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Abstract: Tree–grass ecosystems are widely distributed. However, their phenology has not yet been 

fully characterized. The technique of repeated digital photographs for plant phenology monitoring 

(hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant 

phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). 

Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the 

phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at 

four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: 

(1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) 

near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). 

GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their 

uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological 

(GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the 

Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv 

outperforms the other VIs in tracking growing season length of GPP. In summary, the results show 

it is promising to track structural and physiology phenology of seasonally dry Mediterranean 

mailto:telmad@bgc-jena.mpg.de
mailto:xma@bgc-jena.mpg.de
mailto:bahrens@bgc-jena.mpg.de
mailto:thammer@bgc-jena.mpg.de
mailto:jpacheco@bgc-jena.mpg.de
mailto:opriego@bgc-jena.mpg.de
mailto:mreichstein@bgc-jena.mpg.de
mailto:mmiglia@bgc-jena.mpg.de
mailto:g.filippa@arpa.vda.it
mailto:e.cremonese@arpa.vda.it
mailto:m.galvagno@arpa.vda.it
mailto:arnaud@ceam.es
mailto:cascon@inia.es
mailto:mpilar.martin@cchs.csic.es
mailto:gmoreno@unex.es
mailto:andrew.richardson@nau.edu


Remote Sens. 2018, 10, 1293 2 of 32 

 

ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better 

represent the variation of GPP. 

Keywords: phenology; tree–grass ecosystem; Dehesa; PhenoCam; near-infrared-enabled digital 

repeat photography; phenological transition date (PTD); growing season length (GSL) 

 

1. Introduction 

Phenology is the study of recurring life cycle stages, and their timing and relationship with 

environmental factors [1,2]. Phenology controls the seasonality of ecosystem functions and plant 

feedbacks to climate through diverse processes, such as changes in the surface albedo and the 

exchange of CO2 between atmosphere and biosphere [3–6]. Despite its importance, phenology is not 

always well described in Earth system models [7–9], in particular, the environmental factors 

controlling phenology are still uncertain [6,10]. Therefore, additional efforts to monitor and model 

plant phenology are needed to improve the representation of phenology in Earth system models 

[6,11]. 

Conventional visual monitoring of phenology dates back to 705 CE [12], and still plays an 

important role in evaluating the impacts of climate change on ecosystems [13–16]. However, 

conventional monitoring requires substantial field work, which limits spatial and temporal 

representativeness [17]. 

Near-surface remote sensing is becoming a more frequently used tool to monitor vegetation 

phenology at the ecosystem scale. In recent years, installation of commercial digital cameras for 

phenology monitoring (i.e., PhenoCam) has proliferated throughout diverse biomes and continents 

[18–23], which has led to the consolidation of national and continental monitoring networks [24–28]. 

The use of PhenoCam consistently reduces manual labor, guarantees time series of high temporal 

resolution, and creates a permanent data record from which visual interpretation and qualification 

can be made at any later point in time [29]. The proximity to the target ecosystem allows the cameras 

to track phenological transition dates (PTDs), such as leaf emergence, leaf discoloration, senescence, 

and green up and senescence of vegetation with high temporal resolution [23,30], as well as monitor 

the different plant types within the camera’s field of view (FOV; [24]). Nowadays, the increasing 

number of sites with digital cameras co-located with ecosystem-atmosphere CO2 flux measurements 

collected using the eddy covariance (EC) technique are contributing to understanding the 

relationship between phenology of structure and function of ecosystems [28,31,32]. 

Green chromatic coordinates (GCC) is the most commonly used vegetation index (VI) extracted 

from PhenoCam, due to the requirement of only three visible spectral bands for computation, and it 

is used to represent plant development throughout the season [33]. PhenoCam, with an additional 

near-infrared (NIR) band which is more sensitive to vegetation structural change than visible bands, 

has increased the use of the PhenoCam-based normalized difference vegetation index (CamNDVI) 

for the same purpose [29,34,35]. Both GCC and CamNDVI are considered plausible indexes to bridge 

satellite and ground-based observations of phenology [24]. For instance, GCC and CamNDVI have 

been shown to be effective (though not always consistent) tools for describing greenness variation of 

individual plant species and ecosystems in a variety of plant functional types [29,36], and for 

evaluating and linking remote sensing phenology products [18,37–39] with ground observations [40]. 

Recently, Badgley et al. [41] introduced a new vegetation index called near-infrared reflectance 

of vegetation index (NIRv), designed to mitigate the mixed pixel problem (determining the fraction 

of vegetated land surface and reconstructing the signal attributable to vegetation) to better represent 

photosynthesis of ecosystems. A strong correlation between satellite-based NIRv and gross primary 

productivity (GPP) at global scale was observed, which outperforms the correlation between NDVI 

and GPP [40]. As such, it would be interesting to know if this new index could provide an advantage 

in tracking seasonal GPP and phenology compared to the widely used CamNDVI and GCC at 

ecosystem-scale. The computation of NIRv, as well as other VIs, such as the ratio vegetation index 
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(RVI [42]), is possible with NIR-enabled PhenoCam by following the approach proposed by Petach 

et al. [29] and Filippa et al. [34] for the computation of CamNDVI. However, up to now, we are not 

aware of studies evaluating the differences between PTDs derived from multiple PhenoCam-based 

VIs from PhenoCam (GCC, CamNDVI, CamNIRv, and CamRVI). 

Past studies related to derived PTDs from PhenoCam mainly focus on temperate/boreal forests 

and grassland (e.g., [32]), and only a few recent studies have focused on seasonally dry tree–grass 

ecosystems [43,44]. Considering that tree–grass ecosystems are a widely distributed land cover type, 

which occupies 16–35% of the Earth’s land surface [45–47], it is necessary to further investigate the 

methods to extract PTDs for these ecosystems. 

Moreover, the increasing number of sites with PhenoCam associated with EC flux 

measurements open interesting perspectives to evaluate: first, the consistency between PTDs derived 

from PhenoCam-based VIs and PTDs of ecosystem functioning (physiological phenology, i.e., [48]); 

second, the direct relationship between PhenoCam-based VIs and GPP. However, to our knowledge, 

only a few studies pay special attention to the differences between phenology of ecosystem structure 

and of ecosystem functioning and carbon fluxes [28,32]. 

In this study, our main objective is to evaluate the potential of PhenoCam to monitor phenology 

of seasonally dry Mediterranean tree–grass ecosystems. Specifically, the objectives are (1) to 

characterize structural and physiological phenology of tree–grass ecosystems and their main climatic 

drivers using PhenoCam and GPP derived from EC measurements; (2) to compare the PTDs and 

growing season length (GSL) derived from different PhenoCam-based VIs, and to evaluate their 

performance in tracking the PTDs and GSL derived from GPP. 

2. Materials and Methods 

2.1. Sites Description, Instrument Set-Up, and Data Sources 

The sites used in this study are Mediterranean tree–grass ecosystems, composed predominantly 

of an herbaceous layer and low-density evergreen broadleaf oak trees (Quercus ilex; ~20 tree ha−1; 

Figure 1). Three sites are located approximately 500 m apart from each other in Majadas de Tiétar, 

Cáceres, Spain (39°56′24.68″N, 5°46′28.70″W), while one site is located in La Albuera, Spain 

(38°42′6.48″N, 6°47′9.24″W). The experimental sites in Majadas de Tiétar belong to a large-scale 

manipulation experiment, where the three areas of approximately 20 ha were manipulated with 

addition of nitrogen (FLUXNET ID ES-LM1), nitrogen and phosphorous (FLUXNET ID ES-LM2), and 

the last was kept as control (FLUXNET ID ES-LMa). The experimental site in the La Albuera 

(FLUXNET ID ES-Abr) is a natural ecosystem with no manipulation. In this study, we did not focus 

on the fertilization, but only on the evaluation of the effectiveness of different vegetation indexes to 

represent the ecosystem functions. The Majadas de Tiétar and La Albuera are characterized by a long-

term annual mean air temperature of 16.7 ± 0.2 °C and 18.3 ± 1.5 °C, respectively; while mean annual 

rainfall is ca. 650 mm and 400 mm, respectively. The rain falls typically from November to May with 

a very dry summer [49]. 

In each site, an EC system was installed at 15 m of height to measure the carbon, water and 

energy fluxes (Section 2.2 for more details). The fluxes data are available from March 2014 in ES-LM1, 

ES-LM2, and ES-LMa; and from October 2015 for ES-Abr. Two broadband Decagon SRS (spectral 

reflectance sensor) sensors with a FOV of 36 degrees were installed on a rotating arm in each tower 

area. Downwelling irradiance and upwelling radiance at 650 nm (red spectral band) and 810 nm 

(near-infrared spectral band) were measured every 5 min for tree and grasses from 30 October 2015. 

A NIR-enabled digital camera (Stardot NetCam 5MP), was mounted at the top of the EC tower 

(facing north) at each site. Images were collected every 30 min (from 10:00 to 14:30 UTC) as JPEG 

format. The camera settings were defined according to the “PhenoCam” protocol 

(https://phenocam.sr.unh.edu/webcam/tools/). Sequential red, blue, green (RGB) and RGB + NIR 

images were collected by the Stardot camera according to Petach et al., [29]. FOVs of cameras in ES-

LM1 and ES-LM2 were stable during the study period (from 1 August 2014 to 31 July 2017), whereas 

the FOV of ES-LMa was not constant and the camera experienced a white balance problem until 3 
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December 2015. At the ES-Abr site, images were available from 1 January 2016. Hence, RGB and 

RGB+NIR images were available for the analysis from 1 August 2014 to 31 July 2017 for ES-LM1 and 

ES-LM2; from 3 December 2015 to 31 July 2017 for the ES-LMa site; and from 1 January 2016 to 31 

July 2017 for the ES-Abr site. This guarantees a total of 9 site-years for the following analysis. 

 

Figure 1. Experimental setup at Majadas de Tiétar and La Albuera in the Spain (left panel) and an 

example of regions of interest (ROIs) in each experimental site (right panel): Grass, Tree, and 

Ecosystem ROIs, respectively. At each site, an eddy covariance (EC) system was installed at a height 

of 15 m to measure the fluxes of the whole ecosystem. A near-infrared-enabled camera was installed 

at 15 m beside the EC system to take pictures half-hourly between 10:00 and 14:30. Three EC towers 

are in the Majadas de Tiétar (FLUXNET IDs are ES-LM1, ES-LM2, and ES-LMa, respectively) and an 

EC tower in the La Albuera (FLUX ID: ES-Abr), respectively (not shown). The map of Majadas de 

Tiétar was provided courtesy of the Spanish Program of Aerial Orthophotography. 

2.2. EC Data Processing and Flux Partitioning to GPP 

Each EC system consists of a three-dimensional sonic anemometer (R3-50, Gill LTD, Lymington 

UK) and an infrared gas analyzer (LI-7200, Licor Bioscience, Lincoln, NE, USA) to measure mixing 

ratios of CO2 and H2O. Additional vertical CO2 and H2O concentration profiles were measured at 

seven levels between the surface and the measurement height in the EC tower (0.1, 0.5, 1.0, 2.0, 5.0, 

9.0, and 15 m above ground with a LI840, Licor Bioscience, Lincoln, NE, USA). Meteorological 

variables such as air temperature (Ta), wind speed (WS), relative humidity (RH), incoming global 

radiation (Rg), photosynthetically active radiation (PAR), and precipitation (Prec) were also 

measured at each site. 

Raw EC data were collected at 20 Hz, and were then processed using EddyPro 6.2. The main 

processing procedures for CO2 fluxes included (1) coordinate rotation using planar fit method [50]; 

(2) CO2 time lag adjustments by covariance maximization in predefined windows; (3) spectral 

corrections performed for low and high pass-filtering effects according to Moncrieff et al. [51] and 

Moncrieff et al. [52]. The calculated flux for CO2 was then quality checked [53,54]. The net ecosystem 

exchange (NEE) flux was corrected by adding storage fluxes (integrated CO2 fluxes using seven levels 

of CO2 profiles when possible, otherwise using 1-point storage) to CO2 flux.  
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The u*-threshold, which was used as a criterion to discriminate low- and well-mixed eddies in 

the nighttime, was estimated for each year and tower individually (the median of u*-threshold ranges 

from 0.11 to 0.18 for ES-LM1, ES-LM2, and ES-LMa while 0.20–0.24 for ES-Abr) following Papale et 

al. [55].  

The time series of NEE were gap filled using the marginal distribution sampling (MDS) method 

[56] which is based on lookup tables of temperature, global radiation, and water vapor pressure 

deficit (VPD) classes for short temporal windows i.e., 14 days. The gap-filled time series of NEE were 

then partitioned into GPP as described in Reichstein et al. [56]. In brief, the nighttime flux (Rg < 10 

W/m2) of NEE (i.e., only respiration) is extrapolated from nighttime to daytime through a temperature 

response function, which is based on short term temperature sensitivities (for details see [56]). The 

u*-threshold, gap-filling, and partitioning was performed with the R package REddyproc [57]. 

2.3. Calculation of Vegetation Indexes from PhenoCam 

Digital numbers (DNs) of each individual channel (RDN, GDN, BDN and NIRDN) were extracted 

from each photograph, and averaged over the different regions of interest (ROIs) (Figure 1). The 

overall brightness of each ROI (RGBDN) and the relative brightness of green channel, known also as 

green chromatic coordinates—GCC, were computed with Equations (1) and (2): 

DN DN DN DNRGB =R +G +B  (1) 

DN

DN

G
GCC=

RGB
 (2) 

CamNDVI was also computed in the different ROIs according to Petach et al. [29], using the 

algorithm implemented in the “phenopix” R package [34,36]: 

DN DN

DN DN

NIR '-R '
CamNDVI=

NIR '+R '
, (3) 

where NIRDN‘ and RDN’ are the adjusted exposure values of NIRDN and RDN, respectively. For a 

detailed calculation and the exposure adjustment formula, please refer to Petach et al. [29]. As the 

RDN’ and NIRDN’ are not direct measurements of reflectance, the CamNDVI values are not directly 

comparable to the NDVI from other data sources. Petach et al. [29] found a linear relationship 

between CamNDVI and the NDVI derived from the radiometric sensor (ASD FieldSpec 3) using the 

bands of 750 nm for the NIR and 605 nm for the red. They suggested using the linear regression 

coefficients to adjust the CamNDVI values for comparability with NDVI from radiometers [29,34]. 

Therefore, we applied the method suggested by Petach et al. [29] and Filippa et al. [34] to rescale 

CamNDVI using the NDVI derived from the Decagon SRS (VIs was calculated and averaged over a 

30 min period to be consistent with VIs from PhenoCam). The coefficients and statistics of the linear 

regression used to compute the scaling factors are shown in Table 1. In the following only the rescaled 

CamNDVI values are used and presented. 

Likewise, the CamNIRv and CamRVI were also calculated with adopting Equations (4) and (5) 

which refer to Badgley et al. [41] and Chen [42], respectively. 

'

DNCamNIRv=CamNDVI * NIR , (4) 

'

DN

'

DN

NIR
CamRVI=

R
, (5) 

where NIRDN '  and RDN '  are the adjusted exposure values like Equation (3). A similar approach 

used for the CamNDVI was used to compute CamNIRv and CamRVI: SRS-based NIRv and RVI were 

used to adjust the CamNIRv and CamRVI in order to make them comparable with the data derived 

from other sources (Table 1). 
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The analysis was conducted on various ROIs as depicted in Figure 1: we selected ROIs with only 

trees, grass, and both (hereafter referred as Tree, Grass, and Eco ROI, respectively). The different sites 

have different tree/grass proportions in the camera FOVs, as only one direction of ecosystems could 

be captured from the PhenoCam. However, the fractional tree canopy covers were consistent (~0.20) 

in the four sites by referring to field surveys and the classification analysis using airborne 

hyperspectral imagery [58,59]. The analysis of each footprint for each EC tower also indicates GPP is 

contributed from ~20% tree canopy and ~80% grasses [59]. In order to reduce the bias introduced by 

the different ratios of tree/grass in the images and camera FOV, which has to do with logistical 

constrains during the camera installation, the ecosystem VIs (GCC, CamNDVI, CamNIRv, CamRVI) 

were computed by using the weighted average of the VIs derived from Grass ROIs of 0.8 and Tree 

ROIs of 0.2. 

Table 1. Results of the linear regression between normalized difference vegetation index (NDVI), 

near-infrared reflectance of vegetation index (NIRv), ratio vegetation index (RVI) retrieved from 

PhenoCam and spectral reflectance sensor (SRS) at four experimental sites 1. 

Site VIs N Intercept Slope R2 

ES-LM1 

NDVI 4000 0.60 1.51 0.69 

NIRv 3282 0.06 0.01 0.60 

RVI 3389 −2.03 6.61 0.54 

ES-LM2 

NDVI 4340 0.56 1.12 0.77 

NIRv 4223 0.04 0.01 0.55 

RVI 4268 −0.14 3.55 0.57 

ES-LMa 

NDVI 3549 0.67 0.89 0.89 

NIRv 3522 0.06 0.01 0.73 

RVI 3515 −0.20 5.17 0.84 

ES-Abr 

NDVI 3560 0.64 1.18 0.83 

NIRv 3361 0.06 0.01 0.82 

RVI 3564 −0.78 5.39 0.80 
1 ES-LM1, ES-LM2, ES-LMa, and ES-Abr are the FLUXNET-IDs of four experimental sites, respectively. 

N, number of observations used for each regression; Intercept and slope: the parameters of the linear 

regression between indexes retrieved from the PhenoCam and SRS; R2: determination coefficient of 

linear regression. Regression coefficients are all statistically significant (p < 0.001). 

2.4. Data Filtering and to Compute Daily VIs and GPP 

After computing the half-hourly VIs (GCC, CamNDVI, CamNIRv, CamRVI) at ecosystem scale, 

we applied a series of steps to derive robust time series of daily VIs: 

1. We discarded VIs measured with PAR below 600 µmol m−2 s−1. This procedure was used, on one 

hand, to filter out the VI values measured during adverse meteorological conditions (i.e., rainy, 

foggy, or overcast half-hours [34,48]), and on the other hand, Petach et al. [29] suggests to apply 

a threshold on PAR to reduce the variability of CamNDVI due to changes in illumination 

conditions. Here, we selected a more conservative threshold than Petach et al. [29]. 

2. A max.density filter method was developed to filter and retrieve daily VIs. We constructed the 

probability density function (PDF) of VIs in 3-day moving windows (30 observations), and 

assigned the value that has highest probability density as the filtered daily value. We did not 

apply the widely used max method [22,36], which uses the 90th percentile of the VIs value from 

a 3-day moving window as the filtered daily value. This is because the variability of NIRDN is 

larger compared to other channels (i.e., RDN, GDN, BDN) in the PhenoCam, which would result in 

large variability of VIs (i.e., CamNDVI, CamNIRv and CamRVI) that is especially obvious for 

Mediterranean ecosystems compared to other ecosystems (some comparison using data 

retrieved from [34], results are not shown in this study). Hence, we chose to apply the max.density 

filter to retrieve time series of VIs with less variability, which were not always retrieved by 
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applying max filter in our study. We used an example to demonstrate the better filter 

performance of max.density compare to max filter methods in our study (Figure A1). 

3. Daily VIs were gap-filled using the Singular Spectrum Analysis (SSA) method implemented in 

the “spectral.methods” R package [60].  

4. Similar to the processing of VIs, the daily GPP was derived from half-hourly data following the 

step (2) and step (3). 

2.5. Phenological Transition Dates (PTDs) Extraction 

The Mediterranean climate is characterized by rainy late autumn–winters, and warm dry 

summers. Typically, the studied tree–grass ecosystems are dry and covered with senescent grasses 

in summer, while they increase in greenness in the late autumn (after the onset of the rainy season) 

and spring. Considering the characteristics of the phenological cycle described above, we decided to 

conduct the analysis using the concept of “hydrological years”, which is, here, defined from 1 August 

to 31 July (Figure 2). 

In this study, we developed a PTD extraction method for PhenoCam-based VIs in seasonally dry 

tree–grass ecosystems. The methodology of PTDs extraction is composed by the following steps: 

1. Data were smoothed using the spline method [20,36]; PTDs were extracted using the derivatives 

of smoothed seasonal cycle [61] and applying thresholds (i.e., 50%) of amplitude of VIs [62]. As 

the start and end of the season are extremely important to characterize the phenology, we 

defined two sets of PTDs in the start (UD, SOStrs; Table 2) and end of season (RD, EOStrs; Table 

2) for intercomparison and better characterizing the phenology. These two sets of PTDs are 

derived based on different perception and methodology. UD and RD are retrieved as the 

intersection dates between steepest slope and minimum value in the Green-up and Dry-down 

periods, respectively [61]. In contrast, SOStrs and EOStrs are retrieved by using the thresholds of 

50% amplitude [62]; i.e., they are defined when 50% of amplitudes are reached in the Green-up 

and Dry-down periods, respectively. Other extracted PTDs and the phenological periods 

analyzed in this study were summarized in Figure 2 and Table 2. The detailed procedures and 

corresponding code related to the extraction of PTDs are provided in Appendix B. 

2. Uncertainty of extracted PTDs was assessed by extracting PTDs repeatedly (100 times) from an 

ensemble of time series constructed by summing original data and random noise as described 

by Filippa et al. [36]. 

Table 2. Terms used in this study to describe the phenological transition dates (PTDs) and 

phenological periods. 

 Terms Description 

Phenological 

Transition 

Dates (PTDs) 

UD Upturn day in the green up period in the autumn 

SOStrs When 50% of amplitude in the green up period in the autumn is reached 

POS1 When the first peak of season is reached 

POS2 When the second peak of season is reached 

EOStrs When 50% of amplitude in the senescent period in the summer is reached 

RD Recession day at the end of senescent period in the summer 

Phenological 

periods 

Green-up 
Greenness/GPP increasing period in the autumn (including UD, SOStrs, and 

POS1) 

Dry-down 
Greenness/GPP decreasing period in the summer (including POS2, EOStrs 

and RD) 

GSLRD-UD 
Growing season length defined in the hydrological year (day length between 

UD and RD) 

GSLEOS-SOS 
Growing season length defined for comparison with GSLRD-UD (day length 

between EOStrs and SOStrs, which is widely used in land surface phenology) 
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Figure 2. Conceptual figure of the seasonal dynamic of green chromatic coordinates (GCC), 

PhenoCam-based normalized difference vegetation index (CamNDVI), near-infrared reflectance of 

vegetation index (CamNIRv), ratio vegetation indexes (CamRVI), or daily maximum gross primary 

productivity (GPP), as well as their phenological transition dates (PTDs) for a “hydrological year”. 

The black circles represent the original vegetation indexes value (CamGCC, CamNDVI, CamNIRv, 

CamRVI, or GPP). Results of the smoothing procedure and its uncertainty are shown by red circles 

and gray area, respectively. The vertical dashed lines represent the PTDs and the corresponding 

names are shown: UD, SOStrs, POS1, POS2, EOStrs, RD. Two periods are most focused upon in this 

study: the Green-up period during autumn to winter (green rectangle which including UD, SOStrs, 

and POS1) and Dry-down period in late spring to summer (light-red rectangle that including POS2, 

EOStrs and RD). The time interval between UD and RD is defined as the growing season which 

indicated in the figure. Detailed description of PTDs and the other phenological terms are reported in 

the Table 2. 

2.6. Statistical Analysis 

All the statistical analyses were conducted with the R 3.4.3 programming language [63]. The 

differences among PTDs extracted from the different datasets (GCC, CamNDVI, CamNIRv, CamRVI, 

and GPP) were evaluated using the mean absolute error (MAE) and root mean squared error (RMSE) 

(Equations (6) and (7)): 

( )
n

i=1

1 'MAE = ,
i i

  d
n

ayy -y  (6) 

( ) ( )
n

2
'

i i

i=1

1
RMSE= y   -y ,

n
day  (7) 

where yi’ and yi were the PTD dates extracted from two different datasets. Wilcoxon signed-rank tests 

were used to test for statistically significant differences between each paired PTDs from the different 

datasets given that were not normally distributed, while paired Student’s t tests were used when 

PTDs were normally distributed. 

The linear regressions were conducted between time series of VIs and GPP, or between 

meteorological variables and GPP using ordinary least squares regression (OLS). However, the linear 

regression between PTDs and GSL extracted from different VIs and GPP was conducted using major 

axis regression (R package “lmodel2”) to account for errors of similar magnitude in the y and x axis. 
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3. Results 

3.1. Time Series of VIs (GCC, CamNDVI, CamNIRv, CamRVI), GPP, and Their Relationship with 

Meteorological Conditions 

The seasonal variation of VIs and GPP, as well as their correlations, are shown in Figure 3 and 

Table 3, respectively. In general, all VIs have distinct seasonal variations and are consistent with the 

temporal variability of GPP (Figure 3 and Table 3). At four sites, all VIs have significant and good 

correlation with GPP (Pearson’s correlation coefficient: r ≥0.85; Table 3). The determination 

coefficients (R2) of linear regression between VIs and GPP also range from 0.72 to 0.87, in particular, 

with slightly higher R2 for CamNDVI and CamRVI. However, VIs have distinct discrepancies on 

variation range. For instance, the GCC of our sites ranges 0.32–0.42, while the CamRVI could vary 

between 1 and 7. 

Distinct interannual variability of VIs and GPP are also observed at the four sites (Figure 3). The 

time series (GCC, CamNDVI, CamNIRv, CamRVI, and GPP) have an obvious “two-humped” shape 

in the hydrological year 2014 (Hydro-2014: 1 August 2014–31 July 2015) and hydrological year 2016 

(Hydro-2016: 1 August 2016–31 July 2017), while the shape is not clear in the time series for the 

hydrological year 2015 (Hydro-2015: 1 August 2015–31 July 2016; Figure 3). The absence of the two-

humped shape in Hydro-2015 coincides with the warmer mean air temperature (Ta) observed in 

winter 2015 (9.4 ± 2.4 °C) and lower Ta in spring 2016 (13.5 ± 3.5 °C) compared to Hydro-2014 (6.4 ± 

3.3 °C and 16.3 ± 4.3 °C, respectively) and Hydro-2016 (8.0 ± 3.4 °C and 16.4 ± 4.6 °C, respectively; 

Table A1 and Figure 4). The onset of growing season in each hydrological year clearly followed the 

onset of the rainy season, confirming that autumn phenology in these ecosystems is driven by 

precipitation (Figure 3). Larger precipitation (281.7 mm) in the spring of Hydro-2015 also leads to 

higher GPP compared to Hydro-2014 (94.9 mm) and Hydro-2016 (94.0 mm; Figure 4 and Table A1), 

both characterized by less than half of the precipitation compared to Hydro-2015. 

Table 3. Statistics between daily time series of vegetation indexes (PhenoCam-based green chromatic 

coordinates (GCC), normalized difference vegetation index (CamNDVI), near-infrared reflectance of 

vegetation index (CamNIRv), ratio vegetation index (CamRVI)) and gross primary productivity 

(GPP) at four experimental sites1. 

Site VIs-GPP N r 

ES-LM1 

GCC 1096 0.90 

CamNDVI 1096 0.91 

CamNIRv 1096 0.93 

CamRVI 1096 0.91 

ES-LM2 

GCC 1096 0.86 

CamNDVI 1096 0.87 

CamNIRv 1096 0.87 

CamRVI 1096 0.87 

ES-LMa 

GCC 607 0.89 

CamNDVI 607 0.90 

CamNIRv 607 0.85 

CamRVI 607 0.90 

ES-Abr 

GCC 635 0.86 

CamNDVI 635 0.91 

CamNIRv 635 0.86 

CamRVI 635 0.91 
1 ES-LM1, ES-LM2, ES-LMa, and ES-Abr are the FLUXNET-IDs of four experimental sites, 

respectively. N, number of daily data; r, Pearson’s correlation coefficients. 
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Figure 3. Time series of PhenoCam-based green chromatic coordinate (GCC), normalized difference 

vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), ratio 

vegetation index (CamRVI), maximum gross primary productivity (GPP), and meteorological 

variables (temperature and precipitation) for four Mediterranean tree–grass ecosystems (FLUXNET 

IDs are ES-LM1, ES-LM2, ES-LMa, and ES-Abr, respectively). Daily mean temperature (Ta) and total 

precipitation (Prec) of the Majadas de Tiétar (Maj) and La Albuera (Ala) are shown in the bottom 

panel. 
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Figure 4. Scatter plots between monthly mean air temperature (Ta), monthly sum of precipitation 

(Prec), and monthly mean gross primary productivity (GPP) during day time of (a,b) winter, and (c,d) 

spring in hydrological year 2014 to 2016 in four Mediterranean tree–grass ecosystem in Spain. The 

data in hydrological years of 2014, 2015, and 2016 are colored with green, red, and blue color, 

respectively. The regression line and the formula are shown if the linear regression is statistically 

significant (p < 0.05). The gray area represents 95% confidence interval. R2: determination coefficient 

of linear regression. 

3.2. Comparison of Phenological Transition Dates (PTDs) Derived from Different VIs 

The comparison of PTDs extracted from different VIs is shown in Figure 5. Generally, the PTDs 

derived from the different VIs show smaller difference between each other at Dry-down periods 

(POS2, EOStrs, RD) compared to the Green-up periods (UD, SOStrs, POS1). Specifically, PTDs derived 

from GCC have the smallest differences with PTDs derived from CamNIRv, while they are 

significantly advanced from the ones from CamNDVI at the Dry-down period (Figure 5). During 

Green-up periods, the PTDs derived from GCC are more advanced than the ones from CamNDVI 
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and CamRVI, while they are also delayed compared to PTDs extracted from CamNIRv. By contrast, 

the PTDs derived from CamNDVI are all more delayed than the PTDs from CamNIRv, in particular, 

with more than 10 days difference at Green-up period. However, they have small differences 

compared to the PTDs extracted from CamRVI (<5 days), but they are significantly advanced at 

Green-up and delayed at Dry-down periods, respectively. Similar to GCC, the PTDs derived from 

CamNIRv are also advanced than the ones derived from CamRVI with large difference at Green-up 

period (>15 days). 

 

Figure 5. Barplots of the differences between phenological transition dates (PTDs) extracted from 

different PhenoCam-based vegetation indexes: green chromatic coordinate (GCC), normalized 

difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), 

ratio vegetation index (CamRVI). The error bars represent the standard error of the PTDs derived 

from different experimental sites, and hydrological years. The statistically significant differences were 

tested using Wilcoxon signed-rank tests (when PTDs were not normally distributed) and paired 

Student’s t tests (when PTDs were normally distributed). p-values are as follows: *** p ≤ 0.001, ** 0.001 

< p ≤ 0.01, * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of each PTD in the Table 2. 

3.3. Comparison of Phneological Transition Dates (PTDs) Derived from VIs and GPP 

The comparison of PTDs derived from different VIs and GPP is shown in Figures 6 and 7. The 

PTDs derived from VIs for the Green-up period (UD, SOStrs, and POS1), with the exception of 

CamNIRv, are systematically delayed from the ones derived from GPP (Figure 6). By contrast, the 
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PTDs extracted from the VIs have a good agreement with the PTDs extracted from the GPP in the 

Dry-down period (POS2, EOStrs, RD). The difference between PTDs extracted from VIs and GPP 

ranges within 10 days in the Dry-down period. By contrast, their difference ranges from 8–25 days 

for the Green-up period, with the only exception of CamNIRv and GPP, which show a smaller 

difference (Figure 7 panel UD and EOStrs). 

Specifically, the PTDs derived from CamNIRv at the Green-up period and the ones derived from 

CamNDVI at the Dry-down period have no significant difference compared to the ones derived from 

GPP, respectively (Table 4). The PTDs extracted from CamNIRv and GCC have smaller differences 

(9.4 and 7.0 days, respectively) with the ones derived from GPP in the Green-up period, while they 

have larger difference with the PTDs derived from GPP compared to CamNDVI (difference of 4.6 

days) and CamRVI (difference of 5.0 days) in the Dry-down period (Tables 4 and A2). 

The results show that POS1 derived from VIs have a large difference with the POS1 derived from 

GPP especially for CamNDVI and CamRVI (>20 days). All the POS2 derived from VIs have no 

statistically significant difference with the ones extracted from GPP, with the difference between VIs 

and GPP ranging within 5 days (Figure 7). 

 

Figure 6. Comparison of phenological transition dates (PTDs) extracted from vegetation indexes (VIs): 

PhenoCam-based green chromatic coordinate (GCC), normalized difference vegetation index 

(CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), ratio vegetation index 

(CamRVI), and gross primary productivity (GPP). Please see the definition of each PTD in the Table 

2. 
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Table 4. Comparison between phenological transition dates (PTDs) derived from PhenoCam-based 

green chromatic coordinate (GCC), normalized difference vegetation index (CamNDVI), near-

infrared reflectance of vegetation index (CamNIRv), ratio vegetation index (CamRVI), and PTDs 

derived from GPP in four Mediterranean experimental sites 1. 

Season Summary 

 GCC CamNDVI CamNIRv CamRVI 

Stats Green-Up Dry-Down Green-Up Dry-Down Green-Up Dry-Down Green-Up Dry-Down 

N 24 30 24 30 24 30 24 30 

MAE (day) 9.4 6.3 17.4 4.6 7.0 7.4 20.5 5.0 

RMSE (day) 12.8 8.6 20.4 5.5 11.0 8.9 22.7 6.3 

p-value *** *** *** ns ns *** *** * 

1 Statistics are computed using the phenological transition dates (PTDs, defined in Table 2) of the 

Green-up period (UD, SOStrs, and POS1) and the Dry-down period (EOStrs, RD, and POS2). N, number 

of observations; MAE, mean absolute error; RMSE, root mean squared error. p-values are as follows: 

*** p ≤ 0.001, * 0.01 < p ≤ 0.05, ns for p > 0.05. 

 

Figure 7. Barplots of the differences between phenological transition dates (PTDs) extracted from 

different PhenoCam-based vegetation indexes (green chromatic coordinate (GCC), normalized 

difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), 

ratio vegetation index (CamRVI)) and gross primary productivity (GPP). The error bars represent the 

standard error of the PTDs derived from different experimental sites, and hydrological years. The 

statistically significant differences were tested using Wilcoxon signed-rank tests (when PTDs were 

not normally distributed) and paired Student’s t tests (when PTDs were normally distributed). p-

values are as follows: *** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the 

definition of each PTD in the Table 2. 

3.4. Comparison of Growing Season Length (GSL)-Derived VIs and GPP 

The growing season length (GSL: defined as the difference between PTDs of RD and UD) 

derived from GPP shows no statistically significant difference with GSL calculated from CamNIRv 

(Figure 8). By contrast, GSLs derived from GCC, CamNDVI, and CamRVI is statistically significantly 

different from GSL derived from GPP with mean absolute error (MAE) of 12.2, 10, and 15.5 days, 

respectively (Figure A4). We also compare the GSLs derived from GPP and VIs with the GSL defined 

as the difference between EOStrs and SOStrs, which is widely used in the remote sensing field. The 

results (Figure A5) also agree with the above results. 
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In general, the GSL calculated from GPP is larger than the ones derived from the VIs (Figures 8 

and A4). Most of GSLs range from 240 to 270 days, with the exception of GSL derived from ES-Abr 

sites, which is the driest site among the four studied (Figure A4). GSLs derived from different VIs 

have good correlation between each other (r >0.8; Figure A4). Specifically, GSL derived from GCC 

has the least difference (MAE: 4.8 days) between the ones derived from CamNDVI. GSL derived from 

CamNDVI and CamRVI has a difference of 5.8 days. Contrastively, GSL derived from GCC, 

CamNDVI and CamRVI has a relatively high difference (>8 days) between the GSL derived from the 

CamNIRv (Figure A4). 

 

Figure 8. Growing season length (GSLRD-UD) derived from gross primary productivity (GPP), 

PhenoCam-based green chromatic coordinate (GCC), normalized difference vegetation index 

(CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), and ratio vegetation index 

(CamRVI) for four Mediterranean tree–grass ecosystems (FLUXNET IDs are ES-LM1, ES-LM2, ES-

LMa, and ES-Abr, respectively). The gold squares stand for mean GSL in all site-years, while the black 

points stand for the GSL derived from ES-Abr. Data from ES-LM1, ES-LM2, and ES-LMa falling 

outside the 10%-90% percentile range are plotted as cross. The statistically significant differences were 

tested between GPP and vegetation indexes—GCC, CamNDVI, CamNIRv, and CamRVI. p-values are 

as follows: * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of GSLRD-UD in the Table 2. 

4. Discussion 

4.1. Characterizing Variatoin and Drivers of Structural and Physiological Phenology 

Here, we discuss and characterize the phenology of a seasonally dry Mediterranean tree–grass 

ecosystems using high temporal resolution of VIs (i.e., daily) derived from PhenoCam and GPP from 

EC towers. We found large seasonal variations in both PhenoCam-based VIs (structure) and GPP 

(physiology). In general, seasonal variations in PhenoCam VIs were in phase with those of GPP 

(Figure 3 and Table 3). We argue that seasonal variations in VIs and GPP are driven by the herbaceous 

layer, which dominates the ecosystem dynamics in our study sites [59]. Our sites are characterized 

by relatively sparse evergreen broadleaf trees (~20%) and a larger fraction of annual grasses [59]. 

Foliage amount in evergreen tree species remain relatively constant throughout the year, and they 

can utilize their vast root system to access the water deep within the soil [64–66]. By contrast, grasses 

are highly responsive to rainfall variations in rainy seasons as they tend to use water and nutrients 

in topsoil with dense shallow roots [11,67]. The yellowing grasses in senescence lose their vigor 

during the dry and hot summer. Being that the VIs derived from the tree are relatively constant 

during the year, grasses contribute a large proportion of VIs (Figure A6) and GPP in rainy seasons, 

but trees contribute more during dry periods [49]. 
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Meteorology plays an important role in governing seasonal variation of VI and GPP (Figures A2 

and A3), though the role and importance of water availability and temperature varies across seasons 

(phenological stages). In autumn, after the dry season, the onset of greenness and GPP is initiated by 

the onset of the rainy season (Figure 3). In winter, water is not a limiting factor, due to the typical 

ample precipitation in late autumn and early winter. On the other hand, we observed that winter 

temperature is an important limiting factor of plant photosynthetic activity [68] (Figure 4). In spring, 

with the increase in incoming radiation and day length, temperature, and associated increase in 

atmospheric evaporative demand (i.e., VPD), we found precipitation strongly correlated with both 

GCC and GPP (Figure 4); this is consistent with previous findings over Mediterranean ecosystems 

[69–71]. In summer, which is the dry season, precipitation triggers an abrupt increase of VIs and GPP, 

as observed after the heavy rain that occurred in the June-2016 and July-2017 (Figure 3). The large 

rain pulses caused a decrease in temperature and an increase in water availability, further 

contributing to the regrowth of plants, in particular, at the early stage of the dry season (Figure 3). 

On the annual scale, growing season lengths (GSLs) derived from ES-Abr tower are significantly 

shorter than the GSL derived from the other sites in Majadas de Tiétar (i.e., ES-LM1, ES-LM2, and ES-

LMa; Figure 8), which might be attributed to a lower water availability at the ES-Abr tower more 

than the other sites. In fact, ES-Abr is characterized by about 200 mm of rain less than the sites located 

in Majadas de Tiétar. 

In this study, we also observed the important influence of both structural (VIs) and physiological 

phenology (i.e., GPP) exerted by extreme climate events. There was an extremely warm winter 

followed by wetter than average spring in Hydro-2015 [72], which led to a significant impact on both 

VIs and GPP over our study sites (Figure 3 and Table A1). The growth and productivity, in particular 

of the herbaceous layer, was stimulated by high temperature and concomitant water availability in 

the winter of Hydro-2015, while lower temperature and higher precipitation (~2 times more than 

Hydro-2014 and Hydro-2016) slow down the growth of plants in the spring (Figure 4 and Table A1). 

This reduced the difference of VIs and GPP between winter and spring, and further caused the 

observed disappearance of the typical “two-humped” shape of Mediterranean ecosystems (Figure 3). 

Moreover, the warm spell in winter contributed to an extremely high GPP and greenness (Red dots 

in Figure 4) that substantially contributed to the annual total GPP [72]. These results point towards 

the important, and often neglected, contribution of winter periods to interannual variability of GPP 

and phenology in the Mediterranean ecosystems. In this study, we did not focus on the effects of the 

fertilization on PTDs, productivity, and growth; rather, we focused on the development of the 

framework to characterize phenology in seasonally dry Mediterranean ecosystems using PhenoCams. 

Therefore, further analysis will focus on better understanding the sensitivity of structural and 

physiological phenology to nutrient availability, meteorological drivers and rain pulses by means of 

model–data integration (e.g., [7,20,73,74]). 

4.2. Utilizing Different PhenoCam-Based VIs to Represent Structural Phenology 

We found distinct differences in the PTDs extracted from GCC and CamNDVI, two widely used 

indexes from PhenoCam (Figure 5). Overall, the PTDs derived from the GCC anticipate the ones 

derived from the CamNDVI, which is in line with previous studies [28,29,34,75]. In the Green-up 

period (UD, SOStrs, and POS1), changes in CamNDVI are more gradual than the changes in GCC 

(Figure 5) [29], which is likely due to the fact that GCC is more sensitive to color changes of leaves 

under low value of leaf area index (LAI; LAI < 2 [28]). Wingate et al. [28] found that the initial increase 

of GCC during the early growing season is caused by the rapid changes in leaf area and leaf 

chlorophyll content (Chl). With the increase of foliar biomass associated with shoot elongation and 

the formation of new leaves [28,76] after the early growing season, CamNDVI, which is more 

sensitive to the changes of canopy structure, increases continuously while GCC has no substantial 

changes [34]. Previous studies also found that GCC becomes saturated when nitrogen content or Chl 

only reaches half of the maximum value at Green-up periods [35,75]. By contrast, NDVI continues to 

increase with the maturation of leaves [77] and the increase of LAI in the canopy [35,75]. This likely 
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explains why there is a big difference in the timing of the first peak (POS1) of greenness between 

GCC and CamNDVI (Figure 5). 

Similar to the Green-up period, during the Dry-down period, GCC is more sensitive to color 

changes in leaves from green to yellow, while CamNDVI is a better proxy for variation of LAI and 

biomass [28,29,34]. During the Dry-down, the total green LAI of grasses start decreasing, but there is 

a large amount of dry and senescent biomass presented in the top canopy [78]. As such, we observed 

an earlier decline of GCC than CamNDVI during the Dry-down period [34] (Figure 5). The 

complementary information provided by GCC and CamNDVI point towards the need of using both 

indices to monitor structural changes of the canopy [29,34], as well as the need for investigating 

different VIs that can be computed from PhenoCam. 

To our knowledge, this study is the first attempt to compute the CamNIRv and CamRVI, and to 

compare them with the more widely used GCC or CamNDVI [34,41]. There is a systematic difference 

in PTDs extracted from CamNIRv as compared to those derived from other VIs, particularly for PTDs 

from the Green-up period. The PTDs derived from CamRVI tend to be later than those from 

CamNDVI and other VIs. This result is in agreement with Viña et al. [79], which also showed that 

satellite-based NDVI increases faster than RVI with the increase of LAI in maize and soybean fields. 

Our results confirmed that PhenoCam-based VIs provide complementary information that can 

be used to monitor phenology of structure (biomass, greenness). The systematic differences observed 

between VIs are consistent with results reported in the literature [34,75] and obtained with 

spectroradiometers [29,34] or satellites [80]. Future studies are needed to analyze the systematic 

differences between PhenoCam-based VIs (e.g., the comparison between NIRv and other VIs). For 

instance, studies that combine physiological measurements and plant traits collected in the field with 

PhenoCam data [75,77], in parallel with the use of radiative transfer models (e.g., Wingate et al., [28]) 

can provide valuable information to better understand the difference between VIs and different 

aspects of vegetation phenology. 

4.3. Combing Different PhenoCam-Based VIs to Represent Physiological Phenology 

The relationship of VIs derived from PhenoCam imagery with ecosystem-scale carbon fluxes in 

semi-arid systems is recently receiving more attention. However, to our knowledge, previous studies 

focused mainly on the relationship between GPP and GCC, and here, we move forward to include 

other potential VIs that can be derived from PhenoCams. We observed varying performance among 

PhenoCam-based VIs in tracking physiological phenology as measured by GPP. During Green-up 

period, the PTDs derived from CamNIRv agreed the best with the PTDs derived from GPP (Figure 6 

and Table 4). Apart from CamNIRv, the UD and SOStrs derived from the GCC, CamNDVI, and 

CamRVI are statistically delayed more than the ones derived from the GPP (Figure 7). Our results 

about the differences between GPP and GCC are contrasting to previous studies [20,32,75], which 

mostly focused on temperate deciduous forests, evergreen needleleaf forests or grasslands, while the 

relationship between GCC and GPP is comparable to a study focused on a grassland understory of a 

“open forest savanna” in Australia [30]. One possible explanation for the discrepancy between 

previous studies [20,32,75] and this study, can be related to the patterns of re-greening of the 

vegetation in autumn after the onset of the rainy season. At the beginning of the Green-up period, 

the canopy of the grass is characterized by a relevant amount of dry biomass (~38% senescent grasses 

as measured between October to November 2014–2015). Therefore, the new emerging grasses 

contribute to the photosynthetic activities, but not so much to the measureable greenness. For this 

reason, the GPP increases systematically earlier than GCC. However, there is evidence in the 

literature that this systematic delay is dependent on the greening patterns and mechanisms of 

vegetation phenology, therefore, it is vegetation type-dependent [20,32,75]. 

During the Dry-down period, the PTDs derived from CamNDVI are closer to the ones derived 

from GPP. The PTDs of EOStrs, and RD derived from GCC and CamNIRv are more advanced than 

the ones derived from GPP. Dry biomass starts to accumulate in the senescent period at the top of the 

grass canopy with still a certain amount of living biomass at the bottom. As mentioned above, GCC 

is sensitive to the changes of color [28,29,34,75], hence, PTDs derived from GCC are anticipated to 
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advance more than the PTDs derived from GPP at Dry-down period. However, more investigations 

are needed to explain why CamNIRv is also more advanced than GPP at the Dry-Down period. By 

contrast, PTDs derived from CamNDVI and CamRVI have no statistically significant differences 

compared to the ones from GPP, which implies the potential to use CamNDVI or CamRVI to 

represent GPP in the Dry-down period. 

For the timing of max structural and physiological phenology, we did not observe the systematic 

differences between PhenoCam-based VIs and GPP for the POS1 (Figure 7). However, the POS1 in 

our study is not comparable to the timing of the maximum value in other studies, as the POS1 in our 

study is in the winter time, while others are in the late spring or summer [32,75]. By contrast, the 

POS2 extracted from GPP is delayed compared to the POS2 extracted from VIs during the spring 

period (Figure 7), which agrees with previous studies [32,75]. 

As a key factor controlling net uptake of carbon dioxide [81,82], accurate estimates of GSL has 

rendered substantial interest, since it has distinct impacts on ecosystem function [83]. In this study, 

we also study the GSL as extracted from GPP and PhenoCam-based VIs. GSL derived from CamNIRv 

is most representative of the GSL derived from GPP (Figures 8, A4 and A5). NIRv is claimed to 

explain a large fraction of the variance of GPP, and has better representation than NDVI on monthly 

to annual time scales [41]. However, from our study, the CamNDVI better tracks the PTDs of GPP 

more than CamNIRv on the Drying-down period (Figure 7), which makes the GSL derived from the 

CamNDVI also close to GSL derived from GPP, though with a larger error compared to CamNIRv. 

Yang et al. [35] reported high correlation between physiological properties (e.g., leaf nitrogen content, 

leaf chlorophyll content) and CamNDVI, which implies CamNDVI could potentially track the GPP 

well. 

In summary, NIR-enabled PhenoCam-based VIs (e.g., CamNDVI and CamNIRv) can improve 

the performance of PhenoCam to represent physiological phenology (i.e., variability of PTDs and 

GSL as derived from GPP). Compared to conventional PhenoCam (only with blue, green, and red 

channels), NIR-enabled PhenoCam-based VIs take advantage of the fact that green vegetation reflects 

more NIR than visible light, which makes them more relevant to monitor variation in biomass and 

seasonal variability in photosynthetic capacity [84]. More studies investigating other PhenoCam 

vegetation indices are needed, for instance NIRv and 2-band enhanced vegetation index (EVI2; EVI 

computed without blue band) could be complementary indexes to be applied to track GPP in future, 

as both indexes are reported to have a good relationship with GPP [41,85,86] and could be computed 

with two bands (Red and NIR).Our results confirmed that it is promising to utilize the NIR-enabled 

PhenoCam as a complementary and cost-effective way to characterize GPP, biomass, and phenology. 

In this study, we mainly focused on seasonal variability (PTDs and GSL) but at shorter time scales; it 

is still unclear how the different PhenoCam-based VIs presented in this study fully present the 

variability of GPP. For instance, some VIs could not accurately reflect the variation of GPP during 

short-term changes of weather conditions, like sudden warm spells or droughts, as pointed out in 

other studies [32,87]. Hence, we strongly suggest using multiple VIs to better characterize the GPP 

together with additional ancillary measurements, such as meteorology and leaf traits. 

5. Conclusions 

In this study, we assessed the potential to jointly use near-infrared-enabled digital repeat 

photography and eddy covariance data for monitoring structural and physiological phenology in 

seasonally dry Mediterranean tree–grass ecosystems. We analyzed 9 site-years using four 

PhenoCam-based vegetation indices (GCC, CamNDVI, CamNIRv, and CamRVI) and GPP, and we 

compared the phenological transition dates (PTDs) and growing season length (GSL) derived from 

the different data streams. 

We show that, in Mediterranean tree–grass ecosystem, meteorology plays an important role in 

governing seasonal variation of vegetation indices and GPP, though the importance of water 

availability and temperature vary across seasons. 

We show the PTDs derived from VIs differ from each other. For the widely used GCC and 

CamNDVI, the PTDs extracted from CamNDVI are delayed compared to the ones derived from the 
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GCC, which is likely attributed to GCC, and is more sensitive to color changes, while CamNDVI is 

more sensitive to LAI and biomass. 

CamNIRv is best at representing the PTDs of GPP at the Green-up period, while CamNDVI is 

the best proxy to represent the PTDs of GPP at the Dry-down period. CamNIRv performs best 

regarding the representation of the GSL of GPP. 

In summary, we show that it is possible to determine crucial PTDs of structural and 

physiological phenology through using near-infrared-enabled digital cameras. GPP could be well 

represented when combining the use of different VIs for this purpose. 
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Appendix A 

Table A1. Mean air temperature (Ta_mean), sum of precipitation (Prec), and mean gross primary productivity (GPP) of different seasons at Majadas de Tiétar from 

hydrological year 2014 to 2016 (Hydro-2014 to Hydro-2016) 1. 

 

Autumn Winter Spring Summer 

(September–November) (December–February) (March–May) (June–July) 

Ta Prec GPP Ta Prec GPP Ta Prec GPP Ta Prec GPP 

(°C) (mm) (µmol m−2 s−1) (°C) (mm) (µmol m−2 s−1) (°C) (mm) (µmol m−2 s−1) (°C) (mm) (µmol m−2 s−1) 

Hydro-2014 17.5 333.4 4.7 6.4 105.6 4.3 16.3 94.9 9.4 27.5 67.7 4.2 

Hydro-2015 16.8 296.0 3.6 9.4 181.6 5.7 13.5 281.7 11.7 26.4 14.1 7.0 

Hydro-2016 17.2 272.7 3.6 8.0 205.9 5.2 16.4 94.0 8.9 27.3 46.4 4.2 
1 Mean GPP is the average of day time (6:00–18:00) of GPP from Control tower (ES-LMa), Nitrogen tower (ES-LM1), Nitrogen and Phosphorous tower (ES-LM2) at 

Majadas de Tiétar. 

Table A2. Comparison between phenological transition dates (PTDs) derived from PhenoCam-based green chromatic coordinate (GCC), normalized difference 

vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), ratio vegetation index (CamRVI) and PTDs derived from GPP in four 

Mediterranean experimental sites 1. 

 
Green-Up Period   Dry-Down Period   

GCC CamNDVI CamNIRv CamRVI GCC CamNDVI CamNIRv CamRVI 

Stats UD SOStrs UD SOStrs UD SOStrs UD SOStrs EOStrs RD EOStrs RD EOStrs RD EOStrs RD 

N 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 

MAE (day) 8.0 13.1 14 17.5 4.8 2.8 16 20.2 7.0 7.1 4.9 5.5 8.7 8.8 6.9 4.4 

RMSE (day) 10.6 10.4 14.5 19 6.3 3.3 16.6 21.6 9.6 10.0 6.0 6.3 10.2 9.9 8.0 5.5 

r 0.61 0.64 0.94 0.77 0.91 0.98 0.91 0.75 0.90 0.91 0.94 0.94 0.91 0.95 0.92 0.95 

p-value * * *** * ns ns *** ** * * ns ns * * ns ns 
1 Statistics are computed using the PTDs at the Green-up period (including PTD UD, SOStrs, and POS1) and the Dry-down period (including PTD EOStrs, RD, and 

POS2). Here only show the statistics for UD, SOStrs, EOStrs, and RD which are most important in Green-up and Dry-down period. Please refer to each PTD in Table 

2. N, number of observations; MAE, mean absolute error; RMSE, root mean squared error. p-values are as follows: *** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05, 

ns for p > 0.05. 
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Figure A1. Comparison between max (Sonnentag et al., 2012) and max.density methods for their 

performance of filtering the PhenoCam-based vegetation indexes like near-infrared reflectance of 

vegetation index (NIRv). The black points are original half-hourly NIRv data, while red points stand 

for the filtered daily NIRv data retrieved by using max or max.density method. 
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Figure A2. Scatter plots between monthly mean air temperature (Ta), monthly sum of precipitation 

(Prec) and green chromatic coordinate (GCC) during day time of (a) autumn, (b) winter, (c) spring, 

and (d) summer in hydrological year 2014 to 2016 in four Mediterranean tree–grass ecosystem in 

Spain. The data in hydrological years of 2014, 2015 and 2016 are colored with green, red and blue 

color, respectively. The regression line and the formula are shown if the linear regression is 

statistically significant (p-value: p < 0.05). The gray area represents 95% confidence interval. R2: 

determination coefficient of linear regression. 
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Figure A3. Scatter plots between monthly mean air temperature (Ta), monthly sum of precipitation 

(Prec) and gross primary productivity (GPP) during day time of (a) autumn, (b) winter, (c) spring, 

and (d) summer in hydrological year 2014 to 2016. The data in hydrological years of 2014, 2015 and 

2016 are colored with green, red and blue color, respectively. The regression line and the formula are 

shown if the linear regression is statistically significant (p-value: p < 0.05). The gray area represents 

95% confidence interval. R2: determination coefficient of linear regression. 
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Figure A4. Matrix plots of growing season length (GSLRD-UD) calculated from different data source: 

gross primary productivity (GPP), PhenoCam-based green chromatic coordinate (GCC), normalized 

difference vegetation index (CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), 

and ratio vegetation index (CamRVI). Upper right boxes display the scatterplots and 1:1 line. Lower 

left boxes show the mean absolute error (MAE (days); bold in the center), the Pearson’s correlation 

coefficient (r; gray colored in the top), and slope of linear regression (slope: gray colored in the bottom) 

between respective variables. p-values are for correlation test for respective variables and as follows: 

*** p ≤ 0.001, ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05. Please see the definition of GSLRD-UD in the Table 2. 
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Figure A5. Growing season length (GSLEOS-EOS) derived from gross primary productivity (GPP), 

PhenoCam-based green chromatic coordinate (GCC), normalized difference vegetation index 

(CamNDVI), near-infrared reflectance of vegetation index (CamNIRv), and ratio vegetation index 

(CamRVI) for four Mediterranean tree–grass ecosystems (FLUXNET IDs are ES-LM1, ES-LM2, ES-

LMa, and ES-Abr, respectively). The gold squares stand for mean GSL in all site-years, while the black 

points stand for the GSL derived from ES-Abr. The statistically significant differences were tested 

between GPP and vegetation indexes—GCC, CamNDVI, CamNIRv and CamRVI. p-values are as 

follows: ** 0.001 < p ≤ 0.01, * 0.01 < p ≤ 0.05, ns for p > 0.05. Please see the definition of GSLEOS-SOS in the 

Table 2. 
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Figure A6. Time series of green chromatic coordinate (GCC) computed for Grass, Tree and Ecosystem 

region of interest (ROI) in four experimental sites (FLUXNET IDs are ES-LM1, ES-LM2, ES-LMa, and 

ES-Abr, respectively) during year of 2014 to 2017. The increase of GCC for Tree ROI during spring is 

concomitant with the leaf flushing. 

Appendix B. The Procedures and Code for Extracting Phenological Transition Dates (PTDs) 

The procedures to extract PTDs from time series of vegetation indexes (VIs) or gross primary 

productivity (GPP) are as follows (also referring to Figure B1: 

• Try to find interminD. The linking point of two peaks (interminD) is the minimum between the 

two peaks between the Julian day of the year (Doy) 150–250. 

• Once we found the interminD, the time series is split into two parts and for each part the main 

PTDs are computed. The date of POS is calculated by determining the date at which the 

maximum value of the time series (using f(t) to refer to the time series hereafter) is reached. 

Baseline and maxline are the minimum and maximum value in each part of f(t), respectively. 

• The maximum and minimum of the first derivative of the f(t) (f’(t)) represent the maximum 

slopes of the upward and downward period (dashed lines). The intersections between these lines 

and the baseline are defined as upward day (UD) and recession day (RD). UD stands for the 

value when the f(t) begins to increase during the Green-up period. RD stands for the value when 

the f(t) stops decreasing during the Dry-down period. The intersections between these lines and 

maxline are the saturating day (SD) and downward day (DD). The SD indicates when the plants 

begin to reach full greenness or maximum photosynthesis, while DD stands for the date when 

plants begin to senesce [61]. 

• SOStrs and EOStrs are retrieved by computing the date when the value reaches 50% of the 

maximum in the upward and downward period, respectively [62]. 
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The Code for extracting PTDs is shared in the attached file (PTD_extraction.R). You can also use 

the example in the attached example folder for a test to extract PTDs. 

 

Figure B1. Procedures to extract phenological transition dates metrics (PTDs) from different 

vegetation indexes (VIs) or daily maximum gross primary productivity (GPP). The procedures for 

extracting PTDs from seasonal VIs or GPP trajectory f(t) are described in detail in the text of Appendix 

B (The number in the left of each panel corresponds to the order of procedures in the Appendix B). 

The black circles represent the original vegetation indexes value (CamGCC, CamNDVI, CamNIRv, 

CamRVI, or GPP). Results of the smoothing procedure are shown by red circles. The PTDs extracted 

in each step are highlighted with orange color, while the threshold values are indicated by the blue 

dotted line. The PTDs colored with dark green are the PTDs we study in this article. Their names are 

corresponding to UD, SOStrs, POS1, POS2, EOStrs, and RD in the Table 2, respectively. 
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