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Abstract: The neighborhood-based method was proposed and widely used in the change detection 

of synthetic aperture radar (SAR) images because the neighborhood information of SAR images is 

effective to reduce the negative effect of speckle noise. Nevertheless, for the neighborhood-based 

method, it is unreasonable to use a fixed window size for the entire image because the optimal 

window size of different pixels in an image is different. Hence, if you let the neighborhood-based 

method use a large window to significantly suppress noise, it cannot preserve the detail information 

such as the edge of a changed area. To overcome this drawback, we propose a spatial-temporal 

adaptive neighborhood-based ratio (STANR) approach for change detection in SAR images. STANR 

employs heterogeneity to adaptively select the spatial homogeneity neighborhood and uses the 

temporal adaptive strategy to determine multi-temporal neighborhood windows. Experimental 

results on two data sets show that STANR can both suppress the negative influence of noise and 

preserve edge details, and can obtain a better difference image than other state-of-the-art methods. 

Keywords: adaptive; change detection; heterogeneity; neighborhood information; ratio operator; 

synthetic aperture radar (SAR) 

 

1. Introduction 

Change detection techniques can be applied to detect changes that occurred in the study area, 

which usually uses remote sensing images acquired in the same geographical area on two different 

dates [1]. In the last few decades, this technique has been widely used in environmental monitoring, 

forest monitoring, disaster assessment, etc. [1–3]. Moreover, it has significant potential in dynamic 

monitoring for the national geographical state of China [4]. 

Compared with the optical remote sensing satellites, synthetic aperture radar (SAR) satellites 

are insensitive to atmospheric and sunlight conditions, which increases the significance of extracting 

information from SAR images [5]. Hence, in recent years, with the development of SAR images 

processing methods and the launch of more SAR satellites, SAR images have been widely used in 

environmental remote sensing [6], ground subsidence monitoring [7], topographic mapping [8], 

resource exploration [9], change detection [10–13], etc. 

Generating the difference image is a key step for change detection in SAR images [5,13]. In this 

context, subtraction and ratio (R) operators are two classic methods. Because of the multiplicative 

nature of speckle noise [14,15] in SAR images, compared with the subtraction operator, the R operator 

can decrease the influence of calibration and radiometric errors, and is suitable for obtaining the 

difference image from SAR images [16,17]. To highlight different radiometries (e.g., with increasing 

and decreasing radiometries) changing simultaneously, an improved ratio (IR) operator was 

mailto:huifuzhuang@163.com
mailto:kzdeng@cumt.edu.cn


Remote Sens. 2018, 10, 1295  2 of 19 

 

proposed for the change detection in SAR images [18]. In addition, a log ratio (LR) operator was 

widely used in the change detection of SAR images [19,20] because it can not only transform 

multiplicative noise into additive noise but also compresses the value range of the R operator. To 

restrain the influence of noise with local mean information, a mean ratio (MR) operator was reported 

for change detection in SAR images [21]. Recently, inspired by the heterogeneity of the local 

neighborhood used in filter algorithms [14,22], the neighborhood-based ratio (NR) [5] and improved 

neighborhood-based ratio (INR) [13] methods were proposed to improve the performance of MR. For 

MR, NR, and INR, a window with a certain size will be applied to the entire image. However, good 

change detection results are obtained with them when the optimal window is used. The optimal 

window size of the entire image is the compromised window size of the optimal window sizes of all 

pixels. The optimal window size of the pixels in a homogeneous area is larger than that in a 

heterogeneous area and the number of the pixels in homogeneous areas of an image is usually larger 

than that in heterogeneous areas [22,23]. Therefore, the optimal window size of the most pixels (i.e., 

the pixels in homogeneous areas of an image) is the same as (or approximately equal to) the optimal 

window size of the entire image, while the optimal window size of the other pixels (i.e., the pixels in 

heterogeneous areas of an image) is significantly different from the optimal window size of the entire 

image. For a given image, the optimal window size for the entire image is generally artificially 

determined by comparing multiple experimental results at different window sizes. Actually, there is 

an implicit assumption for such an artificial method to determine the optimal window size that the 

experimenter has a desired experimental result (the reference map), which is compared with the 

experimental results at different window sizes to determine the optimal window size. Nevertheless, 

in the practical application of change detection, we do not have the reference map and do not know 

which areas have changed, thus we do not know what kind of result is good. Therefore, in the 

practical application of change detection, it is hard to determine the optimal window artificially, 

which affects the reliability of change detection results generated with MR, NR, and INR [5,13,21], 

thereby reducing their value in practical applications. Moreover, it is unreasonable to extract 

neighborhood information with the same window size for all the pixels of an image because the 

optimal window size of different pixels in an image is different. On one hand, the optimal window 

is a large window for a homogeneous area because it is beneficial to significantly restrain the negative 

influence of speckle noise, thereby accurately describing the change occurred in multi-temporal SAR 

images. On the other hand, the optimal window is a small window for a heterogeneous area because 

it is beneficial to preserve the detail information, such as edges, thereby obtaining the change map 

with accurate edges of changed areas. Hence, it would be better to extract the neighborhood 

information of all the pixels from their optimal windows rather than a fixed window; that is, different 

window sizes are used for different pixels rather than the same window size for the entire image. The 

neighborhood information extracted from the homogeneous region is valuable and meaningful, thus 

the optimal neighborhood window of a pixel should be a homogeneous region. Therefore, we employ 

the heterogeneity of a neighborhood to describe its homogeneity degree and select the optimal 

window size that satisfies the setting condition adaptively. On this basis, the spatial-temporal 

adaptive neighborhood-based ratio (STANR) method is proposed for change detection in SAR 

images. 

This paper is organized into five sections. Section 2 describes the INR and proposed method. 

Section 3 presents experimental data sets and results. Discussion on the experimental results and the 

proposed method is shown in Section 4. Finally, conclusions are drawn in Section 5. The general 

scheme of the proposed approach is shown in Figure 1. 
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Figure 1. General scheme of the proposed approach. 

2. Methods 

2.1. INR 

Different from MR, INR utilizes the heterogeneity   to combine the center pixel information 

and its neighborhood information, where   is used to balance between restraining noise and 

preserving the detail information [5]. 
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where  ( )x  is the standard deviation of a neighborhood area, and ( )u x  is the mean of a 
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INR, as shown in Equation (2), was proposed to overcome three drawbacks of NR [13]. 
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2.2. Spatial Adaptive Window 

Given a pixel, its optimal window size is unknown; however, we can confirm its dynamic range 

min max
[ , ]N N . If the heterogeneity   of a window is smaller than a threshold, the window can be 

treated as a homogeneous window. The balance between noise suppression and detail preservation 

is the key to suppress the influence of speckle noise by using the neighborhood information. For a 

homogeneous region, a larger window is useful to suppress the influence of speckle noise, and for a 

heterogeneous region, a smaller window is useful to keep details such as edges. However, there is 

significant bias when estimating neighborhood information with smaller sample sizes [24]. The 

heterogeneity test with a large window is more reliable than a small window. Therefore, we adopted 

the window search strategy from large window to small window. The spatial adaptive window 

algorithm is described as Algorithm 1. 

Algorithm 1: Spatial adaptive window 

Begin 

(1) Set the minimum window min
N  and the maximum window max

N . There are w
N = ( max

N  −

min
N )/2 + 1 different sizes of windows. 

(2) Set the heterogeneity threshold T . If the heterogeneity   of a window is smaller than T , 

then this window is treated as a homogeneous window. 

(3) Set current window 
max

N N . 

(4) Compute the heterogeneity N  of the current window. If N  < T , go to Step (6); otherwise, 

go to Step (5). 

(5) If 
min

N N , go to Step (6); otherwise,  2N N , go to Step (4). 

(6) Save the optimal window N  of the current center pixel. If the current pixel is not the last pixel, 

move to the next pixel, and continue from Step (3); otherwise, the adaptive window of the entire 

image has been calculated, therefore, go to End. 

End 

2.3. Temporal Adaptive Window 

For change detection, multiple images are needed for processing. For the pixels in the same 

location in multi-temporal images, how to select the window size adaptively is a problem that needs 

to be considered. In this context, we originally proposed three main strategies to select the multi-

temporal window sizes: (1) Computing the spatial adaptive window of the image acquired in 1
T  (

2
T ), then the window size is used in both the images acquired in 1

T  and 2
T . (2) Computing the 

spatial adaptive window of the new multi-channel image (similar to multispectral image) combined 

with the images acquired in 1
T  and 2

T , where the number of the channels is equal to the number of 

the multi-temporal images and the neighborhood area of the combined new image includes all the 

pixels in the two neighborhood areas in the same location in multi-temporal images and is used to 

compute the heterogeneity in Algorithm 1 (for example, if the neighborhood size is 7 × 7, the 

combined new neighborhood area includes all the pixels (i.e., 2 × 7 × 7 pixels) in the two neighborhood 

areas of the same location in multi-temporal images. The mean and standard deviation of the 2 × 7 × 

7 pixels is used to compute the heterogeneity of the combined new neighborhood). Then, the window 

size is used in both the images acquired in 1
T  and 2

T . (3) Temporal adaptive window selecting 

strategy: compute the spatial adaptive windows of the images acquired in 1
T  and 2

T , respectively, 

then the window sizes are respectively used in the images acquired in 1
T  and 2

T , and two different 

window sizes may be applied to the pixels in the same location in multi-temporal images (this special 

case (for example the following Figure 2c,d) is caused by the changes that occurred in the study area, 

where the center pixel of Figure 2c is located in a homogeneous area, and thus a larger window is 
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selected by the third strategy to specifically restrain the negative influence of speckle noise; however, 

the center pixel of Figure 2d is located in a heterogeneous area, and thus a small window is selected 

by the third strategy to preserve detailed information such as edges). 

Taking into account the special change detection problem, multi-temporal images can be divided 

into the changed and unchanged areas. For the windows acquired with the aforementioned three 

multi-temporal window selecting strategies, there is a small difference for the unchanged areas, while 

there is a large difference for the changed areas and the boundary areas of the changed and 

unchanged areas. 

 

Figure 2. Three examples of multi-temporal neighborhood areas: (a,b) the central changed pixels are 

located in the changed homogeneous areas; (c,d) the central changed pixels are located in the edge 

areas between two different changed areas; (e,f) the central changed pixels are located in the edge 

areas between the unchanged and changed areas. 

Figure 2 presents three examples of multi-temporal neighborhood areas whose center pixels are 

changed. The first type of changed multi-temporal neighborhood areas is shown in Figure 2a,b, the 

gray area shown in Figure 2a becomes the white area shown in Figure 2b. In this case, the window 

selected with the first strategy is similar to the third strategy because   
1 2

. The large window 

could be selected by using the first and third strategies. However, a small window was selected by 

the second strategy because the heterogeneity 12  is significantly larger than 
1

 and 
2
. The first 

and third strategies were better than the second strategy for the first type of changed multi-temporal 

neighborhood areas because they were homogeneous areas and the large window should be selected 

for them. The second type of changed multi-temporal neighborhood areas is shown in Figure 2c,d, 

where the gray area shown in Figure 2c became the black and white areas shown in Figure 2d. The 

center pixel of Figure 2d is located in the boundary area of two changed areas. For the third strategy, 

the large window could be selected for Figure 2c, and the small window could be selected for Figure 
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2d. However, for the first and second strategies, a single window was applied to Figure 2c,d, which 

was significantly unreasonable because the large window should be selected for Figure 2c (a 

homogeneous area) and the small window should be selected for Figure 2d (a heterogeneous area). 

The third type of changed multi-temporal neighborhood areas is shown in Figure 2e,f, where no 

changes occurred in the left part of Figure 2e, and the right part of Figure 2e became the white area 

in Figure 2f. The center pixel of Figure 2f is located in the boundary area of the unchanged and 

changed areas. Similar to the second type, the third strategy was better than the first and second 

strategies because the large window should be selected for Figure 2e (a homogeneous area) and the 

small window should be selected for Figure 2 (a heterogeneous area). 

Two examples of multi-temporal neighborhood areas whose center pixels located in the 

unchanged areas of multi-temporal images are shown in Figure 3. The first type of unchanged multi-

temporal neighborhood areas is shown as Figure 3a,b, whose center pixels are located in the 

homogeneous areas. The second type of unchanged multi-temporal neighborhood areas is shown as 

Figure 3c,d, whose center pixels are located in the boundary areas of two unchanged areas. For the 

multi-temporal neighborhood areas shown in Figure 3, the windows acquired with the 

aforementioned three strategies are similar because there no changes occurred in the multi-temporal 

images such that the heterogeneity of the neighborhood area in image acquired in 1
T  or 2

T  is 

similar to the combined new neighborhood area. The large spatial adaptive window will be selected 

for most unchanged pixels (such as the center pixels of Figure 3a,b) to suppress the negative influence 

of speckle noise, while the small spatial adaptive window will be selected for a few unchanged pixels 

(such as the center pixels of Figure 3c,d) to preserve edge details. 

 

Figure 3. Two examples of unchanged multi-temporal neighborhood areas: (a,b) the center pixels are 

located in the unchanged homogeneous areas; (c,d) the center pixels are located in the edge areas 

between two different unchanged areas. 

In summary, compared with the first and second strategies, it was more reasonable to use the 

third strategy (temporal adaptive window selecting strategy) for multi-temporal neighborhood areas 

in change detection. 

2.4. STANR 

STANR was proposed on the basis of the aforementioned spatial adaptive window algorithm 

and temporal adaptive window selecting strategy. First, a spatial adaptive window algorithm was 

used for multi-temporal SAR images to compute the optimal windows. The temporal adaptive 
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window selecting strategy made it that the different window sizes may be used for a pixel pair in 

multi-temporal SAR images. Second, the heterogeneity maps of multi-temporal SAR images were 

computed by using the optimal windows, and normalizing them to [0, 1]. Finally, the neighborhood-

based ratio difference image was computed with Equation (2). The algorithm of STANR is described 

as Algorithm 2. 

Algorithm 2: STANR 

Begin 

(1) Set the minimum window min
N  and the maximum window max

N . There are w
N  = ( max

N  − 

min
N )/2 + 1 different sizes of windows. 

(2) Set the heterogeneity threshold T . If the heterogeneity   of a window is smaller than T , 

then this window is treated as a homogeneous window. 

(3) On the basis of spatial-temporal adaptive window selecting strategy, compute the adaptive 

windows 1
(T )N  and 2

(T )N  of multi-temporal SAR images with Algorithm 1. 

(4) On the basis of the adaptive windows 1
(T )N  and 2

(T )N , compute the heterogeneity maps 


1

(T )  and  2
(T )  of multi-temporal SAR images, and normalize them to [0, 1] by using Equation 

(3) to get the normalizing heterogeneity maps n 1
(T )  and  n 2

(T ) . 

(5) Compute the neighborhood-based ratio difference with Equation (2) for each pixel pair of multi-

temporal SAR images. 

End 

The proposed STANR method has three input parameters: the minimum window min
N , the 

maximum window max
N , and the heterogeneity threshold T . If the minimum window is set as 3 × 

3, the detail information, such as the edge, will be well preserved; however, the neighborhood 

information, such as heterogeneity, affected by speckle noise, is unreliable, which will limit the 

performance of the proposed approach [24]. Equation (2) can well preserve detailed information, such 

as the edge, because it uses heterogeneity to achieve balance between noise suppression and detail 

preservation, thus the minimum window 5 × 5 is used in this paper. The large window can restrain 

the impact of speckle noise well in homogeneous areas; however, the computation time of a spatial-

temporal adaptive window will increase with the increase of the maximum window. An appropriate 

range for the maximum window is 7 × 7 to 15 × 15. Typically, an 11 × 11 window is enough for most 

images [23]. The tiny change of T  has a small impact on the experimental results obtained with 

STANR because T  is also used as a weight to control the influence of the neighborhood information 

to the center pixel in Equation (2). The appropriate range of the heterogeneity parameter T  is 0.4–

0.6. Typically,  
T

0.5  is enough for most images. To confirm the heterogeneity settings, STANR 

with T  from 0.1 to 0.9 was tested on Peixian and Bern data sets (shown in Section 3.1). The area 

under curve (AUC) [25] of the difference images obtained with STANR is shown in Figure 4. The 

larger the AUC, the better the performance of the method. In the experiment on the Peixian data set, 

the AUC had the maximum value when  
T

0.5 ; when  
T

0.5 , the AUC was approximately equal 

to that with  
T

0.5 . In the experiment on Bern data set, the AUC corresponding to  
T

0.5  was 

approximately equal to the maximum value corresponding to  
T

0.4 . For two difference images 

with the same AUC, the difference image with the smaller T  had an advantage in preserving the 

detailed information, such as the edge, because the smaller T  made the spatial adaptive window 

algorithm select a smaller window for heterogeneous areas such as edges. Therefore,  
T

0.5  was 

enough for the data sets used in this study. 
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Figure 4. AUC of STANR with 
T

 from 0.1 to 0.9 in two data sets. 

3. Experiments and Results 

3.1. Description of Data Sets 

The first data set has two images with resolution 10 m (i.e., Figure 5a,b) acquired in the same 

area through the ALOS-1 satellite. The area shown in the two images is a section of a scene acquired 

in Peixian, China, in July 2008 and August 2009. The second data set (i.e., Figure 6a,b) is composed of 

two images with resolution 30 m acquired by ERS-2 over an area in Bern, Switzerland, in April 1999 

and May 1999. Figures 5c and 6c, defined manually according to an accurate and time-consuming 

visual inspection of the considered SAR images, are reference maps used to facilitate the quantitative 

evaluation of change maps. 

 

Figure 5. Multi-temporal images in Peixian. (a) Image acquired in July 2008. (b) Image acquired in 

August 2009. (c) Reference map, where the changed pixels are shown in white and the unchanged 

pixels are shown in black. 

 

Figure 6. Multi-temporal images in Bern. (a) Image acquired in April 1999. (b) Image acquired in May 

1999. (c) Reference map, where the changed pixels are shown in white and the unchanged pixels are 

shown in black. 
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3.2. Experimental Design 

We first used IR [18], LR [19], MR [21], NR [5], INR [13], generalized likelihood ratio test (GLRT) 

[26], non-local mean ratio (NLMR) [27], and STANR to generate 20 difference images. The windows 

3 × 3, 5 × 5, 7 × 7, and 9 × 9 were applied to MR, NR, INR, and GLRT. The similarity window 5 × 5 and 

the search window 11 × 11 were used for NLMR. The minimum window min
N  = 5, the maximum 

window max
N  = 11, and the heterogeneity threshold T  = 0.5 were used for STANR. Then, the 

change maps were acquired from these difference images with the reasonable thresholds for further 

comparing the performance of different methods. The optimal threshold of the existing automatic 

threshold selection approaches [1,28–34] was calculated under a certain assumption and was 

unreasonable when the assumption was inappropriate [1,13]. To avoid the negative impact of the 

unreasonable threshold on the experiments, a manual trial-and-error procedure (MTEP) was 

employed to obtain the threshold, which has been widely used in the literature focusing on change 

detection [32,35–37]. 

3.3. Experimental Results on Peixian Data Set 

The difference images generated from the Peixian data set by using different methods are shown 

in Figure 7. The section in rectangle A is an unchanged area, while two changed areas are included 

in rectangle B. The changed pixel had a large intensity, while the unchanged pixel had a small 

intensity. In the difference image acquired with IR, it can be seen that many pixels in the rectangle A 

had large intensities, and many pixels in the changed areas of the rectangle B had small intensities. 

In the difference image acquired with LR, the pixels in the unchanged area of the rectangle B had 

small intensities; however, some pixels in the changed areas of the rectangle B also had small 

intensities. In the difference image generated with NLMR, the pixel intensity in the rectangle A was 

smooth, and there was a small intensity difference between the changed and unchanged pixels in 

rectangle B. For the difference images acquired by using MR, with the increase of the window size, 

the pixel intensity in the rectangle A became very smooth because MR exploits the neighborhood 

information of SAR image; the intensity of the unchanged pixel in the rectangle B became larger, and 

it was hard to distinguish the changed and unchanged areas in rectangle B when the window was 9 

× 9, which also reflected the drawback of using the same window size for the entire image. As the 

window size increased, in the difference images obtained with NR and INR, the pixel intensity in the 

rectangle A became very smooth, while the number of the unchanged pixels with small intensities in 

the unchanged area between two changed areas in the rectangle B became smaller. In the difference 

images obtained by GLRT, the unchanged pixel in rectangle A had a small intensity, and the 

boundaries between the changed and unchanged areas in rectangle B were a bit fuzzy. In the 

difference image acquired with STANR, the pixel intensity in rectangle A was very smooth, and there 

were clear boundaries between the changed and unchanged areas in rectangle B, which was a benefit 

from the spatial-temporal adaptive window selection strategy adopted by the proposed method. 

For the difference images acquired by using MR, NR, INR, and GLRT with different window 

sizes on the Peixian data set, the quantitative comparison of them will be carried out in Section 4.1 to 

select the best difference image of each method so that we can adequately compare them with STANR. 

The change maps generated from the difference images obtained with IR, LR, NLMR, and STANR, 

and the change maps generated from the best difference images obtained with MR, NR, INR, and 

GLRT by using the MTEP threshold are presented in Figure 8. Compared with the change maps 

generated with the methods using the neighborhood information of SAR image, there were some 

false alarm pixels in rectangle A of the change maps obtained with IR and LR, which shows that the 

neighborhood information of the SAR image was useful to suppress the adverse effects of the false 

alarm pixels. A further quantitative comparison of the change maps generated from the Peixian data 

set will be presented in Section 4.1. 
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Figure 7. Difference images acquired from the Peixian data set by using (a) IR, (b) LR, (c) NLMR, (d) 

MR 3 × 3, (e) MR 5 × 5, (f) MR 7 × 7, (g) MR 9 × 9, (h) NR 3 × 3, (i) NR 5 × 5, (j) NR 7 × 7, (k) NR 9 × 9, 

(l) INR 3 × 3, (m) INR 5 × 5, (n) INR 7 × 7, (o) INR 9 × 9, (p) GLRT 3 × 3, (q) GLRT 5 × 5, (r) GLRT 7 × 7, 

(s) GLRT 9 × 9, and (t) STANR, 
min

N  = 5, 
max

N  = 11, 
T

 = 0.5. 

 

Figure 8. Change maps acquired from the Peixian data set by using (a) IR, (b) LR, (c) NLMR, (d) MR 

7 × 7, (e) NR 7 × 7, (f) INR 7 × 7, (g) GLRT 7 × 7, and (h) STANR, 
min

N  = 5, 
max

N  = 11, 
T

 = 0.5. 
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3.4. Experimental Results on Bern Data Set 

Figure 9 presents the difference images obtained from the Bern data set by using different 

methods. The section in rectangle A was an unchanged area, two changed areas included in rectangle 

B were separated by an unchanged area. Experimental results were similar to that in the Peixian data 

set. For the difference images obtained with IR and LR, some pixels in the unchanged area of the 

rectangle A had large intensities. The difference image acquired with STANR performed better than 

the other methods using the neighborhood information of SAR images, the pixel intensity in rectangle 

A was very smooth, and there were clear boundaries between the changed and unchanged areas in 

rectangle B. 

 

Figure 9. Difference images acquired from the Bern data set by using (a) IR, (b) LR, (c) NLMR, (d) MR 

3 × 3, (e) MR 5 × 5, (f) MR 7 × 7, (g) MR 9 × 9, (h) NR 3 × 3, (i) NR 5 × 5, (j) NR 7 × 7, (k) NR 9 × 9, (l) 

INR 3 × 3, (m) INR 5 × 5, (n) INR 7 × 7, (o) INR 9 × 9, (p) GLRT 3 × 3, (q) GLRT 5 × 5, (r) GLRT 7 × 7, (s) 

GLRT 9 × 9, and (t) STANR, 
min

N  = 5, 
max

N  = 11, 
T

 = 0.5. 

The quantitative comparison of the difference images obtained with different methods on the 

Bern data set will be carried out in Section 4.2. For the difference images obtained with IR, LR, NLMR, 

and STANR, and the best difference images obtained with MR, NR, INR, and GLRT in the Bern data 

set, the change maps acquired by using MTEP threshold are shown in Figure 10. The experimental 

results were similar to that in the Peixian data set. Compared with the change maps obtained with 

the methods using neighborhood information, there were many false alarm pixels in rectangle A of 

the change maps acquired with IR and LR. Visually, the other change maps were similar to the 
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reference map shown in Figure 6c. The further quantitative comparison of the change maps generated 

from the Bern data set will be presented in Section 4.2. 

 

Figure 10. Change maps acquired from Bern data set by using (a) IR, (b) LR, (c) NLMR, (d) MR 3 × 3, 

(e) NR 5 × 5, (f) INR 5 × 5, (g) GLRT 3 × 3, and (h) STANR, 
min

N  = 5, 
max

N  = 11, 
T

 = 0.5. 

4. Discussion 

The experimental results acquired from the two data sets have been given in Section 3, which 

also presented the qualitative description of the performance of different methods. This section will 

focus on the quantitative discussion of the experimental results and the discussion on the proposed 

method. The receiver operating characteristic (ROC) curve and AUC [25] were employed to compare 

the difference images obtained with different methods. The discussion of change maps is based on 

the following quantitative evaluation parameters: missed alarms, overall error, detected changes, 

Kappa coefficient [38], and F1 score [39]. Let cc
P  represent the number of the pixels that were 

detected as changed and actually changed. Let cu
P  represent the number of the pixels that were 

detected as changed but were actually unchanged. Let uc
P  represent the number of the pixels that 

were detected as unchanged but were actually changed. Let uu
P  represent the number of the pixels 

that were detected as unchanged and actually unchanged. Then, missed alarms is equal to uc
P , 

detected changes is equal to cc
P , and overall error is equal to the sum of cu

P  and uc
P . Let n

P  

represent the number of the pixels in the SAR image, which is equal to the sum of cc
P , cu

P , uc
P , and 

uu
P . Then, the Kappa coefficient can be computed with Equation (4) [38] 

1 2 2
Kappa = ( ) / (1 )k k k  , (4) 

where 1
k  and 2

k  are computed with Equations (5) and (6) 

 
1 cc uu n

( ) /k P P P , (5) 

    




cc cu cc uc uc uu cu uu
2

n n

( )( ) ( )( )P P P P P P P P
k

P P
, (6) 

The F1 score is computed with Equation (7) [39] 

p r p r
F1=2 / ( + )F F F F , (7) 

where 
p

F  and r
F  are computed with Equations (8) and (9) 
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p cc cc cu

/ ( )F P P P , (8) 

 
r cc cc uc

/ ( )F P P P , (9) 

Substituting Equations (8) and (9) into Equation (7), we can get the simplified form of Equation 

(7) 

 
cc cc cu uc

F1=2 / (2 )P P P P , (10) 

4.1. Discussion on Experimental Results of Peixian Data Set 

The ROC curves of the difference images obtained from the Peixian data set with different 

methods are shown in Figure 11. To clearly compare the difference images obtained by using MR, 

NR, INR, and GLRT with different window sizes and the proposed method, the ROC curves of MR, 

NR, INR, and GLRT are plotted separately with STANR, which are shown as Figure 11a–d. The 

performance of the method is better when the ROC curve is closer to the upper left corner. It is clear 

that STANR performed better than MR, NR, INR, and GLRT. For MR, the difference images acquired 

with the window sizes 7 × 7 and 9 × 9 were obviously better than those with the window sizes 3 × 3 

and 5 × 5; and the difference image obtained with the 7 × 7 window was slight better than that with 

the 9 × 9 window. For NR, INR, and GLRT, the ROC curve of the difference image obtained with the 

7 × 7 window was the closest to the upper left corner and performed better than that of the other 

window sizes. Figure 11e presents the ROC curves of the difference images obtained by using IR, LR, 

NLMR, and STANR, and the ROC curves of the best difference images obtained by using MR, NR, 

INR, and GLRT, and Table 1 shows their AUC. The larger the AUC, the better the performance of the 

method. The performance of IR and LR was worse than NLMR, MR, NR, INR, GLRT, and STANR 

because they ignore the spatial neighborhood information of SAR images. The performance of the 

difference image acquired with STANR was the best, whose ROC curve was closest to the upper left 

corner and the AUC was the largest, which shows the superiority of the spatial-temporal adaptive 

window selection strategy adopted by the proposed method and its applicability in the change 

detection of SAR images. 

Table 1. AUC from using R, LR, NLMR, MR, NR, INR, GLRT, and STANR on the Peixian data set. 

Method IR LR NLMR MR-7 × 7 NR-7 × 7 INR-7 × 7 GLRT-7 × 7 STANR 

AUC 0.908 0.906 0.995 0.992 0.981 0.994 0.994 0.997 

Table 2 presents the five quantitative evaluation parameters of the change maps shown in Figure 

8. A better change map characterizes the smaller missed alarms and overall error, more detected 

changes, and larger Kappa and F1 score. The following is the analysis of Table 2: (1) the change map 

acquired with IR possessed the highest missed alarms (3635) and overall error (4134), the lowest 

detected changes (2586), Kappa (0.544), and F1 score (0.556), which was affected by the speckle noise 

of the SAR image; (2) the change map generated with LR was better than IR because the former could 

transform multiplicative noise into additive noise; (3) NLMR, MR, NR, INR, GLRT, and STANR 

performed better than IR and LR from the perspective of the five quantitative evaluation parameters 

because the neighborhood information was used to restrain the negative impact of speckle noise; (4) 

the change map generated with STANR outperformed the other methods, which had the lowest 

missed alarms and overall error, and the highest detected changes, Kappa, and F1 score because 

STANR selects the window with spatial-temporal adaptive strategy which makes STANR can well 

suppress the negative impact of speckle noise and preserve detailed information such as an edge. 
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Figure 11. ROC curves of the difference images obtained from the Peixian data set by using (a) MR 

with different window sizes, STANR; (b) NR with different window sizes, STANR; (c) INR with 

different window sizes, STANR; (d) GLRT with different window sizes, STANR; and (e) IR, LR, 

NLMR, MR 7 × 7, NR 7 × 7, INR 7 × 7, GLRT 7 × 7, and STANR, 
min

N  = 5, 
max

N  = 11, 
T

 = 0.5. 

Table 2. Missed alarms, overall error, detected changes (in number of pixels), Kappa, and F1 score 

resulting from different approaches on the Peixian data set. 

Method Missed Alarms Overall Error Detected Changes Kappa F1 Score 

IR 3635 4134 2586 0.544 0.556 

LR 2321 2871 3900 0.722 0.731 

NLMR 1119 1360 5102 0.878 0.882 

MR-7 × 7 1134 1431 5087 0.872 0.877 
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NR-7 × 7 1332 1720 4889 0.845 0.850 

INR-7 × 7 1047 1302 5174 0.884 0.888 

GLRT-7 × 7 1051 1333 5170 0.882 0.886 

STANR 855 1217 5366 0.894 0.898 

4.2. Discussion of Experimental Results of Bern Data Set 

Figure 12 shows the ROC curves of the difference images obtained from the Bern data set with 

different methods. Similar to Peixian data set, to clearly compare the difference images acquired by 

using MR, NR, INR, and GLRT with different window sizes and the proposed method, the ROC 

curves of MR, NR, INR, and GLRT are plotted separately with STANR, shown as Figure 12a–d. 

Obviously, the performance of STANR was better than MR, NR, INR, and GLRT. The ROC curves 

related to the Peixian data set were smooth, thus it was easy to compare their performances. 

However, there were a lot of cross-points (such as P  in Figure 12a) among the ROC curves related 

to the Bern data set. In this situation, the right part of P  should be used to compare their 

performances [13]. MR and GLRT had the best difference image when the window was 3 × 3. NR and 

INR had the best difference image when the window was 5 × 5. The ROC curves of the difference 

images obtained by using IR, LR, NLMR, and STANR, and the ROC curves of the best difference 

images obtained by using MR, NR, INR, and GLRT are presented in Figure 12e, and Table 3 shows 

their AUC. NLMR, MR, NR, INR, GLRT, and STANR outperformed IR and LR because they exploited 

the neighborhood information of SAR images. STANR performed better than the other methods, 

which was benefit from the spatial-temporal adaptive window selecting strategy adopted by the 

proposed method. 

Table 3. AUC from using R, LR, NLMR, MR, NR, INR, GLRT, and STANR on the Bern data set. 

Method IR LR NLMR MR-3 × 3 NR-5 × 5 INR-5 × 5 GLRT-3 × 3 STANR 

AUC 0.977 0.985 0.998 0.995 0.996 0.997 0.993 0.999 

Table 4 presents the five quantitative evaluation parameters of the change maps generated from 

the difference images obtained with IR, LR, NLMR, and STANR, and the best difference images 

obtained with MR, NR, INR, and GLRT on the Bern data set. Considering all five measurements, the 

change map acquired with IR was the worst, while the best one was generated with STANR. LR 

outperformed IR because the LR could transform multiplicative noise into additive noise. IR and LR 

performed worse than NLMR, MR, NR, INR, GLRT, and STANR because the neighborhood 

information was ignored by them. STANR performed better than NLMR, MR, NR, INR, and GLRT, 

which had the lowest missed alarms (214) and overall error (302), and the highest detected changes 

(941), Kappa (0.860), and F1 score (0.862) because the spatial-temporal adaptive window selecting 

strategy adopted by STANR could exploit the neighborhood information more reasonably. 

Table 4. Missed alarms, overall error, detected changes (in number of pixels), Kappa, and F1 score 

resulting from different approaches on the Bern data set. 

Method Missed Alarms Overall Error Detected Changes Kappa F1 Score 

IR 368 665 787 0.699 0.703 

LR 357 546 798 0.742 0.745 

NLMR 267 395 888 0.816 0.818 

MR-3 × 3 230 318 925 0.851 0.853 

NR-5 × 5 234 347 921 0.839 0.841 

INR-5 × 5 218 303 937 0.859 0.861 

GLRT-3 × 3 222 317 933 0.853 0.855 

STANR 214 302 941 0.860 0.862 



Remote Sens. 2018, 10, 1295  16 of 19 

 

 

Figure 12. ROC curves of the difference images obtained from the Bern data set by using (a) MR with 

different window sizes, STANR; (b) NR with different window sizes, STANR; (c) INR with different 

window sizes, STANR; (d) GLRT with different window sizes, STANR; and (e) IR, LR, NLMR, MR 3 

× 3, NR 5 × 5, INR 5 × 5, GLRT 3 × 3, and STANR, 
min

N  = 5, 
max

N  = 11, 
T

 = 0.5. 

4.3. Discussion of the Study 

This study reports a STANR method for change detection in SAR images, which aimed to not 

only reduce the negative influence of noise but also obtain the change result with an accurate edge of 

the changed area. In order to achieve this purpose, we needed to extract the valuable neighborhood 

information from a homogeneous window. First, the spatial and temporal adaptive window selecting 

strategies were presented and compared in Sections 2.2 and 2.3 respectively. Then, the method 

selecting the adaptive window in space and time simultaneously was used for the proposed STANR. 

The experiments were conducted on two SAR data sets with spatial resolutions of 10 m and 30 m, 

respectively, and the experimental results showed the efficiency of STANR. Compared with seven 

famous methods for change detection of SAR images, Tables 1 and 3 showed that STANR could 

acquire a better difference image with a larger AUC, and Tables 2 and 4 showed that STANR could 

obtain a more accurate change map with smaller missed alarms and overall error, and larger detected 

changes, Kappa, and F1 score. The performance of STANR was benefited from the adaptive window 
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in space and time simultaneously, which made STANR use a larger window in homogeneous areas 

to reduce the negative influence of noise and use a small window in heterogeneous areas to preserve 

the edge information of the changed area. 

STANR had several input parameters, whose settings have been discussed in Section 2.4. The 

settings recommended and used in this study were effective in the experiments; however, one could 

also try to change them in the applications. For most images, an 11 × 11 maximum window was 

enough for restraining the influence of noise, and a larger window will increase the computational 

cost [23]. The change of heterogeneity threshold in the recommended range 0.4–0.6 had a small 

influence on the change detection result because it was also used as a weight to determine the 

influence of neighborhood information to the center pixel in STANR (i.e., compared with 

heterogeneous areas, the neighborhood information played a more important role in homogeneous 

areas). 

5. Conclusions 

STANR for change detection in multi-temporal SAR images was proposed in this paper. Unlike 

classical methods using the neighborhood information of SAR images with a single window size for 

the entire image, this approach exploited the window sizes selected adaptively, not only in space, but 

also in time. Experiments were conducted on two data sets to confirm the performance of the 

proposed method, and the Kappa and F1 score of STANR were larger than that of the other seven 

methods. For example, for the Peixian data set, the Kappa and F1 score of STANR were 0.894 and 

0.898, respectively, while the highest values of other methods were 0.884 and 0.888, respectively. 

Experimental results showed that STANR could exploit the neighborhood information of multi-

temporal SAR images more reasonably and could both suppress the negative influence of noise and 

preserve edge details. This work contributes to (1) proposing and comparing the applicability of three 

multi-temporal neighborhood windows selecting strategies in change detection, and draw the 

conclusion that the temporal adaptive window selecting strategy is the best; and (2) proposing 

STANR based on a spatial-temporal adaptive neighborhood for change detection in SAR images, 

which can reduce the uncertainty of the change detection results brought by the fixed window 

determined on the experience of user and improve the usability and accuracy in practical applications. 
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