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Abstract: Very high-resolution satellite imagery (≤5 m resolution) has become available on a spatial
and temporal scale appropriate for dynamic wetland management and conservation across large
areas. Estuarine wetlands have the potential to be mapped at a detailed habitat scale with a frequency
that allows immediate monitoring after storms, in response to human disturbances, and in the face of
sea-level rise. Yet mapping requires significant fieldwork to run modern classification algorithms
and estuarine environments can be difficult to access and are environmentally sensitive. Recent
advances in unoccupied aircraft systems (UAS, or drones), coupled with their increased availability,
present a solution. UAS can cover a study site with ultra-high resolution (<5 cm) imagery allowing
visual validation. In this study we used UAS imagery to assist training a Support Vector Machine
to classify WorldView-3 and RapidEye satellite imagery of the Rachel Carson Reserve in North
Carolina, USA. UAS and field-based accuracy assessments were employed for comparison across
validation methods. We created and examined an array of indices and layers including texture,
NDVI, and a LiDAR DEM. Our results demonstrate classification accuracy on par with previous
extensive fieldwork campaigns (93% UAS and 93% field for WorldView-3; 92% UAS and 87% field
for RapidEye). Examining change between 2004 and 2017, we found drastic shoreline change but
general stability of emergent wetlands. Both WorldView-3 and RapidEye were found to be valuable
sources of imagery for habitat classification with the main tradeoff being WorldView’s fine spatial
resolution versus RapidEye’s temporal frequency. We conclude that UAS can be highly effective in
training and validating satellite imagery.

Keywords: drones; unoccupied aircraft systems; RapidEye; WorldView-3; estuarine; wetland; change
detection; LiDAR; NERR; habitat mapping

1. Introduction

1.1. Estuarine Habitats and Geomorphology

Estuarine systems form the interface between riverine habitats and coastal ocean ecosystems,
making them vulnerable to natural or anthropogenic impacts occurring in both environments.
The estuarine landscape is a mosaic of multiple ecological communities (e.g., saltmarsh, seagrass
beds, mangroves, shellfish reefs, etc.) that provide many benefits to coastal ecology and economies [1].
Some estuarine habitats display resilience to climatic changes such as increases in sea level [2], helping

Remote Sens. 2018, 10, 1257; doi:10.3390/rs10081257 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-8997-5255
https://orcid.org/0000-0001-9744-4588
https://orcid.org/0000-0003-2796-9797
https://orcid.org/0000-0002-2069-667X
https://orcid.org/0000-0003-2424-036X
http://dx.doi.org/10.3390/rs10081257
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/8/1257?type=check_update&version=2


Remote Sens. 2018, 10, 1257 2 of 24

protect coastal infrastructure and resources [3]. However, estuarine systems remain susceptible to
multiple stressors and greater rates of change [4–6] that may overwhelm this resilience in regions
of high impact. Therefore, it is imperative that we understand how our estuarine landscapes are
changing through time to rapidly identify problems and mitigate impacts that could compromise
coastal environments and economies.

1.2. Satellite Mapping in Estuarine Environments

Satellite-based habitat mapping in estuarine environments has a long history [7] and recent
advances show great promise for improvements in mapping wetlands more frequently and at ever
finer scales to accurately capture changes in these dynamic systems. The preponderance of studies
highlight supervised, object-based, classification as the most promising method for mapping habitat
types in a wetland environment with very high resolution imagery [8–10]. Complex species-specific
wetland classifications have found some success: mapping oysters using hyperspectral data with
accuracy ranging from 62% to 78% in muddy and rocky substrates respectively [11], distinguishing
mangrove types using WorldView-2 imagery with 89% accuracy [12], and using image texture to
supplement multispectral imagery to differentiate nearly a dozen similar cover types with up to
78% accuracy [13]. Many studies have also relied on synthetic aperture radar (SAR) for wetland
classification [14,15], as well as the fusion of SAR and multispectral imagery for land cover and habitat
mapping [16]. For example, estuarine vegetation mapping studies fusing WorldView-2 and LiDAR
data have reported up to 95% accuracy with extensive fieldwork [17]. Data-fusion of ultra-high spatial
resolution multispectral UAS imagery with digital surface models derived from UAS imagery appears
poised to provide another method with high accuracy for complex classifications [18,19].

The above success stories come with some caveats for wider application: (1) the highest resolution
satellites can be costly, and often do not provide consistent revisits without government or commercial
tasking, (2) hyperspectral imagery, though promising and increasing in availability, has very limited
coverage, and (3) many automated satellite classification methods require extensive field work
for training and validation. The present study provides an analysis workflow that can mitigate
high field work burdens through the use of UAS-based imagery, tests image processing techniques
for increasing accuracy, and compares products produced using higher spatial/spectral resolution
platforms (e.g., WorldView) to more accessible higher revisit rate sensors (e.g., RapidEye).

1.3. Unoccupied Aircraft Systems Estuarine/Marine Applications

The use of small unoccupied aircraft systems (UAS, or drones) in marine science and conservation
applications is on the rise. These portable, affordable and easy to use systems are increasingly used to
study and assess at-sea and coastal populations of marine species [20–22] and to map and evaluate
coastal habitats such as saltmarshes and beaches [23,24]. Applications of UAS now span biological
oceanography [25], physical oceanography [26,27] and atmospheric sampling [28]. In coastal systems,
small UAS can provide essentially on-demand remote sensing capabilities, collecting ultra-high
resolution (<5 cm) across multiple spectral bands that can be used for near real-time management
purposes as well as for validating remotely sensed data collected from occupied aircraft platforms and
satellites. Fixed-wing UAS are especially useful for assessing larger areas of coastal habitat due to their
increased flight efficiency, and provide researchers studying coastal protected areas the opportunity to
resolve fine scale changes in coastal morphology and associated habitats quickly, and at relatively low
costs, without significant disturbance of sensitive ecosystems [9,24].

1.4. National Estuarine Research Reserve Program and Rachel Carson Reserve Study Area

In order to combat the degradation of estuaries in the United States over the last century,
the Coastal Zone Management Act of 1972 was passed to help conserve these critical systems. This act
resulted in the creation of the National Estuarine Research Reserve System (NERRS), a system of
reserves meant to foster long-term research and monitoring, education, and stewardship of our
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estuarine natural resources. A major purpose of these reserves is to provide an undeveloped estuarine
testbed, informing local, regional and national management decisions. To accomplish this goal, NERRS
has implemented system-wide research and monitoring programs to address various stewardship
issues, which includes a Habitat Mapping and Change plan [29]. The Habitat Mapping and Change
Technical Committee advises reserves to conduct change analyses at least once every 10 years.

The North Carolina (NC) NERR is one of 28 reserves currently in the NERRS, consisting of several
sites along the NC coast that encompass the gamut of physical and ecological environments present
in NC’s extensive estuarine network. Centrally located along the coast of NC, the Rachel Carson
Reserve (RCR, Figure 1) was created in the 1980s and consists of several fetch-limited barrier islands
(Bird Shoal, Town Marsh, Carrot Island, and Horse Island) and a saltmarsh island complex (Middle
Marsh). The area is subject to semidiurnal tides with a 0.9 m tidal range, exhibiting extensive saltmarsh
platforms, intertidal oyster reefs, shallow seagrass beds, and tidal flats across a low-lying landscape.
Vegetated dunes and upland habitats occur along parts of Bird Shoal, Town Marsh, and Carrot
Island, which have been historically augmented by dredge spoil. Not only is the RCR ecologically
significant [30], as fetch-limited barrier islands [31], the RCR islands help buffer the town of Beaufort
from wave energy and storm surge, making their persistence critical for the coastal community.

1 
 

 

Figure 1. The Rachel Carson Reserve is located in the Southeastern United States, in the coastal state
of North Carolina in Carteret County off the coast of the town of Beaufort. RapidEye, WorldView-3,
and unoccupied aircraft systems (UAS) imagery is shown in true color for a section of emergent
wetland and scrub-shrub in the Northwestern corner of the study site for comparison. Satellite imagery
courtesy of DigitalGlobe Foundation and Planet Inc. Note: Color needed for this figure.
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1.5. Study Objectives

Estuarine wetlands are important for coastal ecology and economies. Improvements in monitoring
and mapping estuarine wetlands are needed not only to consistently map the entire reserve system to
fulfil the requirements of the NERRS, but also to monitor changes due to human disturbances and sea
level rise. Therefore, our objectives are to:

1. Assess the ability of UAS to replace field work for classification algorithm training and validation
2. Compare WorldView-3 and RapidEye for estuarine habitat classification
3. Test the utility of image texture, spectral indices, and data fusion with LiDAR
4. Analyze changes in detailed coastal cover types from 2004 to 2017

2. Materials and Methods

2.1. NERRS Classification Scheme

The NERRS Habitat and Land Cover Classification Scheme (NERRSCS) used in the present
study is a framework developed by NOAA and the NERRS to create a consistent scheme for
researchers working in the NERRS [32]. This framework combines two well-established schemes,
Cowardin et al. [33] and Anderson et al. [34], into a hierarchy with the flexibility to describe broad
land cover categories that scales down to dominant vegetation types for each system. The goal of
this scheme is to facilitate the classification of high resolution data in estuarine environments and to
permit crosswalk with Cowardin’s National Wetlands Classification Standard and the Coastal and
Marine Ecological Classification Standard. While no single scheme can serve all remote sensing needs,
we employ the NERRS framework in the present study for high resolution classifications in coastal
areas that are not purely marine or estuarine as it allows for consistent comparisons across space and
time. Tables 1 and 2 provide details on habitat classes defined in the NERRS classification scheme.

2.2. Remotely Sensed Data

2.2.1. UAS Imagery Collection and Processing

UAS data collection for training the satellite image classifier and validating accuracy of the
classification was conducted in August, September and October of 2016, and September of 2017
over parts of the RCR encompassing Bird Shoal, Town Marsh, Carrot Island, and Middle Marsh
(Figure S1 and Table S2). Two different UAS were deployed as part of these surveys, a senseFly eBee
Plus and a senseFly “standard” eBee. The eBee and eBee plus are small fixed-wing UAS in a push-prop
configuration, powered by lithium polymer rechargeable batteries. The eBee Plus was equipped with a
senseFly Sensor Optimized for Drone Applications (S.O.D.A.) 20 megapixel camera and a survey-grade
RTK GPS capable of 0.03 m of horizontal error (surveys in September of 2017). The standard eBee
was equipped with a Canon IXUS 127HS 16.1 megapixel camera, or a Canon S110 12 megapixel
camera, as well as a mapping grade GPS capable of 2.5 m of horizontal error (surveys in August,
September, and October of 2016). All survey altitudes corresponded to ground sampling distances
(GSDs) between 0.025 and 0.031 m, and imagery was collected off-nadir at a 5–7◦ pitch angle. All flights
were automated, with flight plans and image transects generated and executed in the eMotion 3 ground
control software programs with 75–85% longitudinal and 75% lateral image overlap.

We processed all UAS imagery with Pix4D Mapper Pro “structure from motion” photogrammetry
software to output orthomosaics in the WGS1984 UTM Zone 18 N projection. For all projects,
keypoint image scale was set to “Full”, and we enabled the “Alternative” camera calibration setting,
which improves calibration accuracy while increasing processing time. Bundle block adjustment
results were strong on all projects, with mean reprojection errors between 0.21 and 0.24 pixels.
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Table 1. Nine Habitat Classes from National Estuarine Research Reserve System Classification Scheme
(NERRSCS) used to map cover types for the Rachel Carson Reserve. The NERRSCS follows the
hierarchy System > Subsystem > Class > Subclass. All subsystems used in this project fall in the
overarching Estuarine system type. Upland in this study area is defined as 0.9 m above the Mean
Lower Low Water (MLLW) tidal datum, defined as the average minimum water level across all tidal
days [35].

Class ID Subsystem Definition

Subtidal Haline 2100 Subtidal Haline

the substrate is continuously submerged
[by tidal water and] . . . ocean-derived salts
measure [at least] 0.5h during the period

of average annual low flow.

Intertidal Sand 2253 Intertidal Haline

unconsolidated particles smaller than
stones [constitute at least 25% aerial cover
and] are predominantly sand. Particle size

ranges from 0.00625 mm to 2.0 mm
in diameter. 1

Emergent
Wetland 2260 Intertidal Haline

characterized by erect, rooted, herbaceous
hydrophytes, excluding mosses and lichens.
This vegetation is present for most of the

growing season in most years.
These wetlands are usually dominated by

perennial plants

Supratidal Sand 2323 Supratidal Haline 1

Scrub-Shrub
Wetland 2350 Supratidal Haline

includes areas dominated by woody
vegetation less than 6 m (20 feet) tall.

The species include true shrubs, young
trees, and trees or shrubs that are small or

stunted because of environment. 2

Upland Sand 6123 Supratidal
Upland

1

Herbaceous
Upland 6131 Supratidal

Upland
herbaceous upland habitat that is

dominated by graminoids.

Scrub-Shrub
Upland 6140 Supratidal

Upland
2

Forested Upland 6150 Supratidal
Upland

characterized by woody vegetation that is
6 m tall or taller. All water regimes are

included except subtidal.

Subsystem Definition

Intertidal Haline
the substrate is exposed and flooded by tides; includes the associated

splash zone; . . . ocean-derived salts measure [at least] 0.5h during the
period of average annual low flow.

Supratidal Haline nontidal wetlands containing at least 0.5h ocean- derived salts at some
point during a year of average rainfall.

Supratidal
Upland

any coastal upland area above the highest spring tide mark that is
periodically over-washed, covered, or soaked with seawater during storm

events to an extent that affects habitat structure or function.

Note: 1 and 2 signify equal substrates/vegetation types in different subsystems.

The five UAS mosaics, covering nearly the entire study area, were co-registered to WV and RE
imagery using 50 automatically generated GCPs in each mosaic and manually eliminating incorrect
points. Bilinear interpolation was used to resample the imagery and final root mean square error was
under one meter for each mosaic, which is well below the geolocation accuracy of the satellite imagery.
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Table 2. WorldView-3 and RapidEye sensor specifications and acquisition characteristics for data
analyzed in this study. Note that there are five identical RapidEye satellites, turning their 5.5 day
revisit time into a nearly daily revisit for many sites. WorldView-3 only acquires imagery when tasked,
in practice leading to a much thinner image archive. Additional WorldView satellites do exist, though
with slightly varying capabilities and orbits. Tidal state is reported as meters above the Mean Lower
Low Water (MLLW) tidal datum, defined as the average minimum water level across all tidal days [35].

WorldView-3 RapidEye

Imagery Details
Spatial Resolution (m) 1.24 5.0

Radiometric Resolution 11 bit 12 bit
Revisit Rate 4.5 days 5.5 days

Revisit Rate (off-nadir) Daily Daily
Date of Acquisition 31 October 2017 20 July 2017
Time of Acquisition 16:14:35 UTC 16:04:21 UTC

Tidal State (m > MLLW) 0.22 -0.07
Bands (nm)
Coastal Blue 400–450 -

Blue 450–510 440–510
Green 510–580 520–590
Yellow 585–625 -

Red 630–690 630–685
Red Edge 705–745 690–730

NIR 1 770–895 760–850
NIR 2 860–1040 -

Panchromatic 450–800 -

2.2.2. WorldView-3 and RapidEye Satellite Imagery

WorldView-3 (WV) imagery is useful for fine-scale habitat mapping, due to its high-spatial and
spectral resolution; each image has eight visible and near-infrared bands (1.24-m spatial resolution)
and a panchromatic band (0.31-m at nadir) (Table 2). Compared to most multispectral satellites,
the addition of four bands (coastal, yellow, red-edge, and near-infrared II) in both WorldView-2 and
3 allow for improved accuracy in mapping wetland vegetation [36,37]. While WorldView-3 has the
same spectral bands as WorldView-2, it is in a lower orbit, leading to increased spatial resolution
(0.31m panchromatic, 1.24 m multispectral for WV-3 vs. 0.46 m pan, 1.86m multispectral for WV-2).
Considering commercially available imagery, WV-3 has the finest spatial resolution in the world.
WorldView-3 has a revisit rate of 4.5 days and pointing capability for daily revisits. A WorldView-3
image was acquired from DigitalGlobe [38] on 31 October 2017 at 16:14:35 UTC approximately 1 h
after low-tide. The tidal state at the time of image acquisition was +0.22 m above the Mean Lower Low
Water (MLLW) tidal datum, defined as the average minimum water level across all tidal days [35].
Harmonic tide predictions were taken from the National Oceanic Atmospheric Administration [35] for
the Beaufort, North Carolina reference station (CO-OPS Station ID: 8656483; 34◦43.2′N, 76◦40.2′W).

RapidEye (RE) has a coarser spatial resolution of five meters with only five bands: blue, green,
red, red-edge, and near-infrared (Table 2). However, similarly to WorldView-3, RapidEye has an
extra red-edge band, compared to conventional Blue-Green-Red-Near Infrared sensors, that allows
for improvements in land cover classification [39] as well as wetland mapping [40]. Despite the
reduced spatial and spectral resolution compared to WorldView-3, the revisit time for RapidEye
is similar (5.5 days) with pointing capability for daily imaging. Due to five identical RapidEye
satellites, their imagery archive is near daily even without pointing. Importantly, for small study
regions (<10,000 km2) the archive can be more accessible for researchers and conservation groups
through Planet’s Education and Research Program [41]. A RapidEye level 3A image was acquired
on 20 July 2017 at 16:04:21 UTC approximately 30 min after low-tide. Level 3A images are already
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orthorectified and radiometrically/geometrically corrected. At the time of image acquisition, the tidal
state for the RapidEye image was at -0.07 m MLLW [35]; a similar tidal state to the WorldView-3 image.

2.2.3. LiDAR derived Digital Elevation Models

LiDAR-derived 1-m digital elevation models (DEMs) were acquired from NOAA [42]. The DEMs
were derived using topobathymetric LiDAR flown November 2013 to June 2014, without interpolating
across areas missing bathymetric data. DEM elevations were in the ellipsoidal North American
Datum 1983, (2011 realization) epoch: 2010 (NAD83). The DEMs had a root mean square error of
<1.0 m horizontal accuracy. Vertical accuracy at the 95% confidence interval was 0.112 m in open
terrain and 0.215 m consolidated across four land cover types (e.g., open terrain, crops/weeds, forest,
and brush/small trees), while not including submerged topography. LiDAR data has proven highly
effective in separating estuarine habitat types as an integrated layer in a classification composite [17].
However, we use it here only to delineate the upland and wetland classification types by elevation.
This allows areas without recent LiDAR to effectively use our classification approach, without the final
elevation class split.

2.2.4. Rachel Carson Reserve Habitat Maps and Change Analysis

A habitat map of the RCR derived from 2004 orthoimagery was obtained from the NC Coastal
Reserve and National Estuarine Research Reserve to analyze change across time within the RCR [43].
This imagery was acquired during MLLW at 0.5 m resolution, included RGB and NIR bands, and was
classified according to the NERRS Habitat Mapping and Change plan [29]. Their 2004 habitat map was
at a similar spatial scale, followed documented NOAA classification procedures, and was classified
using the same NERRS Habitat and Land Cover Classification Scheme, and therefore permitted
change analysis with our 2017 habitat maps. While specific accuracy was not reported for this
map, all federally funded NERRS maps require 68% positional accuracy within 5-m on the ground,
98% producer’s accuracy in delineating wetland areas from non-wetland areas, and 85% attribute
accuracy (correct wetland classification) [29]. An additional 1986 habitat map developed for the
NCNERRS, which was digitized from aerial imagery flown at low tide, was used for qualitative
analysis but not for the quantitative change analysis. All quantitative change analysis was done
post-classification and compared total habitat areas. Qualitative change detection analyzed larger
general trends, due to the unreported accuracies of the older 1986 habitat map, and thus less validity
for analysis of smaller scale changes.

2.3. Image Pre-Processing

Satellite image processing was conducted in ENVI 5.4 (Harris Corporation, Melbourne, FL,
USA) and classification was done in ArcGIS Pro 2.0 (ESRI Inc., Redlands, CA, USA) (Figure 2).
The images were masked to the RCR, which sped up processing and made NDVI and water
thresholds more relevant for our study site. RE and WV imagery come georeferenced but had to be
radiometrically calibrated to top of atmosphere reflectance using parameters provided by DigitalGlobe,
Inc., (Westminster, CO, USA) and Planet, Inc., (San Francisco, CA, USA). Atmospheric correction
was not applied because this study classified a single image in time [44] and previous work has
demonstrated only minimal improvement after atmospheric correction for WorldView imagery and
other similar multispectral imagery [45]. Pan-sharpening was not applied in the study due to the lack
of a panchromatic band on the RapidEye satellite. For each image, a composite was created in addition
to the standard RE and WV bands in order to test the impact of including additional indices derived
from the original bands on classification accuracy. These composite images included normalized
difference vegetation index (NDVI) to emphasize vegetation [46], as suggested by Carle et al. [36]
and a homogeneity texture filter using a 3 × 3 kernel (run on NIR1 for WV; NIR for RE) following
Lane et al. [47]. Texture layers have been found to help distinguish wetland edges. We eliminated
water habitats in our image processing workflow by using a normalized ratio of blue to NIR and
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eliminating all pixels below a threshold. This threshold was determined by incrementing the value
until it included all water pixels in sample polygons drawn to exemplify the multiple Subtidal Haline
types (deep, silty, brackish, sandy). Where Rλ is the spectral reflectance of the band centered at λ
wavelength, indices and thresholds were:

RE Index: (R475 − R805)/(R475 + R805) threshold = 0.40, (1)

WV Index: (R427 − R950)/(R427 + R950) threshold = 0.93. (2)
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Figure 2. Image processing included calibration, creation of additional image layers to test impact
on final accuracy, and thresholding to eliminate complex water pixels. The classification workflow
included creation of training samples using unoccupied aircraft system (UAS) imagery, segmentation
of RE and WV-3 imagery, classification using a support vector machine, and filtering the classification
output by elevation using LiDAR data.

These threshold values differ due to the increased wavelength of WV’s NIR 2 band (R950) over
RE’s NIR 1 band (R805). This process successfully eliminated most water pixels below−0.5 m (NAD83)
in the images. This threshold was applied after composite creation to prevent distorting the texture
filter with additional edge effects. The final outputs from this image processing include four image
products: WV with the standard 8 bands, WV 8 bands + NDVI + texture, RE with the standard 5 bands,
and RE 5 band + NDVI + texture.

2.4. Supervised Classification Workflow

Segmentation was performed using segment shape, color, and texture as components of the
segmentation. Importance of small spectral differences was emphasized (spectral detail = 20). The same
settings were used for both images except for minimum segment size which was 15 pixels for WV
imagery and 10 for RE imagery due to the increased size of RE pixels. Training samples were created
by manually drawing polygons representing each habitat class using the UAS mosaics as a reference
(Figure 3). These UAS-derived training polygons were overlaid on segments from the segmentation
process and the segment with the greatest area of overlap with each UAS-derived training polygon
was identified. These identified segments were then used as training inputs for each classification
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(Figure 2). This allowed the same training areas to be identified for both the RE and WV-3 imagery even
though segmentation was performed separately for each imagery type. Training polygons included
between 5000–6000 m2 of each class in order to accurately capture spectral variation (Figure 4) and
prevent training data imbalance between classes [48].
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Figure 3. (A) shows a UAS mosaic (one of the five total) which was used as a reference to
manually generate training polygons; only a subset of training polygons are displayed here as an
example. (B) shows a WorldView-3 image in false color with the training polygons from frame A.
overlaid. (C) shows the WorldView-3 image from Frame B post-segmentation with training polygons.
The segment with the most overlap from the training polygons is input into the classification algorithm
as the final training input. Note: the UAS imagery is 24× higher resolution than the WV imagery,
and 100× higher resolution than RapidEye, allowing the analyst to determine classes with much
higher confidence.

1 
 

Figure 4. Cont.
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1 
 Figure 4. All training sample spectral signatures averaged by class for (a) WorldView-3 and

(b) RapidEye sensors. Note seven classes are presented here instead of nine because Scrub-Shrub
and Supratidal wetland vs. upland classes were delineated only based on the elevation and not
spectral differences.

Following segmentation, a Support Vector Machine (SVM) was used to classify all four image
products. SVMs have been shown to handle large images, are less vulnerable to image noise, do not
require a normal distribution of reflectance values, and provide classification results on par with other
top algorithms [49]. SVMs are commonly used for classification applications, our contribution here
lies in the use of added decision nodes for water classification, testing of image texture and NDVI,
and UAS for SVM training and validation. The SVM output was split into Upland and Wetland classes
using the LiDAR DEM acquired from NOAA, based on the tidal range of this region. Areas 0.9 m above
MLLW were assigned to the Upland class [35] following the definition of these two classes (Table 1).
Very high-resolution satellites often have many spectrally mixed pixels and segments, leading to a
blur between land cover types that, when averaged together, may be incorrect. These isolated pixel
groups (n < 40 for WV, n < 6 for RE) were removed, and re-classified using a majority filter in the final
classification map.
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2.5. Accuracy Assessment

For both UAS and field-based sample points, stratified sampling was used to assess accuracy
of each class. Strata for both UAS and field points were generated from one map (WV 8-band
classification). Following Stehman [50] we generated error matrices, user’s (commission error),
producer’s (omission error), and overall accuracy, while accounting for differences in strata and
map classes. These formulas differ from standard accuracy assessment methods, because they account
for strata that have different overall areas within the study site, by weighting accuracy based on the
area in each strata. An additional assessment was done by applying the UAS assessment method to
the points used for the field validation in order to directly compare the results from both methods.

2.5.1. UAS Assessment

We generated sets of 50 randomly distributed stratified sample points [51] across the nine habitat
classes throughout our full study site. This was done using the WV 8-band classification to generate a
total of 450 assessment points. These points were overlaid on the UAS mosaics (Figure S1), which had
been co-registered to the WV and RE imagery, and classes for each point were visually determined
from the UAS imagery. All visual validation was done by the same individual to remain consistent.

2.5.2. Field Assessment

Six linear transects were selected to ensure full coverage of habitat classes denoted in the full
study area. Validation points were created by generating 30 randomly distributed stratified sample
points across the nine habitat classes within these transect areas, using the WV 8-band classification
to define the strata. To minimize the risk of potential errors from GPS and imagery georectification,
a −3m buffer was put on each habitat class in the image, eliminating border areas where GPS error
could have located a point in a separate class, and points were generated in the remaining habitat area
only. Additionally, points were created with a minimum distance of 5 m between to accommodate for
the resolution of the RE pixel size. With these constraints in place, a total of 214 total sampling points
were created.

Ground observations of habitat classes were taken in February 2018. A Trimble Juno 3B GPS unit
was used to locate the approximate location of the validation points. Once the approximate site was
reached, the validation point location was taken using a sub-meter accuracy GPS unit (Emlid Reach
RS RTK) and the observed habitat type at that validation point was recorded. Classification of the
observed habitat type in the field was determined by one individual for all validation points to ensure
consistency. The size of a WV pixel was used for determining habitat class. Field-collected validation
points were differentially corrected from the local GNSS virtual base station network.

While not practical in our field validation to do truly random sampling throughout the study
site due to time constraints, the possibility of transects being in deep water, and a desired balance
between classes, transects were otherwise chosen to best ensure representativeness. Where possible we
followed best practices presented in Olofsson et al. [52]: UAS stratified sample points were chosen at
random throughout the entire study site, assessment units were chosen to match input and reference
data, and the accuracy assessment accounted for our stratified sampling approach.

3. Results

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation as well as the experimental conclusions that can
be drawn.

3.1. Estuarine Habitat Mapping

Our final maps had area weighted accuracies ranging from 79% field/83% UAS to 93% field/93%
UAS (Table 3). The standard 8-Band WorldView-3 image realized the best overall accuracy at 93%
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field and 93% UAS. Notably, the addition of NDVI and image texture did not increase the accuracy
of the WorldView-3 classification but did marginally increase the RapidEye classification accuracy
in both UAS and field assessments (Figure 5). Across all final classifications there was a consistent
underestimation of Emergent Wetland. The addition of NDVI and texture to WorldView-3 did appear
to increase the discrimination of the segmentation between classes, but increased confusion of the final
classification between the Scrub-Shrub and Emergent Wetland Classes as well as Intertidal Sand and
Subtidal Haline. On the RapidEye platform, the addition of NDVI and texture improved differentiation
between Scrub-Shrub and Forest but otherwise overall accuracy was not markedly different with or
without NDVI and texture (Table S1).

Table 3. Final overall accuracy for standard bands of WorldView-3 (WV) and RapidEye (RE) and
standard bands plus normalized difference vegetation index (NDVI) and texture.

Product Field UAS

WV 8-band 93% 93%
WV 8-band + NDVI + texture 79% 83%

RE 5-band 86% 90%
RE 5-band + NDVI + texture 87% 92%

 

3 

 

Figure 5. Final User’s and Producer’s habitat class accuracy from unoccupied aircraft system-based
validation for each image product using RapidEye (RE) and WorldView-3 (WV) with standard bands
plus normalized difference vegetation index (NDVI) and texture.
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3.1.1. UAS vs. Field Validation

The direct comparison between UAS and field assessment methods had an overall agreement
of 96% with minimal variation from that accuracy among classes (Table 4). For the WorldView-3
classifications, the UAS and field validation results correspond well to each other (Figure 5, Tables 5
and 6). On the RE platform there is a nontrivial difference in field and UAS assessment results for
some classes (Table S1). This appears to be from a lack of field test points, or a concentration of field
test points in a small misclassified area of a transect, rather than a true divergence in results between
UAS and field-based methods.

Table 4. Confusion matrix for Unoccupied Aircraft System (UAS) vs. field validation. Each cell
holds the number of sample points in each class, the column describes the field reference and the row
describes the UAS reference. The major diagonal represents the classes that were classified the same by
both methods.

Field Validation

Habitat Class 1 2 3 4 5 6 7 8 9 Total Area

UAS
Validation

Subtidal Haline-1 22 22
Supratidal Sand-2 23 23

Emergent Wetland-3 1 28 1 30
Scrub-Shrub Wetland-4 29 29

Intertidal Sand-5 2 1 24 27
Herbaceous Upland-6 21 2 23

Upland Sand-7 19 19
Scrub-Shrub Upland-8 16 2 18

Forested Upland-9 23 23

Total Area 24 25 28 29 25 21 19 18 25 96%
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Table 5. Confusion matrix for WorldView-3 8-band Unoccupied Aircraft System (UAS) validation. Each cell holds the percentage of total area in that class, the column
describes the UAS reference and the row describes the predicted map class. The major diagonal represents the classes that were correctly classified.

Reference Class

Habitat Class 1 2 3 4 5 6 7 8 9 Total Area User’s Acc

Map Class

Subtidal Haline-1 0.5060 0.0108 0.0215 0.5383 94%
Supratidal Sand-2 0.0393 0.0009 0.0026 0.0428 92%

Emergent Wetland-3 0.1660 0.0035 0.0071 0.1765 94%
Scrub-Shrub Wetland-4 0.0037 0.0229 0.0266 86%

Intertidal Sand-5 0.0141 0.1269 0.1410 90%
Herbaceous Upland-6 0.0183 0.0012 0.0008 0.0203 90%

Upland Sand-7 0.0011 0.0176 0.0000 0.0187 94%
Scrub-Shrub Upland-8 0.0026 0.0000 0.0186 0.0004 0.0216 86%

Forested Upland-9 0.0003 0.0000 0.0023 0.0117 0.0142 82%

Total Area 0.5060 0.0393 0.1954 0.0264 0.1581 0.0223 0.0188 0.0217 0.0121 0.9271

Producer’s Accuracy 100% 100% 85% 87% 80% 82% 94% 86% 96%

Table 6. Confusion matrix for WorldView-3 8-band field validation. Each cell holds the percentage of total area in that class, the column describes the field reference
and the row describes the predicted map class. The major diagonal represents the classes that were correctly classified.

Reference Class

Habitat Class 1 2 3 4 5 6 7 8 9 Total Area User’s Acc

Map Class

Subtidal Haline-1 0.4969 0.0414 0.5383 92%
Supratidal Sand-2 0.0393 0.0393 100%

Emergent Wetland-3 0.0068 0.1698 0.1765 96%
Scrub-Shrub Wetland-4 0.0024 0.0234 0.0258 91%

Intertidal Sand-5 0.0059 0.1352 0.1410 96%
Herbaceous Upland-6 0.0225 0.0012 0.0237 95%

Upland Sand-7 0.0026 0.0169 0.0195 87%
Scrub-Shrub Upland-8 0.0202 0.0014 0.0216 93%

Forested Upland-9 0.0016 0.0126 0.0142 89%

Total Area 0.4969 0.0461 0.1780 0.0234 0.1766 0.0251 0.0169 0.0229 0.0141 0.9367

Producer’s Accuracy 100% 85% 95% 100% 77% 90% 100% 88% 90%
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3.1.2. WorldView-3 vs. RapidEye

Results from both WV and RE are promising for their ability to accurately map wetland habitats
(Figures 5 and 6). Given that some habitat patches within the study area are <25 m2 (the area of
a RE pixel) it was assumed that RE would have trouble distinguishing these features. This was
particularly evident in the over prediction of scrub-shrub in RE imagery and can be seen in the
training sample spectral signatures where there is more noise and mixing in the classes evidenced
by the dip in the Supratidal Sand class on the red edge band, suggesting some mixing with slightly
vegetated pixels. These partially mixed pixels were overpowered by the scrub-shrub class and were
actually more often herbaceous, emergent wetland, or sand. Results show classifier confusion between
scrub-shrub and herbaceous that could not be differentiated by RE, but could with WV, likely due to
increased spatial resolution rather than spectral differentiation (Table S1). Other than this difficulty
differentiating the herbaceous class on RE, RE and WV had similar results across the other classes.
Both had difficulty separating emergent wetland from intertidal sand and scrub-shrub and high
accuracy for most other classes.
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3.2. Change Analysis with 2017 RCR Map

The greatest change in the RCR from 2004 to 2017 occurred in the supratidal sand class,
which expanded in coverage across the Bird Shoal shoreline (Figure 7). While a less pronounced
change, a relatively large increase in upland forest habitat corresponded with decreases in upland
scrub-shrub and upland herbaceous habitats. Total areal changes to emergent wetlands and intertidal
sands were small, but patterns of change with these two cover types vary across the RCR, indicating
regional expansion and loss of wetlands over the past three decades (Figure 8). Middle Marsh
experienced a 9% loss of emergent wetlands, with gains in upland scrub-shrub and intertidal sand.
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Figure 8. Habitat classification maps of the Rachel Carson Reserve from 1986, 2004, and 2017
demonstrate stability within emergent wetland patches and substantial intertidal sand increase along
the southern edge [43]. Note the 1986 map did not include Middle Marsh, the Reserve’s eastern
saltmarsh complex.
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4. Discussion

4.1. UAS and Field Work for Validation

Considering the similarity in accuracy between UAS and field-based assessments, our conclusion
is strongly in favor of validation with UAS where feasible. Primarily, this is due to the increased
ability to sample validation points across a larger proportion of the study site, while requiring less
time and less intrusion on the study area. For our study, using conventional field-based methods
required two 10-h days for three individuals to validate six small transects (214 validation points
in 30 h across 186,000 m2) and UAS-based methods required five hours of mission planning, five
two-hour expeditions of two individuals, and five hours of post-flight analysis to map the entire study
area (450 validation points in 15 h across 4,325,000 m2).

While startup costs of pilot training and platform acquisition may be relatively high, the benefits
appear to outweigh the costs in most applications. UAS imagery can be taken much more rapidly
than a comparable number of field points, meaning smaller windows in acceptable weather, season,
and tidal condition are sufficient for data collection. This should allow for validation data acquisition
to be closer in time to the satellite imagery. Aerial surveys also do not require a field team to trek
through a fragile wetland environment that may itself influence the study site over time. Moreover,
aerial imagery allows for a direct comparison to various satellite pixel sizes, which is more flexible and
accurate than bringing quadrats into the field and looking at them from the ground. UAS imagery,
combined with properly georectified structure from motion processing, permits geolocation errors
<0.05 m (Seymour et al., 2017a). Co-registering satellite imagery to georectified UAS imagery can
result in <1 m geolocation error even over large study sites, compared to typical 3–5 m satellite image
geolocation error plus any GPS uncertainty in the field. Given that satellites like WorldView-3 can
capture features as small as a single tree, or a tendril of emergent wetland, this precision in geolocation
is necessary for accurate training and assessment of very high resolution imagery. Tidal rectification of
satellite imagery with UAS is straightforward, as typically the tidal state does not change substantially
within the duration of a single flight and can be matched easily. Conversely, it is not typically feasible
to constrain traditional in-situ fieldwork to a precise tidal period, especially over large study areas.
An additional benefit from UAS, though not done in this study, is to include UAS-based Digital
Surface Models (DSMs) to add to training and validation accuracy by incorporating elevation into the
workflow [18].

In addition to startup and training costs, there are a few limitations with UAS that should be
considered. For example, shadows and glare can prevent an analyst from visually determining water
depth or vegetation type; however, appropriate flight timing can limit this issue. Typically, early
morning and late afternoon provide minimum glare due to the low sun angle, which is ideal for flights
over water and other reflective surfaces. Mid-day flights are ideal in areas with high relief and tall
vegetation for minimal shadows. Wind and weather can also prevent smaller platforms from safely
operating even if other conditions are ideal and add to glare on water. Early morning flights often
mitigate wind issues in coastal areas. Small differences in our UAS and field validation results can be
attributed to tidal offset, georeferencing error, vegetation change from August 2016 to February 2018,
and the limited number of field points that were taken due to the high time and resource requirements
of field validation. In addition to these logistical challenges, sole reliance on UAS-based methods may
lead to further issues, such as remote pilots lacking basic knowledge about the ecosystem that will
help better design classification systems and interpret classification issues.

The strongest argument for UAS-based training and validation is that, within a fixed budget,
it allows much larger training and testing sample sizes. If we had determined it was worthwhile we
could have used 2–3 times as many UAS-based training and testing points for this study, or covered
much more area in flights, with only marginal increases in cost and time. Increasing the field-based
sample sizes by two times would have been prohibitive, as it would have been a proportional increase
in cost and time. New classification techniques are being developed, including deep learning methods,
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and additional satellite constellations are being launched. In the context of these new classifiers and
satellite imagery, highly accurate testing and training datasets covering large areas will be critical
for monitoring ecosystems and change across time. We suggest UAS as a critical component of this
process moving forward.

4.2. WV3 and RE Classifications

The present study adds to a growing body of work demonstrating WorldView-3’s mapping
abilities and is one of the first to compare WV and RE in an estuarine environment. Different spatial
scales for segmentation had a considerable impact on the accuracy of the final habitat class map, as has
also been found in previous object-based wetland mapping projects [49]. Few previous studies provide
a reason for their segmentation level, despite being a considerable factor in the final classification
output. The level used in this study was determined iteratively with a large number of test sites
through the study area visually examined at each segmentation level. Although not necessary in our
study, other mapping projects with different landscape features often require multiple segmentation
levels to create separate classification maps each designed for delineating a specific habitat class that
could then be merged into a final product.

Given that the accuracy for both platforms was above 85% (UAS-based), the tradeoffs between
them cannot be defined simply by overall accuracy. Many ecologically important features within
wetlands are smaller than 5 m, so understanding change at that scale may require WV or aerial
imagery. In many cases the added spatial and spectral resolution makes WV a clear choice, especially
if it is affordable and available at the appropriate acquisition time. Though WorldView-3 has an
orbital revisit rate of 4.5 days, in practice imagery is considerably more limited for environmental
monitoring, and satellite tasking is beyond the budget of most projects. Thus, the added temporal
availability, better access for researchers, and decade-deep imagery archive make RE an enticing choice
for many applications.

In wetland mapping, tidal and seasonal matches are critical for accurate change analysis.
The higher revisit rate of RE captures ideal seasons and tides more frequently [53]. This multitemporal
stack also helps mitigate the impact of clouds and allows imagery acquisition more immediately after
storm or pollution events. These tradeoffs need to be understood as new commercial constellations by
companies such as Planet and BlackSky arise; these additional satellites will add more options for high
revisit rates in the future, though potentially at lower spatial and spectral resolution, and without the
benefit of long historical archives.

4.3. Image Layers and Thresholding

The contribution of NDVI and texture to class differentiation on RE is similar to what previous
studies have found with just the addition of NDVI on RE [54]. The decrease in accuracy on WV with
these added layers leads to additional questions and could have been caused by the SVM overfitting
the training samples, differences in training and validation samples, or too much noise in the additional
layers. A growing body of work suggests dimensionality reduction may be as effective as adding
data dimensions in some applications [55–57]. Our results from analyzing the contribution of these
layers promote the claim that one must consider the specific platform, and its spectral and spatial
characteristics, to decide whether additional indices or texture features will add to the prediction
power of a multispectral image. As deep learning classifiers find their way into the mainstream,
where handcrafted layers are not typically necessary, these added dimensions may fall out of favor.

Water habitats within this estuarine environment are highly complex; for example, some areas
exhibit clear deep water and low reflectance values, while other water pixels have high NDVI, turbidity,
and textured bottom types (oyster shells, debris, etc.). This drives a high amount of spectral variation
in the subtidal haline class, causing confusion for classification algorithms. This thresholding step
eliminated that confusion by successfully delineating water from other classes and has the potential
for applicability across environments.
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4.4. Conservation Implications

Much of the land cover change occurring in the RCR over the past few decades is due to
successional processes. However, these maps show the result of geophysical drivers that are continuing
to shape Bird Shoal as well as the potential impact of sea-level rise (SLR) on saltmarshes in this area.
Succession is best evidenced by the conversion of herbaceous and scrub-shrub habitat to forest, and the
colonization of intertidal sandflats by saltmarsh vegetation. Examination of the supratidal sand
component reveals a long-term pattern of sediment redistribution within the RCR. For the past decade,
the supratidal component of Bird Shoal has been steadily growing as nearby Beaufort Inlet has been
widening. Prevailing winds occur from the southwest, and several tropical cyclones have directly
impacted the study area during this time, including Hurricanes Ophelia, Irene, Arthur, and Matthew,
which together appear to have resulted in overwash and longshore delivery of sediments, extending
the island to the east. Because of the sheltered nature of fetch-limited barrier islands, storm overwash
has significantly reduced return energy, resulting in primarily landward movement of the beach [58],
and nearshore wave refraction is decreased, yielding greater alongshore transport of sediment [31].
Overwash and aeolian transport across sparsely vegetated areas have delivered sediment to the low
relief area between Bird Shoal and Town Marsh, increasing the elevation and providing suitable habitat
for saltmarsh vegetation to colonize [59,60]. Thus, we see substantial increases of intertidal emergent
wetland habitat in the western third of the RCR. This expansion of Bird Shoal has also encroached on
other areas of the RCR, with the island migration rolling over emergent wetlands and now bleeding
into Horse Island. With SLR, the migration of Bird Shoal will likely continue, eventually overtaking
Horse Island and narrowing the low-lying intertidal wetlands between the outer shoreline and the
dredge spoil mounds on the north side of the RCR. The speed at which this migration occurs will
depend on the island’s recovery, the continued impact of Beaufort Inlet dynamics, future storm activity,
and the rate of local SLR. Changes in the extent of different habitat types may have implications for the
management of living resources within the RCR. The RCR represents important seasonal habitat for
several endangered species of plants and animals [61], and is also home to a stable population of feral
horses that exert both direct and indirect effects on the local estuarine ecosystem [62]. As these habitats
evolve, conflicts amongst management priorities may emerge [63], and the workflows provided in the
present study provide an initial framework for RCR managers to efficiently monitor habitat change
and plan for such conflicts.

Island movement within the RCR in response to storms and inlet changes is likely compounded
by the occurrence of higher water levels within the past decade. Interaction of the North Atlantic
Oscillation and the El Niño Southern Oscillation have caused hotspots in local SLR along the US East
Coast since 2011 [64], and the region has experienced periods of frequent sea-level anomalies [65,66].
Higher water levels can result in more rapid sediment erosion or accretion depending on the forcing
patterns [67] and whether the shoreline has already been compromised by a recent storm [66]. Increased
water levels may be contributing to the loss of emergent wetlands in the eastern portions of the RCR
(Carrot Island, Horse Island, and Middle Marsh), as increased inundation leads to greater marsh bank
erosion and saltmarsh die off in the lower intertidal [68–70]. Being linked to atmospheric-oceanic
cycles, the area will experience periods with lower rates of SLR, which may allow some recovery of
emergent wetlands. However, this region does not have high suspended sediment loads to support
greater marsh accretion rates [4], and with continued SLR many of these lost emergent wetland areas
may not be recoverable.

The use of high resolution satellite imagery coupled with UAS-based image training has allowed
us to effectively compare land cover changes within the NCNERR, given the availability of historical
habitat mapping data. These maps through time have provided a window into natural and human
impacts to the RCR, and there is growing potential to implement these methods on broader scales,
encompassing more environments with the increasing accessibility of both satellite and UAS technology.
Furthermore, the existing archive of RE/WV2/WV3 imagery enables comparisons using the same
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spectral bands as far back as 2010, providing a vast imagery dataset that is high in both spatial and
temporal resolution.

4.5. Continuing Difficulties and Future Work

While testing these methods in the coastal environment, we have recognized several challenges
that should be considered moving forward. Given that intertidal sand, scrub-shrub wetland,
and emergent wetland do mix on the ground, with soft transitions between classes, a fuzzy accuracy
assessment may be appropriate in future studies to fully capture the accuracy of classification
algorithms [71]. It is up for debate whether using pixels or segments is more appropriate for assessing
the accuracy of object-based classifications. We suggest future studies build on our work by using the
segment level, area-based assessment methods suggested by Ma et al. [72]; implementation of this
segment-level assessment method using UAS would be considerably easier compared to a field-based
approach. Integrating this with a fuzzy accuracy assessment may become the standard for future
object-based classifications in complex environments such as estuarine habitats, where interfaces
among classes are often difficult to differentiate. However, when using UAS for training and validation
data, some level of familiarization of the landscape will still be required, perhaps facilitated through
direct coordination with a local expert having personal knowledge of the study area.

5. Conclusions

This study provides a detailed example for future integrations of UAS sampling and satellite
imagery in the study of coastal landscape changes. When deciding between satellite imagery,
we suggest considering the spatial extent of a study site, the finest features, spectral similarity of classes,
timing specificity requirements, and total budget. For example, the finer resolution of WV imagery
may be more useful when classification subjects are smaller and similar in spectral signatures to nearby
environments, but the frequency of RE imagery could be more beneficial for capturing temporally
short-term changes (e.g., storm impacts). Sensor selection should then drive additional indices and
image layers, with higher dimensional multispectral datasets not always needing additional layers,
as in our study. When evaluating UAS versus field-based validation, we find that, across the board,
increased numbers of sample points over a larger area augment the quality and reliability of the final
accuracy results. UAS-based accuracy assessment allows for a greater number of validation points to
be collected with marginal impact to processing time, permits field work to be conducted within rapid
collection windows, and leaves a minimal environmental footprint.
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