical methods. 

Besides the inversion models and zenith angle ranges, the canopy element (
eG ) and woody 

component (
wG ) projection functions, needle-to-shoot area ratio (

e ), and the canopy element (
e ) 

and woody component (
w ) clumping indices are also key issues in estimating the PAI and WAI of 

leaf-on and leaf-off forest canopy from the optical methods. The clumping effect of canopy element 

and woody component can be quantified by 
e  and 

w , respectively. Moreover, they are often 

used to describe the degree of deviation from the random distribution of canopy element and woody 

component in space assumed by the inversion models [7,8,14]. If 
e  and 

w  are equal to unity this 

implies that the random distribution of the canopy element and woody component; if the 

distributions of the canopy element and woody component are clumped, then 
e  and 

w  are 

smaller than unity; and if the canopy element and woody component are regularly distributed, then 

e  and 
w  are larger than unity [7,8,14]. For coniferous forest canopy, the clumping effect of the 

canopy element is typically described in two scales: within and beyond-shoot clumping (
e ). The 

within-shoot clumping of coniferous forest canopy is quantified using the needle-to-shoot area ratio 

(
e ), which is equal to unity for broadleaf forest canopy and larger than unity for coniferous forest 

canopy [34]. For coniferous forest canopy, 
e  can be estimated by taking the ratio of half the total 

needle area in a shoot to half the total shoot area [35]. The estimates obtained from optical methods 

are 
ePAI  and 

eWAI , respectively, if the estimation does not consider 
e , 

e  and 
w . Previous 

studies reported that the 
ePAI  are usually 50–80% of PAI of leaf-on forest canopy [34]. Similarly, the 

spatial distribution of the woody component of stems and branches deviate from random distribution, 

therefore, 
w  would be also the key factors affect the WAI estimation of leaf-off forest canopy from 

optical methods. Therefore, validating the aforementioned inversion models to estimate the PAI and 

WAI of leaf-on and leaf-off forest canopy should consider 
e , 

eΩ  and 
wΩ  to achieve reliable and 

accurate conclusions. ( )eG   and ( )wG   are defined as the mean projection of unit surface area of 

the canopy element and woody component on the plane perpendicular to the view direction  , and 

they can be estimated based on the canopy element and woody component angle distribution 

functions ( ( )ef   and ( )wf  , 
e  and 

w  are the canopy element and woody component 

inclination angles, respectively) [7,36,37]. The 
eG  and 

wG  of leaf-on and leaf-off forest canopy are 

site, species, and period specific [36,38,39]. The ( )eG   and ( )wG   usually vary with zenith angles 

ranging from 0° to 90° for real forest canopy, and approaching 0.5 at the zenith angle near 57.3° [7,36–

38]. In previous studies, the ( )eG   and ( )wG   are often assumed to be 0.5 at all zenith angles 

ranging from 0° to 90°, even if the PAI and LAI estimation were not applied at this specific zenith 

angle of 57.3° due to difficulty in measuring the 
eG  and 

wG  of real forest canopy [22,24,25,35,40]. 

Woodgate et al. [37] reported that the LAI estimation errors introduced by ignoring 
wG  (based on 

the assumption that (0)wG  equals 0.5) would be up to 25% at the leaf-on eucalypt canopy if the LAI 

was estimated at the zenith angle of 0°. Pisek et al. [36] reported that the assumption of spherical leaf 

angle distribution of the canopy element would result in LAI estimation errors of 28% to 47% at nadir 

for the leaf-on broad-leaved deciduous forest canopy. Therefore, 
eG  and 

wG  should not be ignored 

when evaluating the performance of inversion models to estimate the PAI and WAI of leaf-on and 

leaf-off forest canopy.  
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However, evaluating the impact of the factors of inversion model, zenith angle range, 
eG , 

wG , 

e , 
e  and 

w  on the estimation of PAI and WAI of leaf-on and leaf-off forest canopy from optical 

methods using direct methods is challenging and has rarely been conducted due to the disadvantages 

of the time-consuming, labor-intensive, and destructive character of direct methods. Recently, some 

studies attempted to assess the performance of optical methods to estimate the 
e , 

w , LAI and PAI 

of leaf-on and leaf-off forest canopy based on the 2D and 3D forest scenes and simulation method 

[18,20,26,41–45]. Compared with direct methods, the simulation method is affordable, nondestructive 

to forest canopy, and highly efficient. This method can generate forest scenes with contrasting canopy 

structure characteristics, which can extend beyond the limited sampling of field plots for direct 

methods. The measurements of optical methods can be generated within the forest scenes using the 

ray tracing algorithm [18,41]. The generated measurements would be beneficial to avoid major error 

sources in estimating the 
ePAI  and PAI of forest canopy from optical methods, such as classification 

of DHP images, determination of optimal exposure for imaging DHP images, lens distortion, and 

nonuniform sky conditions. Further, the true PAI and WAI, reference 
e  and 

w , ( )eG   and 

( )wG   can be accurately calculated based on the generated forest scenes. Therefore, it is an ideal tool 

for evaluating the reliability and performance of the inversion models, adopted by frequently used 

optical methods, to estimate the PAI and WAI of leaf-on and leaf-off forest canopy with consideration 

of 
eG , 

wG , 
e , 

e  and 
w . Several types of forest scenes, including the 2D (turbid media) 

[20,26,46] and quasi-3D forest scenes (geometric-optical models) [18], have been generated to validate 

the performance of inversion models in estimating the LAI and PAI of leaf-on and leaf-off forest 

canopy. 

To date, few studies have attempted to assess the performance of inversion models for 

estimating the PAI of leaf-on forest canopy with consideration of 
eG , 

wG , 
e , 

e  and 
w  based 

on the direct measurements of LAI from limited samples of field plots [16,22,24] and generated forest 

scenes [18,20,46]. The following three aspects have yet to be investigated or need further 

investigation: 

 Two key components of leaf-on forest canopy, such as the needles of shoots and woody 

component, were not modeled by the forest scenes generated in previous studies [18,20,46]. 

However, these two components significantly affected the gap fraction measurements, thereby 

influencing the PAI and LAI estimation via optical methods [8,9,15,47]. Compared with the 

forest scenes in previous studies [20,26,46], the explicit 3D forest scenes in the present study 

provide a detailed description of all components of forest canopy, such as stems, branches, 

needles, shoots, leaves, flowers, and fruits, using a large number of small primitive shapes (e.g., 

triangles, cylinders, spheres, and ellipsoids) [48,49]. The explicit 3D tree models which were used 

to generate the explicit 3D forest scenes were constructed based on the field measurements of 

structural attributes (e.g., height, diameter at breast height [DBH], crown width, leaf length, leaf 

width, first branch height, and number of branch levels) of the tree canopy and available single-

tree modeling methods (e.g., parametric and L-system-based modeling) [49,50]. Therefore, the 

explicit 3D forest scenes can provide leaf-on and leaf-off forest scenes with detailed description 

of canopy structure similar to the real leaf-on and leaf-off field plots as the optical methods 

undertaking [18]. The investigation and conclusions drawn based on the explicit 3D forest scene 

series would be more reliable and applicable. 

 Although some studies attempted to assess the effect of inversion models on the PAI estimation 

of the leaf-on forest canopy, few commonly used inversion models were assessed by these 

studies, and the number of field plots covered were limited [16,18,22–24]. Moreover, the zenith 

angle dependent of 
e  and 

eG  were not considered by some studies in evaluating the 

performance of inversion models to estimate the PAI of leaf-on forest canopy [20,22,24]. 

However, previous studies showed that the PAI and WAI estimation of the leaf-on and leaf-off 

forest canopy from optical methods was significantly affected by the 
e , 

w , 
eG  and 

wG  

[15,18,34,36,45]; therefore, they should be considered in evaluating the performance of the 
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inversion models to estimate the PAI and WAI estimation of the leaf-on and leaf-off forest 

canopy. 

 The WAI estimation of the leaf-off forest canopy from optical methods is essential to derive the 

accurate LAI of the leaf-on forest canopy, as the latter is usually estimated by subtracting WAI 

from PAI. So far, no study has attempted to evaluate the effect of inversion models on the WAI 

estimation of the leaf-off forest canopy through optical methods with consideration of 
w  and 

wG . 

In this study, an explicit 3D forest scene series, which covered wide canopy structure 

characteristics with different PAI, WAI, 
e , 

w , phenological periods, stand density, tree species 

composition, and plant functional types, was generated to assess the performance of seven inversion 

models in estimating the PAI and WAI of leaf-on and leaf-off forest canopy, respectively. Considering 

the rare application of LUT and iterative optimization methods for estimating the PAI and WAI of 

leaf-on and leaf-off forest canopy in the field, we excluded these two methods from this study. Factors 

that contributed to the differences between the PAI or estimates of the seven inversion models were 

analyzed. The key factors that affect the performance of the seven inversion models in estimating the 

PAI and WAI of the leaf-on and leaf-off forest canopy were concluded. Finally, we attempted to 

identify the best combination of the inversion models, 
e , 

e  and 
w   estimation algorithm, and 

segment size for estimating the PAI and WAI of leaf-on and leaf-off forest canopy. 

2. Theory 

The PAI of leaf-on forest canopy can be estimated based on the gap fraction and radiation 

attenuation measurements by inverting the Beer’s law as described by Nilson [14] and Leblanc et al. 

[34]: 

- ( ) ( )
( ) exp( )

cos( )

e e

e

e

PAI G
p

 


 


  (1) 

where ( )ep   is the measured canopy element gap fraction at  , and ( )e   is the canopy element 

clumping index at  . The PAI cannot be inverted from Equation (1) if the ( )ep   is equal to zero. 

In this study, the maximum value of PAI or 
ePAI  estimated at these zenith angles with gap fraction 

measurements equal to zero is assumed to be 10. ( )eG   equals 0.5 at all zenith angles ranging from 

0–90° if the canopy element angle distribution is assumed to be a spherical distribution. If ( )ef   is 

known, then the ( )eG   of the forest canopy can be calculated as follows: 

2

0
( ) ( , ) ( )e e e eG A f d



       (2a) 

   
 

    

 
 



cos cos ,                                      |cot cot | 1
( , )

cos cos [1 (2 / )(tan - )],   otherwise
e e

e

e

A  (2b) 

where ( , )eA    is the projection coefficient at the canopy element inclination angle of 
e  and the 

view zenith angle of   and -1cos (cot cot )e    [7]. 

To avoid the zenith angle dependence of PAI estimation on ( )eG  , Miller [19] proposed a 

theorem for the PAI estimation that does not require a prior knowledge of ( )eG   (Miller_0-90) [18]: 

 90

0

ln ( )
-2 cos( )sin( )

( )

e e

e

p
PAI d

 
  




  (3) 

In addition to Miller_0-90, many studies suggested to estimate the PAI of the leaf-on forest 

canopy by inverting the Beer’s law (Equation (1)) at a single zenith angle or narrow zenith angle range 

[16,18,24]: 
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' '
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ln( ( ))cos( )
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( ) ( )

e e

e e

p
PAI
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 (4) 

where '  is the single zenith angle (or centered at an angle for a range of angles) for the PAI 

estimation. The ( )eG   measurement of forest canopy using the direct methods, such as the manual 

clinometer and photography methods, is usually inapplicable in the field because of the limited 

qualified direct methods available for tall canopies and significant efforts required for the 

measurements [39]. However, previous studies reported that the ( )eG   of the forest canopy is 

usually converged near the specific zenith angle 57.3° and (57.3)eG  equals ~ 0.5 [15,39,45]. If the '  

in Equation (4) is equal to or near 57.3°, then the PAI and WAI of forest canopy can be estimated by 

assuming the (57.3)eG  in Equation (4) to be equal to 0.5 even if the (57.3)eG  of the forest canopy 

is unknown (57.3) [15,39,45]. 

To avoid the sampling and optical errors at the zenith angles close to the zenith and horizon for 

the DHP method [17,26], many previous studies attempted to estimate the 
ePAI  and PAI of leaf-on 

forest canopy from the gap fraction measurements obtained at narrow zenith angle ranges by 

adopting the Miller theorem [17,18,22–26]. The sampling areas covered by the annulus of DHP 

images with center zenith angles near 0° are much smaller than those with center zenith angles near 

90°. Therefore, the incomplete sampling of forest canopy for the annulus with center zenith angles 

near 0° would further result in estimation uncertainties in the 
ePAI , PAI, and 

e  estimation [40]. In 

addition, the image pixels of annuli with center zenith angles near 0° are prone to overexposure 

compared with those close to 90°. More light can penetrate through the canopy from above to the 

sensor for the annuli with center zenith angles near 0° compared with 90° due to the larger gaps 

viewed by and the shorter extinct path length for those annuli. The zenith angles close to 90° were 

also usually discarded for the 
ePAI  and PAI estimation of the leaf-on forest canopy due to the 

presence of mixed pixels, absence of gaps, significant contribution of woody components, and 

interference of ground. The annulus with center zenith angles close to 90° tended to have a high 

proportion of mixed pixels due to the coarse image resolution and light scattering [41]. The high 

proportion of mixed pixels would reduce the classification accuracy of DHP images and further make 

the 
ePAI  and PAI estimates unreliable. Moreover, the DHP method tended to produce null gap 

fraction measurements at the annuli with center zenith angles close to 90° in dense forest canopy [25]. 

This situation would produce estimation errors in the PAI estimation because it requires a definition 

of the logarithm of zero, ( )ep  , which is not defined [51]. The ground would be visible in the annuli 

with center zenith angles close to 90° if the ground slope of the plot is larger than zero [52]. The annuli 

with visible ground are usually discarded to remove the interference of ground to the 
ePAI  and PAI 

estimation [52]. For the aforementioned reasons, Leblanc and Fournier [18] attempted to estimate the 

PAI of the leaf-on forest canopy based on the Miller theorem and the gap fraction measurements 

obtained at the zenith angle range of 10–65° (Miller_10-65):  

65

10

ln[ ( )]
-2 cos( )sin( )

( ) ( )

e e

e e

p
PAI d

G

 
  

 


  (5) 

Similarly, the PAI of the leaf-on forest canopy can be estimated based on the Miller theorem and 

the gap fraction measurements obtained at another zenith angle range which enlarges the zenith 

angle range of 10–65° to 0–80°, and the zenith angles close to horizon are discarded for the 

abovementioned reasons (Miller_0-80) [24]: 

80

0

ln[ ( )]
-2 cos( )sin( )

( ) ( )

e e

e e

p
PAI d

G

 
  

 


  (6) 

The LAI-2000 or LAI-2200 instrument estimates the PAI of the leaf-on forest canopy based on 

the Miller theorem and the gap fraction measurements obtained from five annuli, and the gap fraction 

measurements of the fifth annulus is used to complete the zenith angle up to 90° (LAI-2200) [29,30]: 
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ln[ ( )]cos( )
-

e i i i e i

i e i e i
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PAI
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where 
i  is the center zenith angle of the ith annulus, 

_ ( )e i ip   is the canopy element gap fraction 

of the ith annulus, 
_e i  and 

_e iG  are the 
e  and 

eG  estimates of the ith annulus and 
iW  is the 

weight factor of the ith annulus. The five zenith angle ranges used in Equation (7) are the same as the 

zenith angle ranges covered by the five concentric annuli of the LAI-2000 or LAI-2200 instrument; 

these zenith angle ranges are 0–13°, 16–28°, 32–43°, 47–58°, and 61–74°. The equation for 
iW  is as 

follows: 

sin( )i i iW d   (8) 

when normalized to 1.0, the values of 
iW  in Equation (7) are 0.041, 0.131, 0.201, 0.29, and 0.337, 

which correspond to the five annuli with the center zenith angles of 7°, 23°, 38°, 53° and 68°, 

respectively [29,30]. 

Moreover, the PAI of the leaf-on forest canopy can be estimated based on DHP images using the 

calculation method similar to the LAI-2200 instrument by evenly dividing the zenith angle ranges 

from 0° to 81° and from 0° to 90° into 9 and 10 annuli (DHP_0-81 and DHP_0-90) [8]: 

9
_

1 _ _

ln[ ( )]cos( )
-

e i i i e i

i e i e i

p W
PAI

G
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e i i i e i

i e i e i

p W
PAI

G

  






  (10) 

The calculation method of 
iW  used in Equations (9)–(10) is the same as the method of LAI-2200 

(Equation (8)). The normalized 
iW  values of the nine zenith angle ranges in Equation (9) are 0.0124, 

0.0367, 0.0602, 0.0823, 0.1023, 0.1198, 0.1343, 0.1455, and 0.3064, respectively. The normalized 
iW  

values of the 10 zenith angle ranges in Equation (10) are 0.0123, 0.0366, 0.0601, 0.0820, 0.1019, 0.1193, 

0.1338, 0.1450, 0.1526, and 0.1564, respectively. 

If the PAI of the leaf-on forest canopy is known, then the reference 
e  of the leaf-on forest 

canopy can be estimated as follows: 

e

e

PAI

PAI
   (11) 

In this study, the estimates derived from the seven inversion models of Miller_0-90, 57.3, 

Miller_10-65, Miller_0-80, LAI-2200, DHP_0-81, and DHP_0-90 (Equations (3)–(7) and (9)–(10)) are 

ePAI , namely, 
_ _ 0 90e MillerPAI 

, 
_ 57.3ePAI , 

_ _10 65e MillerPAI 
, 

_ _ 0 80e MillerPAI 
, 

_ 2200e LAIPAI 
, 

_ _ 0 81e DHPPAI 
, and 

_ _ 0 90e DHPPAI 
, respectively, if 

e  or ( )e   is assumed to be equal to 1 in the PAI estimation of leaf-

on forest canopy. Similarly, the estimates derived from the seven inversion models of Miller_0-90, 

57.3, Miller_10-65, Miller_0-80, LAI-2200, DHP_0-81, and DHP_0-90 (Equations (3)–(7) and (9)–(10)) 

are 
eWAI , namely, 

_ _ 0 90e MillerWAI 
, 

_ 57.3eWAI , 
_ _10 65e MillerWAI 

, 
_ _ 0 80e MillerWAI 

, 
_ 2200e LAIWAI 

, 
_ _ 0 81e DHPWAI 

, 

and 
_ _ 0 90e DHPWAI 

, respectively, if ( )w   is assumed to be equal to 1 in the WAI estimation of leaf-

off forest canopy. The equations used for estimating the WAI and reference 
w  of the leaf-off forest 

canopy are the same as those for PAI and reference 
e  (Equations (3)–(7) and (9)–(11)), respectively. 

3. Materials and Methods 

3.1. Generation of Explicit 3D Forest Scenes and DHP Images 

In this study, the explicit 3D forest scenes were generated based on a series of 50 detailed 3D tree 

models selected from all the 46 detailed 3D tree models in the four forest scenes, namely, Järvselja 

pine stand (summer) (JPSS), Ofenpass pine stand (winter) (OPSW), Järvselja birch stand (summer) 
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(JBSS), and Järvselja birch stand (winter) (JBSW), in the fourth radiation transfer model 

intercomparison (RAMI) project (http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-

IV.php) except the Norway spruce (Picea abies) tree model in JBSS and the birch (Betula pendula) tree 

model in JPSS. Another six Scots pine (Pinus sylvestris) models, which were used by Disney et al. [53], 

were also used in generating the forest scenes in the present study. These detailed 3D tree models 

provide a detailed description of the canopy elements of tree canopy, including leaves or shoots, 

branches, and stems. 

An in-house software product called In situ LAI Measurements Simulation and Validation 

Platform (ILMSVP, version 2016) (Appendix B) was developed using the C++ programming 

language. This software was used to generate the explicit 3D forest scene series and simulated DHP 

images. The generated leaf-on forest scenes comprise the leaf-on broadleaved deciduous and 

evergreen coniferous forest scenes, and the leaf-off forest scenes are the leaf-off broadleaved 

deciduous forest scenes. The leaf-on deciduous forest scenes were generated using ILMSVP based on 

all the broadleaf 3D tree models from JBSS. To avoid the true LAI values of the generated leaf-on 

deciduous forest scenes are far larger than the maximum LAI of 4.76 for the birch plot, as reported 

by Sumida et al. [54], those scenes with LAI > 5.0 were discarded and excluded from this study. In 

addition, all the leaves were removed from the tree models in the sub-series deciduous scenes of JBSS 

to represent the leaf-off period of the sub-series deciduous scenes of JBSS (JBSW). Amongst the six 

broadleaf tree species of maple (Acer Platenoides), birch (Betula Pendula), alder (Almus Glutinosa), 

linden (Tilio Cordata), poplar (Populus Tremuloides), and ash (Fraxinus Exelsior) in JBSS, the birch tree 

species is the dominant species. Therefore, the leaf-on and leaf-off broadleaved deciduous forest 

scenes can be treated as the birch forest scenes. The leaf-on coniferous forest scenes were generated 

using ILMSVP based on all needleleaf 3D tree models from JPSS, OPSW, and six Scots pine models, 

respectively. Therefore, three sub-series of leaf-on coniferous scenes were generated, namely JPSS, 

OPSW, and Scots pine scenes (SPS). Similar to the leaf-on deciduous scenes, all the PAI of the 

generated two sub-series coniferous scenes of SPS and OPSW were below the maximum PAI of 7.8 

and 1.9 of the Scots pine and Mountain pine forest sites, respectively, as reported by Walter [55] and 

Thimonier et al. [23], respectively. The two 3D tree models of the Norway spruce and birch were not 

used in generating the two sub-series coniferous scenes of JBSS and JPSS, respectively, for the purpose 

of generating pure deciduous and coniferous forest scenes. Because the proportions of the number of 

Norway spruce and birch trees to the total number of trees in JBSS and JPSS are as small as 3% and 

0.5%, respectively. Therefore, the removal of the two 3D tree models of Norway spruce and birch in 

the generation of the two sub-series coniferous scenes of JBSS and JPSS would not make the main 

canopy structural characteristics of the two sub-series coniferous scenes of JBSS and JPSS deviate 

obviously from those of the two scenes of JBSS and JPSS in RAMI project, respectively. In this study, 

a total of 156 forest scenes were constructed based on the 50 detailed 3D tree models described. The 

four scenes of JPSS, OPSW, JBSS, and JBSW in the RAMI project were also used in this study. These 

forest scenes are reclassified into two types: leaf-on and leaf-off. The number of leaf-on and leaf-off 

forest scenes were 106 and 54, respectively. Table 1 provides the main characteristics of the simulated 

3D forest scene series. The frequency distributions of the true PAI and WAI (a), and the reference 
e  

and 
w  (b) of the simulated leaf-on and leaf-off forest scenes are shown in Figure 1. Figure 2 shows 

two simulated binary DHP images generated at the same sampling point at leaf-on and leaf-off 

periods of a deciduous forest scene. 
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Table 1. Main characteristics of simulated explicit 3D forest scene series (JBSS: Järvselja birch stand 

[summer], JBSW: Järvselja birch stand [winter], JPSS: Järvselja pine stand [summer], OPSW: Ofenpass 

pine stand [winter], SPS: Scots pine scenes, WAI: woody area index, LAI: leaf area index, 
e : canopy 

element clumping index, and 
e : needle-to-shoot area ratio). 

Plant Function Types Broadleaved Deciduous Scenes Evergreen Coniferous Scenes 

Sub-series scenes JBSS JBSW JPSS OPSW SPS 

Phenological period Leaf-on Leaf-off Leaf-on 

Dominant species Betula pendula Pinus Sylvestris Pinus Montana Pinus sylvestris 

WAI 0.10–3.53 0.46–1.63 0.06–0.76 0.31–3.16 

PAI 0.51–8.0 0.10–3.53 * 1.52–5.86 0.59–2.64 2.06–7.26 

Reference 
e  0.39–0.92 0.55–1.30 ** 0.55–0.96 0.20–1.03 0.48–1.35 


e
 1 1.32 1.48 2.12 

Mean tree height (m) 8.91–23.0 12.32–15.55 3.53–9.92 4.78–10.26 

Tree species composition 6 1 1 1 

Number of scenes 54 54 21 19 12 

Stand density (stems ha−1) 250–3000 250–3000 550–2800 500–2150 550–4000 

Stem distribution mode Random, Regular, Clumped, Natural 

* For leaf-off JBSW scenes, the PAI equals WAI. ** For leaf-off JBSW scenes, the reference 
e  equals 

reference 
w . 

  

Figure 1. Frequency distributions of true PAI and WAI (a), and reference 
e  and 

w  (b) of leaf-on 

and leaf-off forest scenes, respectively. 

  
(a) (b) 

Figure 2. Two simulated binary DHP images generated at the same sampling point at leaf-on (a) and 

leaf-off (b) periods of a deciduous forest scene. 
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3.2. Data Processing 

The true LAI or WAI of each generated leaf-on and leaf-off forest scene were calculated by taking 

the ratio between half of the total surface areas of triangles, cylinders, and ellipsoids of the leaves and 

needles or the stems and branches in the scenes and the flat ground area of the forest scene. The true 

PAI of the scenes is the sum of the LAI and WAI values. For leaf-off forest scenes, the PAI is equal to 

the WAI. The ( )ef  of each leaf-on forest scene was calculated by dividing the total surface area of 

leaves or shoots, stems, and branches in the scene by the sum of the surface area of leaves or shoots, 

stems, and branches with inclination angles ranging from 
e  − 0.5° to 

e + 0.5°, except at the two 

zenith angles of 0° and 90°. The two zenith angle ranges of 0° to 0.5° and 89.5° to 90° were used to 

estimate the (0)f and (90)f  of leaf-on forest scenes, respectively. Thereafter, the ( )eG  of each 

leaf-on forest scene was calculated at the zenith angle range of 0–90° with an interval of 1° by 

substituting the ( )ef   into Equation (2). The calculation method of the ( )wf  and ( )wG   of each 

leaf-off forest scene is the same to the ( )ef  and ( )eG   of each leaf-on forest scene. For the three 

inversion models of LAI-2200, DHP_0-81 and DHP_0-90, the 
_e iG and 

_w iG were calculated by 

averaging the ( )eG  and ( )wG  at the zenith angle ranges covered by the ith annulus. The
e of each 

leaf-on coniferous forest scene was calculated by taking the ratio between half of the total needle area 

in a shoot to half of the shoot surface area. The shoot surface area was estimated using the projection 

method described by Chen [35]. 

For each scene, the ( )ep   was calculated by dividing the total number of black and white pixels 

by the total number of white pixels with zenith angles ranging from   − 0.5° to   + 0.5°, except at 

the two zenith angles of 0° and 90°. The zenith angle ranges, which were used to calculate the (0)ep  

and (90)ep , are the same as the two zenith angle ranges used to estimate the ( )ef   and ( )wf   of 

the leaf-on and leaf-off forest scenes, respectively. For the three inversion models of LAI-2200, 

DHP_0-81, and DHP_0-90, the calculation procedures of 
_ ( )e i ip   in each scene are similar to those of 

( )ep  . The only difference is that 
_ ( )e i ip   was calculated based on the total number of black and white 

pixels with zenith angles covered by the ith annulus. In this study, the '( )ep   of the 57.3° inversion 

model was calculated based on the total number of black and white pixels with zenith angles ranging 

from 52–62°. The calculation procedures of ( )wp  , 
_ ( )w i ip  , and '( )wp   are the same as the ( )ep  , 

_ ( )e i ip  , and '( )ep   estimation. The only difference is that the ( )wp  , 
_ ( )w i ip  , and '( )wp   were 

estimated using the simulated binary DHP images of leaf-off deciduous forest scenes. 

All the simulated binary DHP images were processed using the Measurement Tools of 

Vegetation Structural Parameters software (MTVSP, version 2015) [56] to calculate the 
e  and 

w  

of the leaf-on and leaf-off forest scenes, respectively. Several previous studies attempted to evaluate 

the performance of various algorithms to estimate the 
e  and 

w  of leaf-on and leaf-off forest 

canopy based on DHP images, respectively. However, these studies only focused on estimating the 

( )e   and ( )w   at the single zenith angle near 57.3° [18] or narrow zenith angle range of 30–60° 

[41] and the impact of different 
e  estimation algorithms on the estimation of PAI was not analyzed 

[45]. As the performance of inversion models to estimate the PAI and WAI of leaf-on and leaf-off 

forest canopy is inexorably linked to the performance of the 
e  and 

w  estimation algorithm used 

and the zenith angle dependence of ( )e   and ( )w  . Therefore, the 
e  and 

w  estimation 

algorithms and parameters suggested by these studies were not used directly in the present study. In 

this study, four commonly used 
e  and 

w  estimation algorithms, including gap fraction and gap-

size based algorithms (logarithmic averaging (LX) [57], gap size distribution (CC) [58,59], 

combination of gap size and logarithmic averaging (CLX) [17]), and Pielou’s coefficient of spatial 

segregation (PCS) [43] were used to estimate the 
e  and 

w  of the leaf-on and leaf-off forest scenes, 

respectively. For simplicity, the modified gap size distribution (CMN) [60] and modified logarithmic 

averaging (LXW) [41] algorithms were not assessed in this study due to the high similarity between 

CC and CMN, and between LX and LXW. For CLX, three segment sizes of 15°, 30°, and 45° were used 
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in this study. These three segment sizes covered the two segment sizes of 15° and 45°, as suggested 

by Woodgate [45] and Leblanc et al. [18], respectively. No segment sizes larger than 45° were used in 

this study as CLX tended to produce worse 
e  and 

w  estimates with large segment sizes [45]. For 

LX, three segment sizes of 5°, 15°, and 30° were used in this study. The three segment sizes covered 

the segment size of 5° suggested by Gonsamo et al. [26] to estimate 
e  from DHP images using LX. 

We did not use segment sizes larger than 30° for LX to estimate the 
e  and 

w of the leaf-on and 

leaf-off scenes as canopy element and woody component usually tended to be nonrandomly 

distributed at the scale of segment with large segment sizes. 

Eight ( )e   and ( )w   estimates were calculated based on the four algorithms (one estimate 

each for the CC and PCS algorithms, and three estimates each for the LX and CLX algorithms) at each 

zenith angle with zenith angles ranging from 10–90° with interval of 1°. The ( )e   and ( )w   with 

zenith angles ranging from 0–9° were not calculated based on the DHP images directly due to reasons 

mentioned above and the limited and insufficient gap size measurements collected at these small 

zenith angles. Woodgate [45] reported that the reference ( )e   of the leaf-on eucalypt forest scenes 

at zenith angles ranging from 7–75° were almost constant, and the ( )e   estimated using CLX 

(segment sizes of 15°, 45°, and 90°) at zenith angles near 10° are very close to the reference 
e  of the 

scenes. In this study, to obtain the 91 ( )e   and ( )w   estimates that match the ( )ep   and ( )wp   

measurements at the same zenith angle range of 0–90° with an interval of 1°, we treated the ( )e   

and ( )w   at the 10 zenith angles in the range of 0–9° with the interval of 1° as equal to the ( )e   

and ( )w   at the 10° zenith angle, respectively. For the three inversion models of LAI-2200, DHP_0-

81, and DHP_0-90, the 
_e i  and 

_w i  were calculated by averaging the ( )e   and ( )w   

estimates with the zenith angles covered by the ith annulus with an interval of 1°, respectively. 

Similarly, the '( )e   and '( )w   of the 57.3 inversion model were calculated by averaging the 

( )e   and ( )w   with zenith angles ranging from 52–62° with an interval of 1°. 

After the calculation of ( )ep  , ( )wp  , 
_ ( )e i ip  , 

_ ( )w i ip  , 
'( )ep  , 

'( )wp  , e , ( )eG  , ( )wG  , 
_e iG , 

_w iG , ( )e  , ( )w  , 
e_ i , and 

_w i  for each scene, the ePAI , PAI, eWAI , and WAI estimates of 

each leaf-on and leaf-off scene were calculated from the seven inversion models using Equations (3)–

(7), (9), and (10), respectively. The reference e  and w  of leaf-on and leaf-off scenes were 

calculated using Equation (11) based on the true PAI and WAI of leaf-on and leaf-off scenes, and the 

_ 57.3ePAI  and 
_ 57.3eWAI  which were derived using the 57.3 inversion model without consideration of 

eG , wG , e , e , and w , respectively. Hereinafter, if the eG  and wG , e , and e  and w  

were stated not considered in the ePAI , PAI, eWAI , and WAI estimation, then the statement means 

that the assumption of spherical projection function was made for eG  and wG , and the e , ( )e 

, and ( )w   are assumed to be equal to 1. 

In this study, for convenience, we classified the factors that contributed to the differences 

between the 
ePAI , PAI, 

eWAI , and WAI estimates of the seven inversion models as the inversion 

model, 
eG  and 

wG , 
e , 

e  and 
w  estimation algorithm, and segment size. Hereinafter, the 

Equations of (3)–(7), (9), and (10) were treated as the factor of the inversion model that contributed to 

the differences between the estimates derived from the seven inversion models, excluding the part of 

( )eG  , '( )eG  , 
_e iG , 

e , ( )e  , '( )e  , and 
_e i . 
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4. Results 

4.1. Factors Contributing to Differences between 
ePAI  or 

eWAI , Which were Derived from Seven Inversion 

Models 

4.1.1. Inversion Model 

Figure 3 shows that the mean ( )ep   of the leaf-on scenes and the mean ( )wp   of the leaf-off 

scenes tended to decrease obviously with the increase of zenith angles at the zenith angle range of 0–

90° and they approach zero at zenith angles larger than 85°. Table 2 shows the mean 
ePAI  of all the 

leaf-on coniferous and deciduous scenes, and the mean 
eWAI  of all the leaf-off deciduous scenes, 

which were derived from the seven inversion models with the assumption of the spherical projection 

function of 
eG  and 

wG . The mean 
_ _10 65e MillerrPAI 

 and 
_ _10 65e MillerWAI 

 were smaller than those mean 

ePAI  and 
eWAI  estimates calculated from other six inversion models, respectively (Table 2). By 

contrast, the mean 
_ _ 0 90e MillerrPAI 

 and 
_ _ 0 90e MillerWAI 

 were larger than those mean 
ePAI  and 

eWAI  

estimates calculated from the other six inversion models except 57.3, respectively (Table 2). The mean 

_ _ 0 90e MillerrPAI 
 and 

_ _ 0 90e MillerWAI 
 were approximately two times 

_ _10 65e MillerrPAI 
 and 

_ _10 65e MillerWAI 
, 

respectively (Table 2). Large differences were also observed between the mean 
_ _ 0 80e MillerrPAI 

 and 

_ _ 0 90e MillerrPAI 
 or 

_ _ 0 80e MillerWAI 
 and 

_ _ 0 90e MillerWAI 
. For example, the mean 

_ _ 0 90e MillerrPAI 
 were 42% 

and 33% larger than 
_ _ 0 80e MillerrPAI 

 in the leaf-on coniferous and deciduous scenes, respectively 

(Table 2). Similarly, the mean 
_ _ 0 90e MillerWAI 

 were 24% larger than 
_ _ 0 80e MillerWAI 

 in the leaf-off 

deciduous scenes (Table 2). Compared with Miller_0-80 and Miller_0-90, no large differences were 

observed between the mean 
ePAI  or 

eWAI  estimates of DHP_0-81 and DHP_0-90 at the leaf-on and 

leaf-off forest scenes, even when the same zenith angle ranges were covered by the two groups of 

inversion models (Table 2). The variations in proportion between the mean 
_ _ 0 81e DHPPAI 

 and 

_ _ 0 90e DHPPAI 
 or 

_ _ 0 81e DHPWAI 
 and 

_ _ 0 90e DHPWAI 
 estimates are below 6%. The variations in proportion 

between the mean 
_ _ 0 90e MillerrPAI 

 and 
_DHP_ 0 90ePAI 

 or 
_ _ 0 90e MillerrWAI 

 and 
_DHP_ 0 90eWAI 

 estimates are 

22%, 18%, and 9% in the leaf-on coniferous, leaf-on deciduous, and leaf-off deciduous scenes, 

respectively (Table 2). 

 

Figure 3. The mean ( )ep   and ( )wp   of leaf-on and leaf-off forest scenes, which were derived by 

averaging the ( )ep   and ( )wp   of all scenes at zenith angles in the 0–90° range with interval of 1°. 
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Table 2. Mean 
ePAI  of leaf-on coniferous and deciduous scenes and mean 

eWAI  of leaf-off deciduous scenes derived from seven inversion models using Equations 

(3)–(7), (9), and (10) by assuming ( )eG   and ( )wG   to be equal to 0.5 (
e , ( )e  , ( )w  , '( )e  , '( )w  , 

_e i , and 
w_ i  are assumed to be equal to 1). 

Inversion Model Miller_10-65 Miller_0-80 Miller_0-90 LAI_2200 DHP_0-81 DHP_0-90 57.3 

 _ _10 65e MillerPAI 
 

_ _ 0 80e MillerPAI 
 

_ _ 0 90e MillerPAI 
 

_ 2200e LAIPAI 
 

_ _ 0 81e DHPPAI 
 

_ _ 0 90e DHPPAI 
 

_ 57.3ePAI  

leaf-on coniferous scenes 0.92 1.39 1.97 1.64 1.64 1.54 1.75 

leaf-on deciduous scenes 1.25 1.84 2.45 2.18 2.14 2.02 2.39 

 _ _10 65e MillerWAI 
 

_ _ 0 80e MillerWAI 
 

_ _ 0 90e MillerWAI 
 

_ 2200e LAIWAI 
 

_ _ 0 81e DHPWAI 
 

_ _ 0 90e DHPWAI 
 

_ 57.3eWAI  

leaf-off deciduous scenes 0.46 0.70 0.87 0.83 0.83 0.79 0.93 
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For Miller_0-90, Figure 4 illustrates that the proportions of the number of scenes with null gap 

measurements to the total number of leaf-on deciduous and coniferous scenes at zenith angles in the 

0–90° range are equal to zero if the zenith angles are <80°, and then they increased obviously at the 

zenith angles >80° and approach the maximum of 0.58 at the zenith angle of 88°. Compared with leaf-

on forest scenes, the proportions of scenes with null gap measurements to the total number of leaf-

off scenes at zenith angles in the 0–90° range are small; they are equal to zero if the zenith angle is 

<86° and approach the maximum of 0.09 at 87° (Figure 4). By contrast, for DHP_0-90, the proportions 

of the number of scenes with null gap measurements to the total number of leaf-on and leaf-off forest 

scenes at each annulus are always equal to zero. 

 

Figure 4. Proportions of number of scenes with null gap measurement at each zenith angle to the total 

number of leaf-on and leaf-off scenes for Miller_0-90. 

4.1.2. eG  and wG  

The ( )eG   of leaf-on coniferous scenes presents a trend similar to the planophile projection 

function, and they are decreased with zenith angles in the range of 0–90° (Figure 5). The ( )eG   of 

leaf-on coniferous scenes is intersected with the line of ( )eG   = 0.5 at the zenith angle near 57.3° 

(Figure 5). In contrast, the ( )wG   of leaf-off deciduous scenes exhibits a similar trend to the 

erectophile projection function, and they are increased with zenith angles in the range of 0–90° 

(Figure 5). The ( )wG   of leaf-off deciduous scenes is intersected with the line of ( )wG   = 0.5 at the 

zenith angle near 52° (Figure 5). The ( )eG   of leaf-on deciduous scenes exhibits a trend similar to 

spherical projection function, and the ( )eG   is close to 0.5 at all the zenith angles ranging from 0° to 

90° (Figure 5). 

No significant differences were found between the mean 
ePAI  or 

eWAI  estimates of the seven 

inversion models (except Miller_10-65), which were estimated with or without consideration of 
eG  

and 
wG  at all scenes, and the variations in proportion and differences are below 4% and 0.06, 

respectively (Tables 2 and 3). The variations in proportion and differences between the mean 

_ _10 65e MillerrPAI 
 or 

_ _10 65e MillerWAI 
 estimated with or without consideration of 

eG  and 
wG  at all leaf-on 

and leaf-off scenes, are relatively large, ranging from 0–8% and 0–0.07, respectively (Tables 2 and 3). 

The variations in proportion and differences between the mean 
_ 57.3ePAI  of leaf-on deciduous and 

coniferous scenes, which were derived with or without consideration of 
eG , are 0% and 0.0, and 1% 

and 0.01, respectively; the variations in proportion and differences between the 
_ 57.3eWAI  of leaf-off 

deciduous scenes, which were derived with or without consideration of 
wG , are 3% and 0.03, 

respectively (Tables 2 and 3). The variations in proportion between the mean 
_ 57.3ePAI  or 

_ 57.3eWAI , 
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which were derived with or without consideration of 
eG  and 

wG  at the leaf-on coniferous scenes 

and leaf-off deciduous scenes are not equal to zero due to the reason of the ( )eG   of leaf-on 

coniferous scenes and the ( )wG   of leaf-off deciduous scenes are not intersected with the lines of 

( )eG   = 0.5 and ( )wG   = 0.5 at the zenith angle 57.3° (Figure 5). 

 

Figure 5. Mean ( )eG   of all leaf-on coniferous and deciduous scenes and mean ( )wG   of all leaf-

off deciduous scenes. 

Table 3. Mean 
ePAI  of leaf-on coniferous and deciduous scenes, and mean 

eWAI  of leaf-off 

deciduous scenes, which were estimated from the seven inversion models except Miller_0-90 using 

Equations (3)–(7), (9), and (10) considering 
eG  and 

wG  (
e , ( )e  , ( )w  , '( )e  , '( )w  , 

_e i , and 
_w i  are assumed to be equal to 1). 

Inversion 

Model 
Miller_10-65 Miller_0-80 LAI_2200 DHP_0-81 DHP_0-90 57.3 

 _ _10 65e MillerPAI 
 

_ _ 0 80e MillerPAI 
 

_ 2200e LAIPAI 
 

_ _ 0 81e DHPPAI 
 

_ _ 0 90e DHPPAI 
 

_ 57.3ePAI  

leaf-on 

coniferous 

scenes 

0.85 1.39 1.59 1.70 1.59 1.74 

leaf-on 

deciduous 

scenes 

1.25 1.84 2.18 2.14 2.02 2.38 

 _ _10 65e MillerWAI 
 

_ _ 0 80e MillerWAI 
 

_ 2200e LAIWAI 
 

_ _ 0 81e DHPWAI 
 

_ _ 0 90e DHPWAI 
 

_ 57.3eWAI  

leaf-off 

deciduous 

scenes 

0.49 0.71 0.86 0.83 0.80 0.90 

4.1.3. eγ , eΩ , and wΩ  

This section focuses on the differences between the 
ePAI  or 

eWAI , which were derived from the 

seven inversion models considering 
e ,

e , or 
w , respectively. Evaluating the impact of different 

e  and 
w  estimation algorithms and segment sizes on the performance of the seven inversion 

models to estimate the PAI and WAI of leaf-on and leaf-off forest scenes is the target of the next 

section. For simplicity, only one segment size was analyzed in this section for LX and CLX. 

Figure 6 shows that the mean ( )e   and ( )w   of all leaf-on and leaf-off scenes, which were 

derived from the four algorithms (CC, CLX, LX, and PCS), tended to increase and vary largely with 

zenith angles in the range of 10–90°, except the mean ( )w   estimates derived from CLX_15 

(hereafter, the 15 represent the segment size of 15° to derive 
e  and 

w ). Large differences were 

found between the four mean ( )e   and ( )w   estimates, which were estimated from the four 
e  
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and 
w  estimation algorithms at each zenith angle ranging from 10–90° at all leaf-on and leaf-off 

scenes (Figure 6). For example, for leaf-on deciduous scenes, the mean ( )e  , which were derived 

from CC at the four zenith angles of 10°, 30°, 60°, and 90° are 1.31, 1.46, 1.34, and 1.0 times the mean 

( )e   of CLX_15; 1.09, 1.05, 1.08, and 1.03 times the mean ( )e   of LX_30; and 3.51, 3.73, 2.29, and 

1.04 times the mean ( )e   of PCS, respectively (Figure 6b). 

 

Figure 6. Mean ( )e   and ( )w   derived using CC, CLX_15, LX_30, and PCS at leaf-on 

coniferous scenes, (a) leaf-on deciduous scenes (b) and leaf-off deciduous scenes (c), respectively. 

Compared with the differences between the mean 
ePAI  or 

eWAI  estimates of the seven 

inversion models, which were derived without consideration of 
e , 

e , and 
w  (Table 2), the 

differences between the 
ePAI  or 

eWAI  estimates of the seven inversion models, which were derived 

with consideration of 
e , 

e , or 
w  at the leaf-on and leaf-off scenes, tended to become larger 

(Table 4). The reason for the increase in the differences is that the 
ePAI  and 

eWAI , which were 

derived considering 
e , 

e , or 
w , were calculated by multiplying the 

ePAI  and 
eWAI , which 

were estimated previously without consideration of 
e , 

e , and 
w  by the 

e , 1
( )e 

, or 

1
( )w 

, respectively. The values of 
e , 1

( )e 
, and 1

( )w 
 are usually equal to or larger 

than unity for all leaf-on and leaf-off scenes (Figure 6 and Table 1). For example, for the leaf-on 

coniferous scenes, the difference between the 
_ _10 65e MillerPAI 

 and 
_ _ 0 90e MillerPAI 

 estimates, which 

was derived without consideration of 
e  and 

e  is 1.05 (Table 1). This difference increased to 1.63 

if 
e  was considered in the 

ePAI  estimation; similarly, the differences between the 
_ _10 65e MillerPAI 

 

and 
_ _ 0 90e MillerPAI 

 estimates which were derived with consideration of 
e  that were estimated 

using CC, CLX_15, LX_30, and PCS are increased to 1.08, 1.22, 1.12, and 1.79, respectively (Tables 2 

and 4). 
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Table 4. Mean 
ePAI  of leaf-on coniferous and deciduous scenes and mean 

eWAI  of leaf-off deciduous scenes, which were derived from the seven inversion models 

using Equations (3)–(7), (9), and (10) considering 
e ,

e , or 
w , respectively ( ( )eG   and ( )wG   are assumed to be equal to 0.5). 

e  is assumed to be equal to 

1.0 if 
e  or 

w  was considered in the 
ePAI  or 

eWAI  estimation. ( )e  , '( )e  , and 
_e i  or ( )w  , '( )w  , and 

_w i  are assumed to be equal to 1.0 if 

e  was considered in the 
ePAI  or 

eWAI  estimation. 

Plant Function Types Inversion Model Miller_10-65 Miller_0-80 Miller_0-90 LAI_2200 DHP_0-81 DHP_0-90 57.3 

  _ _10 65e MillerPAI 
 

_ _ 0 80e MillerPAI 
 

_ _ 0 90e MillerPAI 
 

_ 2200e LAIPAI 
 

_ _ 0 81e DHPPAI 
 

_ _ 0 90e DHPPAI 
 

_ 57.3ePAI  

Leaf-on coniferous scenes 

Considering 
e   1.42 2.14 3.05 2.52 2.52 2.37 2.68 

Considering 
e  (CC)  1.04 1.53 2.12 1.83 1.78 1.68 1.82 

Considering 
e  (CLX_15)  1.54 2.16 2.76 2.62 2.46 2.30 2.67 

Considering 
e  (LX_30)  1.16 1.69 2.28 2.02 1.97 1.84 2.03 

Considering 
e  (PCS)  3.77 4.90 5.56 6.11 5.34 5.0 6.29 

Leaf-on deciduous scenes 

Considering 
e  (CC)  1.36 1.95 2.57 2.33 2.25 2.13 2.41 

Considering 
e  (CLX_15)  1.88 2.58 3.22 3.15 2.91 2.76 3.18 

Considering 
e  (LX_30)  1.50 2.15 2.74 2.54 2.44 2.34 2.62 

Considering 
e  (PCS)  3.94 4.92 5.55 6.17 5.27 5.03 5.65 

  _ _10 65e MillerWAI 
 

_ _ 0 80e MillerWAI 
 

_ _ 0 90e MillerWAI 
 

_ 2200e LAIWAI 
 

_ _ 0 81e DHPWAI 
 

_ _ 0 90e DHPWAI 
 

_ 57.3eWAI  

Leaf-off deciduous scenes 

Considering 
w  (CC)  0.48 0.71 0.89 0.85 0.85 0.81 0.93 

Considering 
w  (CLX_15)  0.72 1.0 1.18 1.21 1.14 1.09 1.32 

Considering 
w  (LX_30)  0.49 0.74 0.91 0.88 0.87 0.83 0.97 

Considering 
w  (PCS)  0.97 1.35 1.54 1.65 1.53 1.44 1.80 
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Based on Tables 2 and 4, the changes between the variations in proportion between the 
ePAI  or 

eWAI , which were derived from any two inversion models among the seven inversion models without 

consideration of 
e  and 

w , and the variations in proportion between the 
ePAI  or 

eWAI  derived 

from the same two inversion models with consideration of 
e  and 

w , are correlated to the 
e  

and 
w  estimation algorithms. Minor or no changes were observed in the differences of proportion 

between the 
ePAI  or 

eWAI , which were derived from any two inversion models among the seven 

inversion models without consideration of 
e  and 

w , and the differences in proportion between 

the 
ePAI  or 

eWAI , which were derived from the same two inversion models considering 
e  and 

w , which were estimated using CC and LX_30 (<6%, <7%, and <2% at the leaf-on deciduous, leaf-on 

coniferous, and leaf-off deciduous scenes, respectively). The differences in proportion between the 

ePAI  or 
eWAI  derived from any two inversion models among the seven inversion models 

considering 
e  and 

w , which were estimated using CLX_15 and PCS, are smaller about 1–22%, 0–

29%, and 0–11% than those between the 
ePAI  or 

eWAI , which were derived from the same two 

inversion models without consideration of 
e  and 

w  at the leaf-on deciduous, leaf-on coniferous, 

and leaf-on deciduous scenes, respectively. No changes were observed in the variations in proportion 

between the 
ePAI  derived from any two inversion models among the seven inversion models 

without consideration of 
e  at leaf-on coniferous scenes, and the variations in proportion between 

the 
ePAI  derived from the same two inversion models with consideration of 

e . 

4.2. Estimation of the 
ePAI , PAI, 

ePAI  and WAI of Leaf-on and Leaf-off Forest Scenes from the Seven 

Inversion Models 

4.2.1. Leaf-on Forest Scenes 

All the seven inversion models except Miller_0-90 tended to underestimate the PAI of leaf-on 

scenes if 
e  and 

e  were not considered in the PAI estimation (Figure 7). The 
ePAI  estimates 

derived from the seven inversion models without consideration of 
e  and 

e  were 5–103% of the 

true PAI of the leaf-on forest scenes (Figure 7). Most of the 
ePAI  estimates derived from Miller_0-90 

and 57.3 were 35– 75% of the true PAI of leaf-on forest scenes (Figure 7c,g). From the root mean square 

error (RMSE), mean absolute error (MAE), and the regression slope, Miller_0-90 performed the best 

with the smallest RMSE and MAE as compared with the other inversion models for estimating the 

ePAI  of leaf-on forest scenes, followed by 57.3 and DHP_0-81 (Figure 7e,g). The worst results were 

obtained with Miller_10-65 with the largest RMSE and MAE (Figure 7a). 
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Figure 7. Comparison of true PAI of leaf-on coniferous and deciduous scenes with 
ePAI  estimates 

derived from the seven inversion models without consideration of 
e  and 

e : (a) Miller_10-65  

(
_ _10 65e MillerPAI 

), (b) Miller_0-80 (
_ _ 0 80e MillerPAI 

), (c) Miller_0-90 (
_ _ 0 90e MillerPAI 

), (d) LAI-2200  

(
_ 2200e LAIPAI 

), (e) DHP_0-81 (
_ _ 0 81e DHPPAI 

), (f) DHP_0-90 (
_ _ 0 90e DHPPAI 

), and (g) 57.3 (
_ 57.3ePAI

). The 
ePAI  estimates were derived from the seven inversion models using Equations (3)–(7), (9) and 

(10) with consideration of 
eG  (

e , ( )e  , '( )e  , and 
_e i  are assumed to be equal to 1). 

Statistics are given at 95% confidence level from two-tailed Student’s t-test. Olive square: SPS, red 

square: JPSS, green square: OPSW. 

The performance of the seven inversion models in estimating the PAI of leaf-on coniferous and 

deciduous scenes was largely improved if the 
e  and 

e  were considered in the PAI estimation, 

except the combinations of the inversion models, 
e , 

e  estimation algorithm, and segment size 

with PCS (Figures 7–9). For leaf-on coniferous and deciduous scenes, the PAI, which was estimated 

from the seven inversion models considering 
e  and 

e , was closer to the one-to-one line 

compared with the 
ePAI  estimated from the same inversion model without consideration of 

e  

and 
e , except the combination of inversion model, 

e , 
e  estimation algorithm, and segment 

size with PCS (Figures 7–9). For example, for leaf-on deciduous scenes, clear evidence of the 

improvement in the PAI estimation was provided by the fact that the RMSE, MAE, and regression 

slope of the 
ePAI  estimates, which were estimated from Miller_0-90 without consideration of 

e  

and 
eΩ , were 1.61, 1.43, and 0.67; they decreased to 0.83, 0.54, and 0.82 when 

e  and LX_5 were 

considered in the PAI estimation (Figure 7 and Table A1). 

The best performance of the combination of inversion model, 
e , 

e  estimation algorithm, 

and segment size to estimate the PAI of leaf-on coniferous and deciduous scenes is the function of 

plant functional types (Figures 8 and 9, Table A1). Furthermore, the best combination of inversion 

model, 
e , 

e  estimation algorithm, and segment size to estimate the PAI of the leaf-on coniferous 

scenes is also different at the two sub-series coniferous scenes of JPSS and OPSW and SPS (Figure 8 

and Table A1). Based on the RMSE, MAE, and regression slope, the combination of Miller_0-90 and 

LX_5 performed the best to estimate the PAI of leaf-on deciduous scenes, followed by the 

combinations of 57.3 and LX_5, LAI-2200 and LX_5, and Miller_0-90 and CLX_15, respectively 

(Figure 9 and Table A1). Amongst the combinations of inversion model, 
e , 

e  estimation 

algorithm, and segment size tested, DHP_0-90 and LX_5 performed the best, followed by DHP_0-81 

and CLX_45, DHP_0-81, and CLX_30, and LAI-2200 and CLX_45 for estimating the PAI of sub-series 
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coniferous scenes of JPSS and OPSW (Figure 8 and Table A1). The combination of inversion model, 

e , 
e  estimation algorithm, and segment size with Miller_0-80 and CC exhibited the best 

performance in estimating the PAI of SPS coniferous scenes, followed by Miller_0-80 and LX_30, 

Miller_0-80 and CLX_45, and LAI-2200 and CC (Figure 8 and Table A1). 

 

 

 
 

Figure 8. (a–g) Comparison of true PAI of leaf-on coniferous forest scenes with PAI calculated from 

the seven inversion models with consideration of 
eG , 

e , and 
e . Four 

e  estimation 

algorithms (CC, LX, CLX, and PCS) were used to estimate the 
e  of leaf-on coniferous scenes. Blue: 

SPS, red: JPSS, green: OPSW. 
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Figure 9. (a–g) Comparison of true PAI of leaf-on deciduous forest scenes with PAI calculated from 

the seven inversion models with consideration of 
eG  and 

e . Four 
e  estimation algorithms (CC, 

LX, CLX, and PCS) were used to estimate the 
e  of leaf-on deciduous scenes. 

4.2.2. Leaf-off Forest Scenes 

All the seven inversion models tended to underestimate the WAI at the majority of leaf-off 

scenes if 
w  was not considered in the WAI estimation (Figure 10). The 

eWAI  estimates derived 

from the seven inversion models are 28–126% of the true WAI of leaf-off deciduous scenes (Figure 

10). Most of the 
eWAI  estimates derived from Miller_0-90 and 57.3 were 63–90% of the true WAI of 

leaf-off deciduous forest scenes (Figure 10c,g). Based on RMSE, MAE, and regression slope, the 57.3 

inversion model performed the best amongst the seven inversion models to estimate the 
eWAI  of 

leaf-off deciduous forest scenes with the smallest RMSE and MAE, followed by Miller_0-90 and LAI-

2200 (Figure 10d,g). The worst results were obtained with Miller_10-65 with the largest RMSE and 

MAE compared with other inversion models (Figure 10a). 
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Figure 10. Comparison of true WAI of leaf-off deciduous forest scenes with 
eWAI  estimates derived 

from seven inversion models without considering 
w : (a) Miller_10-65 (

_ _10 65e MillerWAI 
), (b) 

Miller_0-80 (
_ _ 0 80e MillerWAI 

), (c) Miller_0-90 (
_ _ 0 90e MillerWAI 

), (d) LAI-2200 (
_ 2200e LAIWAI 

), (e) 

DHP_0-81 (
_ _ 0 81e DHPWAI 

), (f) DHP_0-90 (
_ _ 0 90e DHPWAI 

), and (g) 57.3 (
_ 57.3eWAI ). The 

eWAI  

estimates were estimated using Equations (3)–(7), (9), and (10) with consideration of 
wG  (

e , ( )w 

, '( )w  , and 
w_ i  are assumed to be equal to 1). Statistics are given at 95% confidence level from 

two-tailed Student’s t-test. 

The underestimation of the seven inversion models to estimate the WAI of leaf-off deciduous 

scenes without consideration of 
w  was significantly reduced if 

w  was considered in the WAI 

estimation, except the combinations of inversion model, 
w  estimation algorithm and segment size 

with PCS (Figures 10 and 11, Table A2). For example, the RMSE, MAE, and regression slope of the 

WAI estimated from 57.3 without consideration of 
w  were 0.30, 0.18, and 0.76, respectively, which 

decreased to 0.16, 0.06, and 0.89 for the WAI estimated from 57.3 with consideration of LX_5 (Figures 

10 and 11, Table A2). Based on the RMSE, MAE, and regression slope, the combination of inversion 

model, 
w  estimation algorithm, and segment size of LAI-2200 and LX_5 performed the best in 

estimating the WAI of leaf-off deciduous scenes, followed by the combinations of 57.3 and LX_5, 

DHP_0-81 and LX_5, and Miller_0-90 and LX_5 (Table A2).  
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Figure 11. (a–g) Comparison of true WAI of leaf-off deciduous forest scenes with WAI calculated from 

the seven inversion models with consideration of 
wG  and 

w . Four 
w  estimation algorithms (CC, 

LX, CLX ,and PCS) were used to estimate the 
w  of leaf-off deciduous scenes. 

5. Discussion 

The main finding of our study is that no universally valid combination of inversion model, 
e , 

e  and 
w  estimation algorithm, and segment size is available to obtain accurate estimates of PAI 

and WAI for all leaf-on and leaf-off forest canopies. Both the factors of inversion model, 
eG , 

wG , 
e , 

e , 
w , and segment size are contributed to the differences between the PAI and WAI estimated 

from the seven inversion models. The performance of the combination of inversion model, 
e , 

e  

and 
w , estimation algorithm, and segment size to estimate the PAI and WAI of leaf-on and leaf-off 

forest scenes is the function of the inversion model, 
e , 

e  and 
w  estimation algorithm, segment 

size, PAI, WAI, tree species composition, and plant functional types. 

5.1. Reason for Differences between 
ePAI , PAI, 

eWAI and WAI Estimates Estimated from the Seven 

Inversion Models with or without Consideration of 
eG , 

wG , 
eγ , 

eΩ , and 
wΩ  

Since ( )ep  , ( )wp  , ( )eG  , ( )wG  , ( )e  , and ( )w   varied obviously with zenith angles in 

the range of 0–90° (Figures 3, 5, and 6). The trend in the variations of ( )eG  , ( )wG  , ( )e  , and 

( )w   with zenith angles in the range of 0–90° did not comply with the trend in the variations of 

( )ep   and ( )wp   in the same zenith angle range (Figure 3, 5, and 6). However, different zenith angle 

ranges were used by the seven inversion models to estimate the PAI and WAI of leaf-on and leaf-off 

forest scenes. Therefore, both the inversion model, 
eG , 

wG , 
e , 

e  and 
w  estimation algorithm, 

and segment size are the factors that contributed to the differences between the PAI or WAI estimated 

from the seven inversion models. That’s because the ( )ep  , ( )wp  , 
_ ( )e i ip  , '( )ep  , '( )wp  , 

e_ ( )i ip  , 

w_ ( )i ip  , ( )eG  , ( )wG  , 
_e iG , 

_w iG , ( )e  , ( )w  , 
_e i , and 

_w i  that were used in the PAI and 

WAI estimation for the seven inversion models are obviously different between each other. 

Amongst the five factors of the inversion model, 
eG  and 

wG , 
e , 

e  and 
w  estimation 

algorithm, and segment size, the PAI and WAI estimation was less affected by 
eG  and 

wG ; by 

contrast, the PAI and WAI estimation was largely affected by other factors (Figures 8, 9, and 11, Tables 

2–4, A1, and A2) (Appendix C.1). The largest variation in proportion between the 
ePAI , PAI, 

eWAI , 
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and WAI estimated from any two inversion models amongst the seven inversion models with or 

without consideration of 
e , 

eG , 
wG , 

e , and 
w  at the leaf-on and leaf-off scenes is that derived 

from Miller_10-65 and Miller_0-90 (Equations (3) and (5)) without consideration of 
e , 

e , and 
w , 

but with consideration of 
eG  and 

wG  (Figures 8, 9, and 11, Tables 2–4, A1, and A2). The mean 
ePAI  

and 
eWAI  estimates derived from Miler_0-90 are approximately two times the estimates derived 

from Miller_10-65 (Table 2). This result means that the inversion model contributed more to the 

variations between the results of the seven inversion models as the variations in proportion tended 

to decrease if 
e  and 

w  were considered in the 
ePAI , PAI, 

eWAI , and WAI estimation (Tables 2, 

4, A1, and A2). The zenith angle ranges covered by the two inversion models of Miller_10-65 and 

Miller_0-90 and the processing solution of the null gap fraction measurements can explain the large 

differences between the mean 
ePAI  or 

eWAI  estimates of the two inversion models. The reason is 

that both the logarithm of the mean ( )ep   and ( )wp  , and the weight ( sin( )d  ) tended to increase 

with zenith angles in the range of 0–90° (Figure 3). Further, the defined PAI and WAI of 10 for the 

null gap fraction measurements at the zenith angles close to the horizon are usually larger than the 

estimates derived using Equation (4) based on the mean ( )ep   and ( )wp   collected at the zenith angle 

range of 10–65°. 

Compared with two inversion models, namely, Miller_10-65, and Miller_0-90, the variations in 

proportion between the mean 
ePAI  or 

eWAI  estimates of any other two inversion models estimated 

without consideration of 
eΩ  and 

w  are relatively small (Tables 2–4). The variations of the ( )e   

and ( )w   in the zenith angle range of 0–90° at the leaf-on and leaf-off forest canopy are specific to 

sites, species, and estimation algorithms [10,17,41,61]. Chen et al. [61] reported that the 
e  of most 

natural forest stands range from 0.50 to 0.75. Similarly, the 
e  of the coniferous forest canopy is also 

specific to sites and tree species, and previous studies reported that 
e  usually ranges from 1.20 to 

2.08 [10,22,47]. Therefore, amongst the four factors of the inversion model, 
e , 

e  and 
w  

estimation algorithm, and segment size, the dominant factor that contributed more to the differences 

between the PAI or WAI estimated from the seven inversion models except Miller_10-65 considering 

e , 
eG , 

wG , 
e , and 

w  is the function of the inversion model, 
e , 

e  and 
w  estimation 

algorithm, segment size, and tree species composition, and the structural characteristics of the forest 

canopy. 

The differences between the mean 
ePAI  or 

eWAI  results of the two inversion models covered 

with the same zenith angle ranges, such as Miller_0-90 and DHP_0-90, and DHP_0-81 and DHP_0-

90, are mainly deduced from the differences between the gap fraction and weight calculation methods 

of the two inversion models (Tables 2 and 3). For these inversion models covered with different zenith 

angle ranges, such as Miller_0-80 and Miller_0-90, and Miller_0-80 and DHP_0-90, all the three 

aspects of the inversion model, including zenith angle range, gap fraction, and weight calculation 

methods, are the main sources of differences between the 
ePAI  or 

eWAI  estimates of the different 

inversion models (Figure 4, Tables 2 and 3). 

5.2. Can PAI or WAI be Estimated Accurately from the Currently Available Inversion Models without Field 

Measurements of 
eG (θ)  and 

wG (θ)  of Forest Canopy 

To address the challenge of measuring the ( )eG   and ( )wG   of the leaf-on and leaf-off forest 

canopy, the 57.3 inversion model was recommended by many previous studies to derive the PAI and 

LAI of vegetation canopy [18,22,45,62]. Previous studies showed that this inversion model is a good 

choice to avoid the error source of 
eG  and 

wG  in the PAI and WAI estimation of vegetation canopy 

[18,45,62]; this conclusion was also confirmed in the present study (Figure 5 and Tables 2 and 3). The 

merit of the 57.3 inversion model is that the ( )eG   and ( )wG   of leaf-on and leaf-off forest canopy 

were approximately intersected at the zenith angle near 57.3° (1 radian) and are equal to about 0.5 at 

this zenith angle [7,15,45,63]; this conclusion was also confirmed in the present study at the leaf-on 

and leaf-off scenes with three typical and contrasting types of 
eG  and 

wG  (Figure 5). 
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Since the ( )eG   and ( )wG   varied obviously with zenith angles in the range of 0–90° (Figure 

5), the ( )eG   and ( )wG   measurements would be the critical input parameters for the seven 

inversion models except 57.3 in the PAI and WAI estimation of leaf-on and leaf-off scenes. A sign of 

the important role of 
eG  and 

wG  in the PAI and WAI estimation is that large differences were found 

between the 
ePAI  or 

eWAI  estimates derived from Miller_10-65 estimated with or without 

consideration of 
eG  and 

wG  (Table 2 and 3). The large differences indicate that it is inappropriate 

to assume that ( )eG   and ( )wG   are equal to 0.5 at all zenith angles in the PAI and WAI estimation. 

However, the minor differences in proportion between the 
ePAI  or 

eWAI  estimated using the 

inversion models of Miller_0-80, LAI-2200, DHP_0-81, and DHP_0-90 with or without consideration 

of 
eG  and 

wG  are small (below <4%) (Tables 2 and 3), showing that the error source of 
eG  and 

wG  

was largely reduced in the 
ePAI  and 

eWAI  estimation. The zenith angle ranges covered by the four 

inversion models is the reason for the reduction of the error source of 
eG  and 

wG  in the 
ePAI  and 

eWAI  estimation. As inferred from Equation (4) that the PAI and WAI are linearly related to the 

( )eG   and ( )wG  , respectively, therefore, the PAI and WAI estimation errors are equivalent in 

proportion to the 
eG  and 

wG  errors. Therefore, the trade-off between the 
ePAI  and 

eWAI  

overestimation or underestimation caused by the underestimation or overestimation of ( )eG   and 

( )wG   at zenith angles less than near 57°, and the opposite trend of the 
ePAI , and 

eWAI  

underestimation or overestimation caused by the overestimation or underestimation of ( )eG   and 

( )wG   at zenith angles greater than near 57° are the reason for the removal of the error source of 

( )eG   and ( )wG   in the 
ePAI  and 

eWAI  estimation for the four inversion models (Figure 5, Table 

2 and 3). The larger values of the logarithm of the mean ( )ep   and ( )wp  , and sin( )d   at the zenith 

angle range of 57–90° compared with those at the zenith angle range of 0–57° can explain why a 

narrow zenith angle range of the former zenith angle range is enough to trade off the 
ePAI  and 

eWAI  underestimation or overestimation caused by the error source of ( )eG   and ( )wG   at the 

latter zenith angle range. Therefore, we can conclude that the impact of 
eG  and 

wG  on the 
ePAI , 

eWAI , PAI, and WAI estimation of leaf-on and leaf-off forest canopy can be reduced to a low level 

(4%) by selecting appropriate inversion models such as Miller_0-80, LAI-2200, DHP_0-81, DHP_0-90, 

and 57.3. 

5.3. Can the 
eΩ  and 

wΩ  of Leaf-on and Leaf-off Forest Canopy be Effectively Estimated based on the DHP 

Images Using the Currently Available Algorithms 

The PAI and WAI underestimation of the seven inversion models were largely reduced or 

removed if the 
e , 

e , and 
w  were considered in the PAI and WAI estimation of leaf-on and leaf-

off scenes, except the combinations of inversion model, 
e , 

e , and 
w  estimation algorithm and 

segment size with PCS (Figures 7–11, Tables A1 and A2). Therefore, we can conclude that the 

clumping effect of the canopy element and woody component of the forest canopy was the main 

reason for the severe PAI and WAI underestimation of the seven inversion models if 
e , 

e , and 

w  were not considered in the PAI and WAI estimation. This finding is consistent with the 

conclusions drawn from previous studies which reported that the large underestimation of PAI for 

optical methods are due to the clumping effect of the canopy element of the forest canopy 

[15,18,34,35,56]. However, Leblanc and Fournier [18] reported an opposite conclusion that the WAI 

estimated using the 57.3 inversion model without consideration of 
w  were close to the true WAI of 

leaf-off forest scenes. The WAI corrected by 
w  were found to be larger than the true WAI of leaf-

off forest scenes in their study [18]. The nature of the 3D tree models of leaf-off forest scenes used in 

their study compared with those in the present study is the factor that contributed to the different 

conclusions drawn in these two studies. The leaf-off tree models represented by trunks only (without 

branches) were adopted by Leblanc and Fournier [18], but the leaf-off detailed 3D tree models with 

trunks and branches were used in the present study to generate the leaf-off forest scenes. The 
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diameters of trunks are larger than those of branches, and trunks are closer to the sensor compared 

with the branches in the upper canopies, making the trunks contribute more gap fraction 

measurements as they would. The branches contribute 50–70% of the WAI of the forest canopy [64]; 

the absence of branches in leaf-off forest scenes would further increase the clumping effect of the 

woody component, resulting in the overestimation of WAI corrected by 
w  in the study by Leblanc 

and Fournier [18]. 

The distinct PAI underestimation for all the combinations of inversion model, 
e , 

e  

estimation algorithm, and segment size except those with PCS at the leaf-on deciduous scenes with 

PAI > ~3.5 (Figure 9), indicating that the 
e  of those scenes was not accurately estimated by the three 

algorithms of CC, LX, and CLX. Cutini et al. [32] reported that the leaves of deciduous forest canopy 

tended to concentrate at the top crown to compete for light. Therefore, limited direct sunlight can 

penetrate through the top crown of these forest canopies and into the ground for those with large 

PAI. Furthermore, insufficient gap fraction or gap size measurements that the 
e  estimation 

algorithms rely on to estimate 
e  were collected from these leaf-on deciduous forest canopies 

would cause the 
e  estimation algorithms to underestimate 

e . Thus, the 
e  underestimation 

would be the main reason for the overall PAI underestimation at the leaf-on deciduous forest canopy 

with relatively large PAI. For leaf-on deciduous forest scenes, if the inversion models are the same, 

the combinations of inversion model, 
e , 

e  estimation algorithm, and segment size with LX_5 

performed the best, followed by the combinations with CLX_15 in the PAI estimation, except the 

combinations with Miller_10-65. This conclusion does not contradict the finding of Woodgate [45] 

even though different tree species were examined in these two studies. Woodgate reported that 

CLX_15 performed the best compared with other combinations of 
e  estimation algorithm (CC, LX, 

and CLX) and segment size (15°, 45°, and 90°) to estimate the 
e  of eucalypt forest canopy, but LX_5 

was not analyzed in that study [45]. Better performance of LX to estimate the 
e  of leaf-on Gliricidia 

sepium forest canopy was also reported by van Gardingen et al. [25]; they found that the PAI 

underestimation decreased from 50% to 15% after the PAI estimates were corrected by 
e  derived 

using LX.  

Compared with the leaf-on deciduous forest scenes, the gap fraction or gap size measurements 

collected at leaf-off deciduous forest scenes would be relatively sufficient as leaves were removed 

from the canopy and only woody components were left. Therefore, the accuracy of the 
w  estimates 

estimated from CC, CLX, and LX at leaf-off deciduous forest scenes would be improved compared 

with those estimated at the leaf-on deciduous forest scenes. A sign of the improvement of the 

accuracy of the 
w  estimates at the leaf-off deciduous forest scenes is that the WAI estimated from 

all combinations of inversion model, 
w  estimation algorithm, and segment size at the leaf-off 

deciduous scenes were closer to the one-to-one line compared with the PAI estimated using the same 

combination of the inversion model, 
e , 

e  estimation algorithm, and segment size at the leaf-on 

deciduous scenes (Figures 9 and 11). The large slope and small RMSE and MAE of the combinations 

of inversion model, 
w  estimation algorithm, and segment size with LX_5 except those 

combinations with Miller_10-65 and Miller_0-80 indicating that the 
w  of leaf-off deciduous scenes 

can be accurately estimated if appropriate 
w  estimation algorithm and segment size was adopted 

(Table A2). 

The PAI estimated from the seven inversion models except Miller_10-65 at the leaf-on coniferous 

forest canopy are close to the one-to-one line, except at the sub-series coniferous scenes of SPS (Figure 

8). This result indicates that the 
e  of the sub-series coniferous scenes of JPSS and OPSW was 

accurately estimated by CLX if appropriate segment size was adopted. Furthermore, accurate PAI 

estimates can be obtained at the sub-series coniferous scenes of JPSS and OPSW if 
e and 

e  were 

considered in the PAI estimation (Figure 8 and Table A1). For the sub-series coniferous scenes of SPS, 

the PAI estimated from all the combinations of inversion model, 
e , 

eΩ  estimation algorithm, and 

segment size at six scenes deviated largely from the one-to-one line, regardless of the inversion 
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model, 
e  estimation algorithm, and segment size used by the combinations, except those 

combinations with Miller_10-65 (Figure 8). Upon further examination, the reference 
e  of the six 

scenes range from 1.0 to 1.35. The stem distribution mode of five of the six scenes is regular. Currently, 

the 
e  estimation algorithms except PCS used in this study cannot effectively deal with the 

situations of regular distribution of the canopy element in space at the scale of beyond-shoot. The 

e  estimation algorithms would overestimate ( )e   in the six scenes with reference 
eΩ  ≥ 1.0, as 

the ( )e   estimates obtained from these 
e  estimation algorithms were always ≤ 1 (Appendix 

C.3). Therefore, the ( )e   overestimation would be the reason for the severe PAI overestimation at 

the six scenes of the sub-series coniferous scenes of SPS. If the six scenes with reference 
e  ≥ 1 were 

removed from the sub-series coniferous scenes of SPS, then the combinations of inversion model, 
e

, 
e  estimation algorithm, and segment size with LX_15 would perform the best followed by 

combinations with the same inversion model but with CLX to estimate the PAI of the sub-series 

coniferous scenes of SPS, except combinations with Miller_10-65, Miller_0-80, and Miller_0-90. This 

finding is different from the conclusion of Pisek et al. [60], who reported that CLX outperformed 

other 
e  algorithms (CC, LX, and CMN) to estimate the 

e  of an old Scots Pine plot with the age 

of 124 years. The one plot covered in the study of Pisek et al. [60] and only six scenes of the sub-series 

coniferous scenes of SPS left after removing those SPS scenes with reference 
e  ≥ 1 may have 

contributed to the differences between the conclusions drawn from these two studies. 

In conclusion, the best performance of 
e  and 

w  estimation algorithms in estimating the 
e  

and 
w  of leaf-on and leaf-off forest canopy is the function of tree species and plant functional types. 

The different characteristics of the clumping effect of canopy element and woody component 

between the leaf-on deciduous scenes, leaf-on coniferous scenes, and leaf-off deciduous scenes and 

the obvious differences between the ( )e   and ( )w   estimates derived from the four 
e  and 

w  estimation algorithms (CC, CLX, LX, and PCS) with different theoretical basis have contributed 

to the different conclusions of the best combination of 
e  and 

w  estimation algorithm and 

segment size to estimate the 
e  and 

w  of the leaf-on and leaf-off scenes (Figures 6, 8, 9, and 11, 

Tables A1 and A2). No universally valid 
e  and 

w  estimation algorithm and segment size is 

available to accurately estimate the 
e  and 

w  of all leaf-on and leaf-off scenes, respectively. This 

finding indicates that there is still room to improve the performance of the currently available 
e  

and 
w  estimation instruments and algorithms to accurately estimate the 

e  and 
w  of leaf-on 

and leaf-off forest canopy, especially for those canopies with reference 
e  and 

w  > 1 (Appendix 

C.3). 

There are several critical problems still existed for the four 
e  and 

w  estimation algorithms. 

For example, segment size is a key parameter for LX and CLX to estimate the 
e  and 

w  of leaf-on 

and leaf-off forest canopy. However, determining appropriate segment sizes of LX and CLX is 

difficult, particularly for the DHP approach [18,26,45]. Gonsamo et al. [26] reported that the 
e  

estimates derived from LX decreased evidently by decreasing segment sizes from 15° to 5° and 

slightly changed further by decreasing segment sizes from 5° to 2.5°. The minor variations in the 
e  

estimates obtained from LX using the latter range of segment sizes indicate that the spatial 

distribution of the canopy element in all segments was approaching the assumption of random 

distribution. Improved accuracy of 
e  estimates obtained from LX with smaller segment sizes was 

reported by previous studies [26,45]. This trend was also observed in the present study (Tables A1 

and A2). However, the proportions of segments without gaps in all the segments also increased 

dramatically if small segment sizes were used to estimate 
e  and 

w  [18,26,45]. The logarithm of 

the gap fraction of these segments without gaps gave undefined results, and a subjectively assumed 

PAI or WAI is typically assigned to these segments [17,26]. Therefore, the assumed PAI or WAI for 

the segments without gaps would be an error source for LX. On the other hand, the lack of ability of 

LX to recognize and utilize large gaps of between-crown clumping to estimate the 
e  and 

w  of 
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leaf-on and leaf-off forest canopy remains unresolved, regardless of segment size ranging from large 

(120°) to small (5° or 2.5°). 

Besides the two disadvantages of LX described, there are two more problems related to the small 

segment size faced for CLX. Firstly, the short length of segment increases the possibility of null gaps 

or full gaps in the transect of segment as reported previously [18,26,45]. Secondly, the short length of 

segment will likely violate the assumption of an infinite horizontal plane defined by the CC algorithm 

[58]. However, CC relies on the collected gap size measurements to evaluate the clumping effect of 

the canopy element and woody component at the segment scale. Therefore, the limited and 

insufficient gap sizes collected by CLX at the transect of each segment compared with TRAC would 

become the weakness of CLX in evaluating the clumping effect of the canopy element and woody 

component at the segment scale. The combinations of the inversion model, 
e , 

e  and 
w  

estimation algorithm, and segment size with CLX did not always perform better than other 

combinations with the same inversion models but with different 
e  and 

w  estimation algorithms 

to estimate the PAI and WAI of leaf-on and leaf-off scenes (Figures 8, 9, and 11, Table A1 and A2). 

This finding is not consistent with the conclusions of Gonsamo and Pellikka [41], Leblanc and Fourier 

[18], and Woodgate [45] that CLX is better than other 
e  estimation algorithms (CC, LX, and PCS) 

in estimating the 
e  of the leaf-on forest canopy. Both the plant functional types, 3D forest scenes 

and segment sizes contributed to the differences between the conclusions drawn in the present and 

previous studies. The RMSE and MAE of the PAI and WAI estimated from the combination of 

inversion model, 
e , 

e  and 
w  estimation algorithm, and segment size with LX_5 at the leaf-on 

and leaf-off deciduous scenes were smaller than those estimated from the combinations with the 

same inversion model but with CLX (Table A1), illustrating that the clumping effect of the canopy 

element and woody component at the segment scale was not thoroughly measured by CC for CLX. 

For PCS, the significant PAI and WAI overestimation for the combination of the inversion model, 

e , 
e , and 

w  algorithm and segment size with PCS illustrated that PCS overestimated the 
eΩ  

and 
wΩ  remarkably at both the leaf-on and leaf-off scenes (Figures 8, 9, and 11). The 

e  and 
w  

overestimation for PCS was also reported in previous studies [41,43]. The combinations of the 

inversion model, 
e , 

e , and 
w  estimation algorithm and segment size with CC underestimated 

the PAI and WAI of leaf-on and leaf-off forest scenes, except at the SPS coniferous scenes (Figures 8, 

9, and 11). This finding is consistent with the reports of Pisek et al. [60], Leblanc and Fourier [18], and 

Woodgate [45] that parts of the large nonrandom gaps were not removed by CC, leading to an 

underestimation of 
e  and 

w , and underestimated the PAI and WAI of forest canopy further. 

Because the performance of the seven inversion models to estimate the PAI and WAI of the leaf-

on and leaf-off forest canopy with consideration of 
e , 

e , and 
w  were strongly dependent on 

the accuracies of the 
e  and 

w  estimates (Tables A1 and A2) (Appendix C.1). All the above-

mentioned problems of the four 
e  and 

w  algorithms (CC, CLX, LX. and PCS) need to be solved 

reasonably in the future to improve the accuracies of the 
e  and 

w  estimates derived from the 

four algorithms. 

5.4. Which Inversion Model(s) is (are) More Reliable to Estimate the PAI and WAI of the Leaf-on and Leaf-off 

Forest Canopy 

The zenith angle ranges covered by the seven inversion models are apparently different. As 

explained previously, the zenith angle range covered by Miller_10-65 is the reason why the PAI and 

WAI estimated from the combination of the inversion model, 
e , 

e  and 
w  estimation 

algorithm, and segment size with Miller_10-65 were still smaller than those estimated from other 

combinations with different inversion models but with the same 
e  and 

w  estimation algorithm 

and segment size. On the other hand, the PAI and WAI underestimation of Miller_10-65 illustrates 

the necessity of incorporating the gap fraction measurements at large zenith angles, which were not 

covered by Miller_10-65, to the PAI and WAI estimation of the leaf-on and leaf-off forest canopy. 

However, a problem in using the gap fraction measurements at large zenith angles in the PAI and 
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WAI estimation is the high probability of obtaining null gap fraction measurements at these zenith 

angles, as reported by previous studies [17,25,26] and the present study (Figure 4). Several solutions 

were proposed to address the undefined inversion of the null gap fraction measurements, such as 

adding half or one pixel to the annulus of the DHP images or defining arbitrary upper PAI or LAI 

limit values of 8 or 10 [17,25,26]. However, those proposed solutions cannot derive accurate PAI and 

LAI estimates for those annuli without gaps due to evident subjectivities. Therefore, the processing 

solutions of the null gap fraction measurements would produce estimation errors to the derived PAI 

and WAI estimates. Significant differences were observed between 
_ _ 0 90e MillerPAI 

 and 
_ _ 0 90e DHPPAI 

 

or 
_ _ 0 90e MillerWAI 

 and 
_ _ 0 90e DHPWAI 

 estimates at the leaf-on and leaf-off scenes, respectively, 

especially for those scenes with PAI~ > 2.5 at the leaf-on scenes and WAI~ > 2.25 at the leaf-off scenes 

(Figures 7c,f and 10c,f) (Appendix C.2). The significant differences indicate that the 
ePAI  and 

eWAI  

estimation were largely affected by the processing solutions of the null gap fraction measurements 

as the null gap fraction measurements at the zenith angles close to the horizon were completely 

removed for DHP_0-90 at all annuli compared with Miller_0-90 (Figure 4), and the same zenith angle 

range of 0–90° was covered by the two inversion models. Similarly, the PAI and WAI estimation 

errors of the processing solutions of the null gap fraction measurements can also be avoided for the 

two inversion models of LAI-2200 and DHP_0-81 as the same zenith angle width of annulus of 10° 

was adopted by the two inversion models to obtain the gap fraction measurements similar to DHP_0-

90. 

Compared with six other inversion models, the 57.3 inversion model shows three advantages in 

estimating the PAI and WAI of the leaf-on and leaf-off forest canopy. Firstly, the 57.3 inversion model 

is simple to apply. Furthermore, the ( )eG   and ( )wG   of leaf-on and leaf-off forest canopy can be 

assumed to be equal to approximately 0.5 at the zenith angle of 57.3°. Thus, no ( )eG   and ( )wG   

measurements need to be collected in the field if the 57.3 inversion model would be used to estimate 

the PAI and WAI of forest canopy. Secondly, determining the exposure settings for imaging DHP 

photographs that can avoid overexposure near the zenith and underexposure near the horizon is 

difficult in the field. Accurate exposure settings to collect DHP images can be obtained due to the 

reason that only the gap fraction measurements with zenith angles near 57.3° are needed for the 57.3 

inversion model. Thirdly, determining a reasonable threshold to binarize all the pixels of DHP images 

with zenith angles ranging from 0° to 90° is difficult because light conditions change across different 

image areas of the DHP images. Therefore, an accurate threshold that is used to binarize the DHP 

images can be obtained if only the pixels with zenith angles near 57.3° were considered for the PAI 

and WAI estimation. The 57.3 inversion model does not always outperform other inversion models 

to estimate the PAI and WAI of all leaf-on and leaf-off forest canopies although it can provide PAI 

and WAI estimates with relatively good accuracies compared with other inversion models if 

appropriate 
e  and 

w  estimation algorithms would be adopted, and the 
e , 

e , and 
w  

would be considered in the PAI and WAI estimation (Figure 8, 9, and 11 and Appendix C.1). With 

the merits of the 57.3 inversion model described, the 57.3 inversion model can be treated as an 

alternative choice to estimate the PAI and WAI of the leaf-on and leaf-off forest canopy if the best 

combination of inversion model, 
e , 

e  and 
w  estimation algorithm, and segment size remains 

unknown. 

In conclusion, based on Figures 8, 9, and 11, Tables A1 and A2, we suggest that 57.3, LAI-2200, 

and Miller_0-90 followed by DHP_0-81, DHP_0-90, and Miller_0-80 to be used in estimating the PAI 

and WAI of the leaf-on and leaf-off forest canopy. The PAI and WAI estimated from Miller_0-90 were 

closer to the one-to-one line compared with those derived from DHP_0-90, although the impact of 

the null gap fraction measurements of each zenith angle on the PAI and WAI estimation was difficult 

to evaluate quantitatively in the field, caution is needed if Miller_90 would be used to estimate the 

PAI and WAI of the leaf-on and leaf-off forest canopy, especially for canopies with large PAI and 

WAI. 

The performance of the seven inversion models to estimate the PAI and WAI of the leaf-on and 

leaf-off forest canopy with consideration of 
e , 

e , and 
w  was significantly affected by the 

e  
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and 
w  estimation algorithm and segment size used, and also the true PAI and WAI, and the 

reference 
e  and 

w  of leaf-on and leaf-off forest scenes (Appendix C). Therefore, the performance 

of the inversion model to estimate the PAI and WAI of the leaf-on and leaf-off forest canopy is the 

function of 
e  and 

w  estimation algorithm, segment size, reference 
e  and 

w , PAI, WAI, and 

plant functional types. No universal best inversion model is available to estimate the PAI and WAI 

of all the leaf-on and leaf-off forest canopies even if 
e , 

e , and 
w  were considered in the PAI 

and WAI estimation. 

5.5. Limitations and Perspectives 

If Miller_0-90 (Equation (3)) would be adopted to estimate the 
ePAI  and 

eWAI  of the leaf-on 

and leaf-off forest scenes based on the mean ( )ep   and ( )wp   at zenith angles in the 0–90° range 

with interval of 1° (Figure 3), then the proportions of the 
ePAI  and 

eWAI  measurements derived 

at the zenith angle range of 0–9° to the 
ePAI  and 

eWAI , which were estimated using Miller_0-90 

(Equation (3)) at the full zenith angle range of 0–90°, are both below 1% at the leaf-on and leaf-off 

scenes. This result indicates that the estimation error is small when we assume that the ( )e   and 

( )w   estimates with zenith angles in the 0–9° range with interval of 1° are equal to the ( )e   and 

( )w   at the zenith angle of 10° in the PAI and WAI estimation of the five inversion models of 

Miller_0-80, Miller_0-90, LAI-2200, DHP_0-81, and DHP_0-90 in this study. An option to cope with 

the defect of the assumption made in this study is to estimate the ( )e   and ( )w   of the leaf-on 

and leaf-off forest canopy at the zenith angle range of 0–9° using TRAC, multispectral canopy imager 

(MCI) [8], and digital cover photography (DCP) [24] at the zenith angles ranging from 0–9°. 

A dataset of field measurements of the PAI and WAI of leaf-on and leaf-off forest canopy would 

be useful to understand the performance of the seven inversion models in estimating the PAI and 

WAI when the field plots cover a wider range of PAI, WAI, 
e , 

w , 
e , tree species composition, 

and plant functional types. The ground slope would also influence the seven inversion models to 

estimate the PAI and WAI of the leaf-on and leaf-off forest canopy and can be evaluated in the future. 

6. Conclusions 

The conclusions of this study are as follows: (1) Both the factors of inversion model, canopy 

element and woody component projection functions, canopy element and woody component 

estimation algorithms, and segment size are contributed to the differences between the PAI and WAI 

estimated from the seven inversion models. (2) No universally valid combination of inversion model, 

e , 
e  and 

w , estimation algorithm, and segment size is available to obtain accurate estimates of 

PAI and WAI for all leaf-on and leaf-off forest canopies. The best combination of inversion model, 

e , 
e  and 

w  estimation algorithm, and segment size to estimate the PAI and WAI of leaf-on and 

leaf-off forest scenes is the function of inversion model, 
e , 

e  and 
w  estimation algorithm, 

segment size, tree species composition, and plant functional types. (3) The impact of 
eG  and 

wG  

measurements on the PAI and WAI estimation of the leaf-on and leaf-off forest canopy can be 

reduced to a low level (<4%) and neglected in the PAI and WAI estimation by adopting appropriate 

inversion models. Accurate PAI and WAI of forest canopy can be estimated from the DHP method 

without the field measurements of ( )eG   and ( )wG  . (4) We suggest 57.3, LAI-2200, and Miller_0-

90 followed by DHP_0-81, DHP_0-90, and Miller_0-80 to be used in estimating the PAI and WAI of 

the leaf-on and leaf-off forest canopy. Caution is needed if Miller_90 would be used to estimate the 

PAI and WAI of the leaf-on and leaf-off forest canopy, especially for canopies with large PAI and 

WAI. (5) The performance of the combinations of inversion model, 
e , 

eΩ  and 
w  estimation 

algorithm, and segment size to estimate the PAI and WAI of leaf-on and leaf-off forest canopy 

strongly relied on the accuracies of the 
e  and 

w  estimates. LX and CLX performed better than 

the two other algorithms in estimating the 
e  and 

w  of the leaf-on and leaf-off forest canopy, 

respectively. However, the best combinations of the 
eΩ and 

w  estimation algorithm, and segment 
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size to estimate the 
e  and 

w  of the leaf-on and leaf-off forest canopy depend on the plant 

functional types and tree species composition. Caution is needed in applying the conclusions of this 

study to estimate the PAI and WAI of forest canopy with different tree species compositions or plant 

function types. 
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Appendix A. List of Symbols 

 57.3 the 57.3 inversion model (Equation (4)) 

 ( , )eA    the projection coefficient at the canopy element inclination angle of 
e  and the view 

zenith angle of   

 CC the gap size distribution algorithm 

 CLX the combination of gap size and logarithmic averaging algorithm 

 CMN the modified gap size distribution algorithm 

 DBH diameter at breast height 

 DCP digital cover photography 

 DHP digital hemispherical photography 

 DHP_0-81 the DHP_0-81 inversion model (Equation (9)) 

 DHP_0-90 the DHP_0-90 inversion model (Equation (10)) 

 ( )ef   canopy element angle distribution function 

 ( )wf   woody component angle distribution function, 
w  is the woody component inclination 

angle 

 
eG  canopy element projection function 

 
wG  woody component projection function 

 ( )eG   the mean projection of unit surface area of the canopy element on the plane 

perpendicular to the view zenith angle of   

 ( )wG   the mean projection of unit surface area of the woody component on the plane 

perpendicular to the view zenith angle of   

 
_e iG  the 

eG  estimate of the ith annulus 

 
_w iG  the 

wG  estimate of the ith annulus 

 ILMSVP In situ LAI Measurements Simulation and Validation Platform software 

 JBSS Järvselja birch stand (summer) 

 JBSW Järvselja birch stand (winter) 

 JPSS Järvselja pine stand (summer) 

 LAI leaf area index 

 LAI-2200 the LAI-2200 inversion model (Equation (7)) 

 LUT look-up table 

 LX the logarithmic averaging algorithm 

 LXW the modified logarithmic averaging algorithm 

 MAE mean absolute error 

 MCI multispectral canopy imager 

 Miller_0-90 the Miller theorem (Equation (3)) 

 Miller_10-65 the Miller_10-65 inversion model (Equation (5)) 
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 Miller_0-80 the Miller_0-80 inversion model (Equation (6)) 

 MTVSP the measurement tools of vegetation structural parameters software 

 OPSW Ofenpass pine stand (winter) 

 PAI plant area index 

 
ePAI  effective plant area index 

 
_ _ 0 90e MillerPAI 

 effective plant area index estimated from Equation (3) with the assumption that 

e  or ( )e   is equal to 1 

 
_ 57.3ePAI  effective plant area index estimated from Equation (4) with the assumption that 

e  

or '( )e   is equal to 1 

 
_ _10 65e MillerPAI 

 effective plant area index estimated from Equation (5) with the assumption that 

e  or ( )e   is equal to 1 

 
_ _ 0 80e MillerPAI 

 effective plant area index estimated from Equation (6) with the assumption that 

e  or ( )e   is equal to 1 

 
_ 2200e LAIPAI 

 effective plant area index estimated from Equation (7) with the assumption that 
e  

or 
_e i  is equal to 1 

 
_ _ 0 81e DHPPAI 

 effective plant area index estimated from Equation (9) with the assumption that 
e  

or 
_e i  is equal to 1 

 
_ _ 0 90e DHPPAI 

 effective plant area index estimated from Equation (10) with the assumption that 

e  or 
_e i  is equal to 1 

 PCS the Pielou’s coefficient of spatial segregation algorithm 

 ( )ep   canopy element gap fraction at   

 
_ ( )e i ip   the canopy element gap fraction of the ith annulus at   

 R2 pearson correlation coefficient 

 RMSE the root mean square error 

 SPS Scots pine scenes 

 TRAC tracing radiation and architecture of canopies 

 WAI woody area index 

 
eWAI  effective woody area index 

 
_ _ 0 90e MillerWAI 

 effective woody area index estimated from Equation (3) with the assumption that

( )w   is equal to 1 

 
_ 57.3eWAI  effective woody area index estimated from Equation (4) with the assumption that 

'( )w   is equal to 1 

 
_ _10 65e MillerWAI 

 effective woody area index estimated from Equation (5) with the assumption that 

( )w   is equal to 1 

 
_ _ 0 80e MillerWAI 

 effective woody area index estimated from Equation (6) with the assumption that 

( )w   is equal to 1 

 
_ 2200e LAIWAI 

 effective woody area index estimated from Equation (7) with the assumption that 

w_ i  is equal to 1 

 
_ _ 0 81e DHPWAI 

 effective woody area index estimated from Equation (9) with the assumption that 

w_ i  is equal to 1 

 
_ _ 0 90e DHPWAI 

 effective woody area index estimated from Equation (10) with the assumption that 

w_ i  is equal to 1 

 
iW  the weight factor of the ith annulus 

   zenith angle 

 
i  the center zenith angle of the ith annulus 
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 '  the single zenith angle (or centered at an angle for a range of angles) of the PAI estimation 

 
e  canopy element clumping index 

 
w  woody component clumping index 

 ( )e   canopy element clumping index at   

 ( )w   woody component clumping index at   

 
_e i  the 

e  estimate of the ith annulus 

 
w_ i  the 

w  estimate of the ith annulus 

 
e  needle-to-shoot area ratio 

Appendix B. In Situ LAI Measurements Simulation and Validation Platform (ILMSVP) 

ILMSVP provides the ability of generating forest scenes based on the 3D tree models and the 

input parameters of stand density, tree stem distribution mode, and scene size. The forest scenes were 

generated in accordance with the following rules: (i) The voxel-based tree models with the voxel 

element size of 0.1 m × 0.1 m × 0.1 m were produced for all explicit 3D tree models one by one. The 

total voxel number of each tree model was calculated based on the height, width, and depth of the 

minimum bounding box of the tree model. For each tree model, the attribute of 1 was assigned to 

those voxels, within which any canopy elements are located, otherwise, 0 was assigned to other 

voxels. (ii) If the stand density of the scene is smaller than the designated parameter, then a tree model 

was randomly chosen from all the candidate tree models and randomly placed in the scene. Newly 

placed tree models in the scenes were tested to check if they overlapped with existing surrounding 

trees within the 3D space before they were placed in the scenes. If the voxels with the attribute of 1 

of the newly placed tree models overlapped with any voxels with the attribute of 1 of other tree 

models, then the newly placed tree models were either rotated with a specified azimuth angle to 

avoid overlapping or moved to a new location. (iii) All trees in the scenes (100 m × 100 m) were placed 

following a customized tree stem distribution pattern, such as random, regular, and clumped. The 

spatial locations of the tree models of those scenes with clumped stem distribution mode were 

calculated using the deformation-kernel method proposed by Brendan and Przemyslaw [65]. (iv) All 

the scenes with size of 900 m × 900 m were reproduced using a scene-cloning technique. Firstly, a 

small scene with size of 100 m × 100 m was created through the aforementioned two steps. Then, four 

scenes were cloned in four orthogonal directions adjacent to the small scene. The other forest scenes 

(100 m × 100 m) within the scenes with size of 900 m × 900 m were cloned in a similar manner using 

a different centric scene each time. To improve the randomness of the scenes, all the cloned scenes 

were rotated with a random azimuthal angle of 0°, 90°, 180°, and 270° before planting. 

Reverse ray-tracing method was previously used to generate the black-and-white binary DHP 

images within the forest scenes [18,41,42]. This method was also adopted by ILMSVP to generate the 

binary DHP images within the central area of each scene with the size of 25 m × 25 m. A perfect 

fisheye lens (with 180° field of view) with polar projection was chosen to generate DHP images. The 

resolution of the generated DHP images was 4000 pixels × 4000 pixels, and the camera height was 1.0 

m. For every pixel in the generated images, a single ray was traced from the camera position in the 

direction of the pixel centroid to determine if there was an intersection event between the ray and 

canopy element [45]. The ray tracing would result in preclassified binary images of black (0, 

intersected; canopy element) and white pixels (1, passed or not intersected; sky). For simplicity, the 

DHP images were assumed to be generated under ideal uniform sky conditions. Majasalmi et al. [66] 

and Nackaerts et al. [67] reported that a sampling scheme with 12 to 15 randomly distributed 

sampling points would be enough to obtain the accurate gap fraction measurements of the forest 

canopy. A cross-pattern sampling scheme comprising 13 sampling points (5 m separation excluding 

central sampling point), of which 4 are located near the center with a distance of 5 m between one 

another, was adopted by ILMSVP as the sampling scheme to arrange the sampling points at the 

central area of each scene. This cross-sampling scheme was also used by Leblanc and Fournier [18] to 

obtain the 
e  and 

w  of the leaf-on and leaf-off forest canopy based on DHP method. 
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Appendix C. Factors that Affect the Performance of the Seven Inversion Models to Estimate the 

PAI and WAI of Leaf-on and Leaf-off Forest Scenes 

Appendix C.1. Inversion Model, 
e  and 

w , Estimation Algorithm, and Segment Size 

Appendix C.1.1. Leaf-on Forest Scenes 

Large differences were observed between the PAI derived from the combinations of inversion 

model, 
e , 

e  estimation algorithm, and segment size with different inversion models but with the 

same 
e  estimation algorithm and segment size, and from the combinations with the same 

inversion model but with different 
e  estimation algorithms and segment sizes, and from the 

combinations with the same inversion model and 
e  estimation algorithm but with different 

segment sizes (Figures 8 and 9, Table A1). For example, Figure 9d shows large differences between 

the PAI estimated from the three combinations of LAI-2200 and CC, LAI-2200 and LX_5 and LAI-

2200 and PCS at the leaf-on deciduous scenes (Table A1). Another evidence of the significant 

differences between the PAI estimates of the three combinations are the large differences between the 

RMSE, MAE and regression slope of the three combinations, which are 1.79, 1.33, 0.54; 0.89, 0.57, 0.75; 

and 2.60, 2.50, 0.64, respectively (Table A1). Similarly, the RMSE, MAE and regression slope of the 

two combinations of LAI-2200 and LX_15 and LAI-2200 and LX_30 are 1.28, 0.96, 0.68, and 1.52, 1.19, 

0.63, respectively (Table A1). The large differences between the RMSE, MAE, and regression slope of 

the two groups of the three combinations of inversion model, 
e , 

e  estimation algorithm, and 

segment size indicate that the performance of the seven inversion models to estimate the PAI of leaf-

on coniferous and deciduous scenes with consideration of 
e  and 

e  are strongly dependent on 

the 
e  estimation algorithm and segment size used. The RMSE, MAE, and regression slope of the 

PAI, which were estimated from the three combinations of Miller_10-65 and LX_5, Miller_0-90, and 

LX_5, and DHP_0-90 and LX_5 at the sub-series coniferous scenes of JPSS and OPSW, are 2.22, 1.87, 

0.46; 0.83, 0.54, 0.82, and 1.29, 0.85, 0.65, respectively (Table A1). The large difference between the 

RMSE, MAE, and regression slope of the three combinations illustrate that the inversion model also 

plays a key role to influence the performance of the combination of inversion model, 
e , 

e  

estimation algorithm, and segment size to estimate the PAI of leaf-on deciduous and coniferous 

scenes (Figures 8 and 9, Table A1). 

The combinations of inversion model, 
e , 

e  estimation algorithm, and segment size with 

CLX and LX, and CC and LX performed better than the combinations with the same inversion model 

but with different 
e  estimation algorithms to estimate the PAI of the two sub-series coniferous 

scenes of JPSS and OPSW and another sub-series coniferous scenes of SPS, respectively, except those 

combinations with Miller_10-65 and Miller_0-80 (Figure 8 and Table A1). For leaf-on deciduous 

scenes, the combinations of inversion model, 
e , 

e  estimation algorithm, and segment size with 

LX and CLX performed better than the combinations with the same inversion model but with two 

other 
e  estimation algorithms to estimate the PAI, except the combinations with Miller_10-65 

(Figure 9 and Table A1). 
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Table A1. Correlation statistics between true and estimated PAI calculated from seven inversion 

models with consideration of 
eG , 

e , and 
e  at three groups of sub-series scenes. RMSE and MAE 

are expressed in PAI units (m2/m2). 

Inversion 

Models 
PAI Estimation 

Sub-Series 

Scenes  
R2 Intercept Slope RMSE MAE 

Miller_10-65 

Considering 
e  and 

e  

(CC) 

JPSS, OPSW 0.98 0.05 0.40 1.80 1.53 

SPS 0.93 −0.62 0.70 2.05 2.19 

JBSS 0.95 0.14 0.32 2.83 2.40 

Considering 
e  and 

eΩ  

(CLX_15) 

JPSS, OPSW 0.98 −0.01 0.62 1.20 0.96 

SPS 0.93 −0.24 0.84 1.10 0.90 

JBSS 0.97 0.34 0.40 2.27 1.82 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.98 0.07 0.56 1.31 1.05 

SPS 0.93 −0.33 0.83 1.24 1.0 

JBSS 0.96 0.34 0.38 2.39 1.92 

Considering 
e  and 

e  

(CLX_45) 

JPSS, OPSW 0.97 0.11 0.53 1.37 1.10 

SPS 0.93 −0.41 0.82 1.35 1.18 

JBSS 0.96 0.34 0.36 2.46 2.0 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.21 0.67 1.23 1.01 

SPS 0.93 −0.34 0.87 1.08 0.89 

JBSS 0.98 0.14 0.46 2.22 1.87 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.21 0.57 1.52 1.34 

SPS 0.93 −0.77 0.89 1.39 1.09 

JBSS 0.97 0.07 0.41 2.50 2.08 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.98 −0.20 0.52 1.68 1.49 

SPS 0.93 −0.92 0.87 1.61 1.33 

JBSS 0.96 0.05 0.37 2.66 2.21 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.86 1.57 0.97 1.69 1.37 

SPS 0.54 4.73 0.17 1.80 1.48 

JBSS 0.81 2.39 0.41 1.30 0.89 

Miller_0-80 

Considering 
e  and 

e  

(CC) 

JPSS, OPSW 0.98 −0.03 0.66 1.09 0.97 

SPS 0.92 −0.83 1.10 0.89 0.59 

JBSS 0.94 0.19 0.46 2.18 1.73 

Considering 
eγ  and 

eΩ  

(CLX_15) 

JPSS, OPSW 0.98 0.05 0.90 0.39 0.21 

SPS 0.91 0.12 1.17 1.27 0.88 

JBSS 0.96 0.46 0.56 1.55 1.04 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.98 0.11 0.83 0.49 0.31 

SPS 0.91 −0.12 1.18 1.13 0.78 

JBSS 0.96 0.44 0.53 1.68 1.16 

Considering 
e  and 

e  

(CLX_45) 

JPSS, OPSW 0.98 0.14 0.79 0.57 0.40 

SPS 0.92 −0.30 1.18 1.02 0.67 

JBSS 0.96 0.43 0.51 1.76 1.23 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.25 0.98 0.40 0.28 

SPS 0.91 0.09 1.19 1.32 0.84 

JBSS 0.97 0.22 0.62 1.45 1.02 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.29 0.86 0.73 0.62 

SPS 0.91 −0.62 1.25 1.10 0.82 

JBSS 0.96 0.11 0.57 1.77 1.34 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.98 −0.31 0.80 0.92 0.82 

SPS 0.92 −0.93 1.25 0.99 0.87 

JBSS 0.95 0.08 0.53 1.96 1.51 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.86 2.51 1.22 3.28 3.23 

SPS 0.55 6.70 0.27 3.75 3.50 

JBSS 0.84 2.90 0.53 1.58 1.27 

Miller_0-90 

Considering 
e  and 

e  

(CC) 

JPSS, OPSW 0.98 −0.11 0.89 0.51 0.37 

SPS 0.93 −0.79 1.38 1.40 0.68 

JBSS 0.93 −0.02 0.69 1.46 1.24 

Considering 
e  and 

e  

(CLX_15) 

JPSS, OPSW 0.98 −0.02 1.14 0.53 0.42 

SPS 0.91 0.65 1.33 2.40 1.85 

JBSS 0.95 0.34 0.75 0.93 0.61 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.98 0.03 1.07 0.41 0.31 

SPS 0.91 0.31 1.37 2.25 1.62 

JBSS 0.95 0.32 0.72 1.04 0.74 

JPSS, OPSW 0.98 0.07 1.03 0.35 0.30 
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Considering 
e  and 

e  

(CLX_45) 

SPS 0.92 0.04 1.40 2.14 1.30 

JBSS 0.94 0.31 0.70 1.11 0.81 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.33 1.22 0.53 0.37 

SPS 0.91 0.58 1.36 2.49 1.93 

JBSS 0.96 0.11 0.82 0.83 0.54 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.39 1.11 0.34 0.28 

SPS 0.92 −0.29 1.46 2.18 1.29 

JBSS 0.95 −0.0 0.76 1.13 0.92 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.98 −0.41 1.04 0.41 0.26 

SPS 0.92 −0.82 1.52 2.0 0.94 

JBSS 0.94 −0.04 0.73 1.31 1.12 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.86 2.86 1.33 3.94 3.89 

SPS 0.77 7.10 0.43 4.72 4.64 

JBSS 0.88 2.85 0.71 1.96 1.79 

LAI-2200 

Considering 
e  and 

e  

(CC) 

JPSS, OPSW 0.98 0.02 0.76 0.77 0.63 

SPS 0.93 −1.12 1.30 1.01 0.91 

JBSS 0.95 0.26 0.54 1.79 1.33 

Considering 
e  and 

e  

(CLX_15) 

JPSS, OPSW 0.98 0.07 1.07 0.43 0.34 

SPS 0.92 −0.10 1.43 2.19 1.54 

JBSS 0.97 0.59 0.67 1.01 0.53 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.98 0.16 0.98 0.32 0.27 

SPS 0.92 −0.37 1.44 1.97 1.28 

JBSS 0.96 0.57 0.63 1.17 0.68 

Considering 
e  and 

e  

(CLX_45) 

JPSS, OPSW 0.98 0.21 0.93 0.31 0.21 

SPS 0.92 −0.56 1.43 1.80 0.94 

JBSS 0.96 0.56 0.61 1.26 0.75 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.30 1.16 0.40 0.31 

SPS 0.92 −0.18 1.47 2.26 1.54 

JBSS 0.98 0.29 0.75 0.89 0.57 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.34 1.01 0.39 0.28 

SPS 0.92 −1.04 1.53 1.90 0.93 

JBSS 0.97 0.16 0.68 1.28 0.96 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.98 −0.34 0.93 0.58 0.51 

SPS 0.92 −1.38 1.52 1.60 0.87 

JBSS 0.96 0.13 0.63 1.52 1.19 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.86 3.01 1.54 4.72 4.73 

SPS 0.54 8.21 0.31 5.35 5.27 

JBSS 0.83 3.75 0.64 2.60 2.50 

DHP_0-81 

Considering 
e  and 

e  

(CC) 

JPSS, OPSW 0.98 −0.06 0.80 0.72 0.62 

SPS 0.91 −1.04 1.35 1.27 1.03 

JBSS 0.94 0.24 0.52 1.87 1.36 

Considering 
e  and 

e  

(CLX_15) 

JPSS, OPSW 0.98 0.13 1.03 0.37 0.30 

SPS 0.89 0.21 1.39 2.32 1.78 

JBSS 0.96 0.56 0.61 1.24 0.71 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.98 0.16 0.96 0.30 0.22 

SPS 0.90 −0.11 1.40 2.12 1.48 

JBSS 0.96 0.52 0.59 1.38 0.84 

Considering 
e  and 

e  

(CLX_45) 

JPSS, OPSW 0.98 0.19 0.92 0.30 0.16 

SPS 0.90 −0.34 1.41 1.96 1.12 

JBSS 0.95 0.51 0.57 1.46 0.90 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.21 1.12 0.36 0.28 

SPS 0.89 0.24 1.40 2.39 1.82 

JBSS 0.97 0.31 0.69 1.13 0.70 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.30 1.01 0.38 0.25 

SPS 0.90 −0.61 1.48 2.06 1.18 

JBSS 0.96 0.19 0.64 1.45 1.05 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.98 −0.33 0.95 0.54 0.44 

SPS 0.90 −1.01 1.49 1.81 1.04 

JBSS 0.95 0.15 0.60 1.64 1.23 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.86 3.05 1.29 4.02 4.02 

SPS 0.55 7.67 0.35 5.04 4.87 

JBSS 0.86 3.09 0.57 1.81 1.55 

DHP_0-90 
JPSS, OPSW 0.98 0.03 0.72 0.87 0.73 

SPS 0.91 −1.06 1.31 1.17 1.22 
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Considering 
e  and 

e  

(CC) 
JBSS 0.95 0.25 0.49 2.0 1.50 

Considering 
e  and 

e  

(CLX_15) 

JPSS, OPSW 0.97 0.17 0.93 0.31 0.19 

SPS 0.90 −0.09 1.38 2.04 1.47 

JBSS 0.96 0.53 0.58 1.39 0.85 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.97 0.21 0.88 0.35 0.19 

SPS 0.90 −0.33 1.39 1.87 1.24 

JBSS 0.96 0.50 0.56 1.52 0.96 

Considering 
e  and 

e  

(CLX_45) 

JPSS, OPSW 0.97 0.24 0.84 0.41 0.21 

SPS 0.90 −0.51 1.39 1.74 0.93 

JBSS 0.96 0.49 0.54 1.59 1.01 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.13 1.02 0.29 0.19 

SPS 0.90 −0.10 1.40 2.10 1.50 

JBSS 0.97 0.30 0.65 1.29 0.85 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.20 0.91 0.52 0.41 

SPS 0.90 −0.81 1.46 1.83 1.01 

JBSS 0.96 0.19 0.60 1.60 1.16 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.98 −0.22 0.86 0.69 0.58 

SPS 0.90 −1.12 1.46 1.62 0.96 

JBSS 0.95 0.16 0.56 1.78 1.33 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.87 2.69 1.23 3.49 3.42 

SPS 0.69 6.61 0.47 4.43 4.19 

JBSS 0.86 2.92 0.55 1.64 1.31 

57.3 

Considering 
e  and 

e  

(CC) 

JPSS, OPSW 0.97 −0.15 0.84 0.70 0.47 

SPS 0.93 −1.78 1.51 1.36 0.72 

JBSS 0.95 0.11 0.60 1.67 1.34 

Considering 
e  and 

e  

(CLX_15) 

JPSS, OPSW 0.97 0.22 1.09 0.64 0.47 

SPS 0.89 0.16 1.43 2.49 1.96 

JBSS 0.97 0.65 0.66 1.00 0.50 

Considering 
e  and 

e  

(CLX_30) 

JPSS, OPSW 0.97 0.30 1.0 0.45 0.36 

SPS 0.90 −0.29 1.47 2.27 1.67 

JBSS 0.96 0.56 0.63 1.17 0.67 

Considering 
e  and 

e  

(CLX_45) 

JPSS, OPSW 0.97 0.33 0.94 0.39 0.30 

SPS 0.91 −0.59 1.51 2.15 1.32 

JBSS 0.96 0.52 0.62 1.25 0.75 

Considering 
e  and 

e  

(LX_5) 

JPSS, OPSW 0.98 −0.31 1.23 0.59 0.39 

SPS 0.90 −0.04 1.48 2.53 1.85 

JBSS 0.97 0.29 0.76 0.87 0.48 

Considering 
e  and 

e  

(LX_15) 

JPSS, OPSW 0.98 −0.34 1.06 0.38 0.24 

SPS 0.91 −1.14 1.60 2.18 1.18 

JBSS 0.96 0.15 0.69 1.25 0.89 

Considering 
e  and 

e  

(LX_30) 

JPSS, OPSW 0.97 −0.36 0.99 0.51 0.42 

SPS 0.92 −1.72 1.66 1.97 1.11 

JBSS 0.96 0.12 0.65 1.44 1.11 

Considering 
e  and 

e  

(PCS) 

JPSS, OPSW 0.82 3.52 1.57 5.38 5.33 

SPS 0.47 8.53 0.25 5.46 5.34 

JBSS 0.83 3.53 0.55 2.14 1.96 

All correlations are significant (p < 0.05, two-tailed t-test) except the combinations of inversion model, 

e , 
e  estimation algorithm, and segment size with PCS at the sub-series coniferous scenes of SPS. 

For each inversion model, the best two combinations of inversion model, 
e , 

e  estimation 

algorithm, and segment size to estimate the PAI of three groups of sub-series scenes are indicated in 

boldface and red color in Table A1. 

Appendix C.1.2. Leaf-off Forest Scenes 

Large differences were observed between the WAI derived from the combinations of inversion 

model, 
w  estimation algorithm, and segment size with different inversion models but with the 

same 
w  estimation algorithm, and segment size, and from the combinations with the same 

inversion model but with different 
w  estimation algorithms and segment sizes (Table A2 and 

Figure 11). For example, Figure 11d shows large differences between the WAI estimated from the 

three combinations of LAI-2200 and CC, LAI-2200 and LX_5, and LAI-2200 and PCS at the leaf-off 
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deciduous scenes (Table A2). Another evidence of the large differences between the WAI estimates 

of the three combinations are the significant differences between the RMSE, MAE, and regression 

slope of the three combinations, which are 0.32, 0.20, 0.72; 0.15, 0.07, 0.90, and 0.68, 0.66, and 1.22, 

respectively (Table A2). Similarly, the RMSE, MAE, and regression slope of the three combinations 

of Miller_10-65 and CC, Miller_0-80 and CC and 57.3 and CC are 0.74, 0.59, 0.42; 0.49, 0.34, 0.60, and 

0.30, 0.18, and 0.76, respectively (Table A2). The obvious differences between the RMSE, MAE, and 

regression slope of the two groups of the three combinations of inversion model, 
w  estimation 

algorithm and segment size indicate that the performance of the combination of inversion model, 
w  

estimation algorithm and segment size to estimate the WAI of leaf-off deciduous scenes strongly rely 

on the inversion model and 
w  estimation algorithm used. No significant differences were observed 

between the WAI estimated from the combinations of inversion model, 
w  estimation algorithm 

and segment size with the same inversion model and 
w  estimation algorithm (LX and CLX) but 

with different segment sizes (Figure 11 and Table A2). For example, the mean variations in proportion 

between the WAI estimated from 57.3 and CLX_15 and those derived from 57.3 and CLX_30, and 57.3 

and CLX_45 are 8% and 12%, respectively. Similarly, the mean variations in proportion between the 

WAI estimated from 57.3 and LX_5 and those derived from the two combinations of 57.3 and LX_15 

and 57.3 and LX_30 are 9% and 12%, respectively. These results illustrate that the option of segment 

size is not the key factor that affects the performance of the combination of inversion model, 
w  

estimation algorithm, and segment size to estimate the WAI of leaf-off deciduous scenes. 

The combinations of inversion model, 
w  estimation algorithm, and segment size with LX and 

CLX performed better than the combinations with the same inversion model but with two other 
w  

estimation algorithms to estimate the WAI of leaf-off deciduous scenes, except the combinations with 

Miller_10-65, Miller_0-80, and DHP_0-90 (Table A2). The combination of inversion model, 
w  

estimation algorithm, and segment size with PCS tended to systematically overestimate the WAI at 

the leaf-off deciduous scenes except the combinations with Miller_10-65 (Figure 11). 

Table A2. Correlation statistics between true and estimated WAI of leaf-off deciduous forest scenes 

estimated from seven inversion models considering 
wG  and 

w . The RMSE and MAE are expressed 

in WAI units (m2/m2). 

Inversion Models PAI Estimation R2 Intercept Slope RMSE MAE 

Miller_10-65 

Considering 
w  (CC) 0.99 0.05 0.42 0.74 0.59 

Considering 
w  (CLX_15) 0.96 0.21 0.51 0.50 0.30 

Considering 
w  (CLX_30) 0.96 0.25 0.45 0.55 0.35 

Considering 
w  (CLX_45) 0.96 0.27 0.42 0.57 0.38 

Considering 
w  (LX_5) 0.98 0.03 0.53 0.60 0.47 

Considering 
w  (LX_15) 0.98 0.03 0.48 0.68 0.54 

Considering 
w  (LX_30) 0.98 0.03 0.45 0.71 0.56 

Considering 
w  (PCS) 0.98 0.21 0.76 0.23 0.10 

Miller_0-80 

Considering 
w  (CC) 0.98 0.07 0.60 0.49 0.34 

Considering 
w  (CLX_15) 0.97 0.25 0.69 0.27 0.17 

Considering 
w  (CLX_30) 0.97 0.30 0.63 0.31 0.21 

Considering 
w  (CLX_45) 0.97 0.31 0.60 0.34 0.21 

Considering 
w  (LX_5) 0.98 0.05 0.74 0.32 0.22 

Considering 
w  (LX_15) 0.98 0.04 0.67 0.41 0.29 

Considering 
w  (LX_30) 0.98 0.04 0.64 0.45 0.32 

Considering 
w  (PCS) 0.98 0.31 0.98 0.33 0.31 

Miller_0-90 

Considering 
w  (CC) 0.96 −0.03 0.82 0.32 0.21 

Considering 
w  (CLX_15) 0.96 0.18 0.89 0.22 0.15 

Considering 
w  (CLX_30) 0.95 0.21 0.83 0.23 0.17 
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Considering 
w  (CLX_45) 0.95 0.22 0.81 0.24 0.17 

Considering 
w  (LX_5) 0.97 −0.06 0.95 0.21 0.12 

Considering 
w  (LX_15) 0.96 −0.04 0.88 0.26 0.18 

Considering 
w  (LX_30) 0.96 −0.05 0.86 0.29 0.18 

Considering 
w  (PCS) 0.97 0.24 1.16 0.47 0.42 

LAI-2200 

Considering 
w  (CC) 0.98 0.09 0.72 0.32 0.20 

Considering 
w  (CLX_15) 0.97 0.33 0.84 0.24 0.18 

Considering 
w  (CLX_30) 0.97 0.38 0.76 0.25 0.17 

Considering 
w  (CLX_45) 0.97 0.40 0.73 0.26 0.16 

Considering 
w  (LX_5) 0.98 0.07 0.90 0.15 0.07 

Considering 
w  (LX_15) 0.98 0.06 0.81 0.23 0.14 

Considering 
w  (LX_30) 0.98 0.05 0.77 0.28 0.19 

Considering 
w  (PCS) 0.97 0.39 1.22 0.68 0.66 

DHP_0-81 

Considering 
w  (CC) 0.98 0.08 0.69 0.36 0.22 

Considering 
w  (CLX_15) 0.97 0.29 0.78 0.21 0.15 

Considering 
w  (CLX_30) 0.97 0.32 0.72 0.24 0.16 

Considering 
w  (CLX_45) 0.97 0.34 0.69 0.25 0.18 

Considering 
w  (LX_5) 0.98 0.07 0.84 0.20 0.11 

Considering 
w  (LX_15) 0.98 0.06 0.76 0.28 0.19 

Considering 
w  (LX_30) 0.98 0.06 0.73 0.32 0.21 

Considering 
w  (PCS) 0.98 0.37 1.07 0.48 0.47 

DHP_0-90 

Considering 
w  (CC) 0.98 0.09 0.65 0.40 0.25 

Considering 
w  (CLX_15) 0.97 0.28 0.74 0.23 0.15 

Considering 
w  (CLX_30) 0.97 0.32 0.68 0.26 0.17 

Considering 
w  (CLX_45) 0.97 0.33 0.65 0.28 0.18 

Considering 
w  (LX_5) 0.98 0.08 0.79 0.24 0.14 

Considering 
w  (LX_15) 0.98 0.07 0.72 0.33 0.21 

Considering 
w  (LX_30) 0.98 0.07 0.69 0.37 0.24 

Considering 
w  (PCS) 0.98 0.35 1.02 0.40 0.40 

57.3 

Considering 
w  (CC) 0.98 0.05 0.76 0.30 0.18 

Considering 
w  (CLX_15) 0.97 0.46 0.73 0.28 0.22 

Considering 
w  (CLX_30) 0.97 0.46 0.66 0.29 0.16 

Considering 
w  (CLX_45) 0.96 0.45 0.65 0.29 0.16 

Considering 
w  (LX_5) 0.98 0.08 0.89 0.16 0.06 

Considering 
w  (LX_15) 0.98 0.06 0.81 0.23 0.12 

Considering 
w  (LX_30) 0.98 0.06 0.78 0.27 0.14 

Considering 
w  (PCS) 0.97 0.44 1.16 0.67 0.65 

All correlations are significant (p < 0.05, two-tailed t-test). For each inversion model, the best 

performance of the two combinations of inversion model, 
w  estimation algorithm and segment 

size to estimate the WAI of leaf-off deciduous scenes are indicated in boldface and red color in Table 

A2. 

Appendix C.2. The True PAI and WAI of Leaf-on and Leaf-off Forest Scenes 

Scene PAI and WAI also affect the performance of the seven inversion models to estimate the 

PAI and WAI of leaf-on and leaf-off scenes. For leaf-on deciduous scenes, the PAI underestimation 

increased with the scene PAI obviously at the leaf-on deciduous forest scenes with PAI > 3.5 (Figure 9). 

A sign of this trend is that the regression slope of the PAI estimated from all the combinations of 

inversion model, 
e , 

e  estimation algorithm, and segment size at the leaf-on deciduous scenes 

are below one (Table A1). For leaf-on coniferous scenes, the seven inversion models, except Miller_10-
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65, overestimated PAI at the SPS coniferous scenes with PAI > 6.0 if 
e  and 

e  were considered in 

the PAI estimation (Figure 8). All the seven inversion models except Miller_10-65 and Miller_0-90 

tended to underestimate the WAI at the leaf-off deciduous scenes with WAI > 2.5, even though the 

w  was considered in the WAI estimation (Figure 11). 

Appendix C.3. The Reference 
e  and 

w  of Leaf-on and Leaf-off Scenes 

Figure A1 show the mean ( )e   of the six leaf-on coniferous scenes with reference 
e  > 1 and 

the mean ( )w   of the five leaf-off deciduous scenes with reference 
w  > 1. The 

e  and 
w  

estimates were derived using CC, CLX, LX, and PCS. All 
eΩ  estimation algorithms seem to 

overestimate the ( )e   at zenith angles near 57.3°, especially for LX, CLX, and PCS (Figure A1a). 

Similarly, all 
w  estimation algorithms overestimated the ( )w   at zenith angles near 57.3° except 

CC (Figure A1b). 

  

Figure A1. Mean ( )e   and ( )w   derived from CC, CLX, LX, and PCS at the six leaf-on 

coniferous scenes with reference 
e  > 1 (a) and five leaf-off deciduous scenes with reference 

w  > 

1 (b), respectively. 
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