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Abstract: Power lines classification is important for electric power management and geographical
objects extraction using LiDAR (light detection and ranging) point cloud data. Many supervised
classification approaches have been introduced for the extraction of features such as ground, trees, and
buildings, and several studies have been conducted to evaluate the framework and performance
of such supervised classification methods in power lines applications. However, these studies did
not systematically investigate all of the relevant factors affecting the classification results, including
the segmentation scale, feature selection, classifier variety, and scene complexity. In this study,
we examined these factors systematically using airborne laser scanning and mobile laser scanning
point cloud data. Our results indicated that random forest and neural network were highly suitable
for power lines classification in forest, suburban, and urban areas in terms of the precision, recall, and
quality rates of the classification results. In contrast to some previous studies, random forest yielded
the best results, while Naïve Bayes was the worst classifier in most cases. Random forest was the more
robust classifier with or without feature selection for various LiDAR point cloud data. Furthermore,
the classification accuracies were directly related to the selection of the local neighborhood, classifier,
and feature set. Finally, it was suggested that random forest should be considered in most cases for
power line classification.

Keywords: laser scanning data; power line classification; random forest; feature selection; classifier

1. Introduction

Power lines are part of the important public infrastructure of cities, and their survey is a crucial
task in power supply management and scientific planning [1,2]. Additionally, power lines cover
various geographical terrains or different complex scenes, and have long distances. The traditional
field-based inspection is labor-intensive and costly. Remote sensing images might obtain spatial
information in 2D but in true 3D. In contrast, LiDAR (light detection and ranging) directly provides
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high-precision 3D data for the power line corridor, making it a perfect solution for this task by saving
a lot of field survey time and labor [3–6]. Airborne laser scanning (ALS) and mobile laser scanning
(MLS) are two such LiDAR systems for acquiring accurate 3D data over large areas. However, the data
volume of the LiDAR point cloud is usually very large, and the power lines are also close to trees and
buildings in different scenes. Therefore, we need to develop highly efficient and rapid methods for
power line classification from ALS and MLS in numerous types of scenes, such as forest, suburb, and
urban areas.

In general, the classification methods for LiDAR point cloud could be supervised or unsupervised.
In contrast to supervised methods, unsupervised ones need more priori knowledge or auxiliary
information, such as for example, the direction of the power line corridor, the corridor width, the pole
position [7,8], etc. The limitation makes the unsupervised methods not suitable for different types of
point cloud, various terrains, and point densities. Therefore, we paid more attention to the systematic
comparison of supervised methods for power line classification in this study.

There are several important factors for the supervised classification methods from the LiDAR
point cloud, which involve the local neighborhood types, classifiers, and feature sets. By considering
the physical characteristics of power lines, we explored the state-of-the-art and possible effects of these
parameters as follows:

For the local neighborhood types, the spherical, vertical cylindrical, and k-nearest neighborhoods
were commonly used in the classification of ground, tree, and buildings from airborne LiDAR
points [9–13], but rarely from power lines. It is relatively unknown how such local neighborhood types
work for power line extraction. Based on different types of local neighborhood, the feature extraction
for supervised classifiers is a crucial issue. Kim and Sohn [14] and Guo et al. [15] extracted 21 features
to characterize the horizontal and vertical properties of power line objects, and used knowledge-based
classification methods to separate power lines from their background in two steps by fitting in the
XOZ (consisted of X and Y axes) or YOZ (consisted of Y and Z axes) plane. These methods needed to
use contextual pylon information, and the accuracy of their point-based classification was 91.04% and
89%, respectively. Guo et al., Jwa and Sohn, and Jwa et al. [16–18] extracted power lines and towers
according to the semantic relationship, which is based on the position of towers. The methods were
unsuitable for power line classification in complex urban scenes where small electric poles instead
of tall towers are ubiquitous. Liang et al. [19] used the fact that the power lines are closely linked
to extract power lines from the point cloud, but the method requires airborne LiDAR point cloud of
very high density. Ritter and Benger [20] proposed to detect power line candidate points by using
the non-linear adjustment of the catenary line, but the method is computationally complex and had
large omission errors. Point-level features {X, Y, Z, echo number, intensity, · · ·} are commonly used to
construct the feature vectors [11,16,21–24]. Furthermore, interpretable geometrical and distributional
features are extracted from the local neighborhood in many studies [9–11,25]. The determination
of local neighborhood types is a critical issue for improving the classification results. The popular
classifiers for laser scanning point classification include support vector machines (SVM) [24,26–28],
random forests (RF) [9,14,29–32], JointBoost [16], Naïve Bayes (NB) [33,34], and so on. It is difficult to
select the classifier for power line classification because of a lack of comparative studies.

In this study, we systematically compared the power line classification methods from ALS and
MLS point clouds. We did comparative analysis in three different aspects (neighborhood types,
classifiers, and optimized feature sets), so it aims to provide a common and flexible classification
framework. Our analysis used various types of ALS and MLS point cloud data, different scenes, and
data quality to see whether general findings can be produced.

2. Materials and Methods

We focused on the power line supervised classification methodology from ALS and MLS
point cloud, and designed our study framework by considering three elements or parameters:
local neighborhoods determination, classifiers selection, and feature sets evaluation. Our methodology
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consists of power line candidate filtering, comparison between local neighborhoods, comparison
between different classifiers, and comparison between selected feature sets, which are explained in
Figure 1 and the following subsections.
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2.1. Dataset

We have tried to choose our datasets to cover different types of environment (urban versus forest)
and data types (ALS versus MLS). However, the number of datasets we can choose is also limited by
the LiDAR data available and the large amount of work required for labeling point clouds and creating
the ground truth. Our research area covers five test sites (Figure 2) with varying point densities in the
range of 3 m−2 to 124 points m−2 and different geographical topography such as forest, suburb, and
urban scenes. In Table 1, we listed the site characteristics. For these datasets, ground truth is available
in the form of a manual pointwise labeling of the power line class.

Site I and site II are in an urban area surrounding the campus of University of Hawaii at Manoa
in Honolulu, Hawaii. The airborne LiDAR data in these two sites were acquired in the summer of 2013
using an Optech ALTM GEMINI laser system (scan rate: 37 Hz; laser pulse rate: 70,000 Hz; multi-pulse
in air mode enabled with up to five echoes) mounted on a twin-engine Piper PA-31 Navajo airplane
(aboveground flight height: ~800–1400 m). The dataset areas in site I and II are ~800 × 100 m2 and
~520 × 360 m2, respectively. The power lines in these sites are urban distribution lines, and the point
density is both ~3.3 points/m2. Site II is a more complex scene, in which the buildings and trees are
closer to power lines.

Site III is a forest area located in Minnesota. The airborne LiDAR data were acquired in May 2013.
The dataset area in this site is ~581 × 782 m2, and the point density is ~1.6 points/m2.
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Site IV and site V are both mobile laser scanning data along primary roads located in Honolulu.
The MLS point cloud was acquired in April 2015. The dataset areas in site IV and site V are
~512 × 248 m2 and ~561 × 1411 m2, respectively. Their point densities are ~123.7 points/m2 and
~38.6 points/m2.

Table 1. Overview of five research sites (ALS = airborne laser scanning, MLS = mobile laser scanning).

Class Site I Site II Site III Site IV Site V

Site feature

Data collection date June 2013 June 2013 May 2013 April 2015 April 2015
Data type ALS ALS ALS MLS MLS

Density (points/m2) 3.3 3.3 1.6 123.7 38.6
Scene type Urban Urban Forest Urban Suburb

Labeled numbers
(points)

Ground 136,891 279,807 293,425 3,989,964 3,174,792
Building 48,574 115,785 0 0 0

Vegetation 73,523 116,689 426,617 11,576,752 755,585
Power line 6858 6891 3014 84,668 24,105

Others (billboard, etc.) 2516 93,452 1733 52,249 12,941
Total 268,362 612,624 724,789 15,703,633 3,967,423
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Figure 2. Visualization of the experimental datasets. (a) The site I dataset from the large urban ALS
(airborne laser scanning) scene around the campus of the University of Hawaii; (b) the site II dataset
from the large urban ALS scene surrounding the campus of University of Hawaii; (c) the site III
dataset from the forest ALS scene in Minnesota; (d) the site IV dataset of MLS (mobile laser scanning)
along primary roads located in Honolulu; (e) the site V dataset of MLS along primary roads located
in Honolulu.
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2.2. Power Line Candidate Filtering

The power line candidate filtering is the preprocessing for power line classification from the raw
LiDAR point cloud. The power lines are parallel or distributed regularly between two neighboring
electric poles or towers with sag [2,15,35,36]. Due to this unique geographical characteristics and large
data volume, the candidate filtering aims to collect all of the possible power lines points. The filtering
processing includes removing noise and ground points [37–40] and selecting the points that are 4 m
above ground [41] as power line candidates.

2.3. Multi-Scale Neighborhood Based Feature Selection

2.3.1. Local Neighborhood Determination

We considered four commonly used neighborhood types for power line classification: spherical,
vertical cylindrical, and k-nearest neighborhoods, which are defined using different geometrical
parameters as follows:

• a spherical neighborhood is formed by all of the 3D points within a sphere around point P,
which is parameterized with a fixed radius,

• a vertical cylindrical neighborhood is formed by all of the 3D points within a vertical cylindrical
whose axis vertically passes through point P and whose radius is fixed,

• a k-nearest neighborhood is formed by the k ∈ N nearest neighbors of considered point P, the k is
its parameter,

• an optimal k-nearest neighborhood is formed by the optimal k-nearest neighbors based on
the above-mentioned k-nearest neighborhood, the optimal k is derived by eigenentropy-based
scale selection.

The spherical, vertical cylindrical, and k-nearest neighborhoods were used in previous studies for
ground, tree, and building classification from airborne LiDAR points [9–12]. These local neighborhood
types were involved in this study for classifying power lines.

2.3.2. Feature Extraction

It is important to extract the useful features that distinguish the power line points from the LiDAR
point cloud. We chose the multi-scale local neighborhood to characterize a 3D structure for each
considered point according to the previous studies [9–12,42]. The multi-scale neighborhood could
address the multiple levels of detailed presentation of power lines, and was defined with a series of
fixed parameters, which included different radii for spherical, vertical cylindrical neighborhoods, and
different k values for the k-nearest neighborhood. Extracting features from a multi-scale neighborhood
implies the concatenation of features from multiple single-scale neighborhoods.

To characterize 3D points in a single-scale neighborhood, their coordinates, geometric features,
and distribution features have been proposed and used in the classification of ground, trees, buildings,
and cars [9,10,12,24,43]. We followed this computation method and proposed three different feature
datasets for power line classification as follows:

For a local neighborhood point set P of considered point P, we first computed the covariance
tensor C = 1

k ∑
i∈P

(pi − p)(pi − p)T , where p = medi∈P (pi) is its central point. Then, we acquired the

eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and corresponding normalized eigenvalues e1, e2, e3. Thus, we could
form three different feature sets as follows for power line classification.

(1) Feature set A includes the whole 26 features that were extracted by the method in
Blomley et al. [9], and its partial list of geometric and distributional features can be shown in Table 2.



Remote Sens. 2018, 10, 1222 6 of 18

Table 2. A partial list of geometric features and distributional features.

Feature Class Formal Definition Computing Method

Geometric features

Normalized eigenvalues ei =
λi

∑ λ i ∈ {1, 2, 3}

Linearity Lλ = λ1−λ2
λ1

Planarity Pλ = λ2−λ3
λ1

Scattering Sλ = λ3
λ1

Anisotropy Aλ = λ1−λ3
λ1

Distributional features

Omnivariance Oλ = 3
√
λ1λ2λ3

Sum ∑λ = λ1 + λ2 + λ3

Changing of curvature Cλ = λ3
λ1+λ2+λ3

Radius of local neighborhood γp = dist(p0 − pmax)

Density of point set P DP = num(pi)/4
3 πr3

P

Delta of point set P in Z axis ∆Z = maxZ −minZ

(2) Feature set B is obtained by the optimal feature subset of feature set A. The correlation-based
feature selection and the principal component analysis (PCA) strategy were used to measure and
evaluate the quality of a feature subset. We performed PCA on the extracted feature set A and selected
the sum of variances of the first few principal components that exceeded 90% as the feature set B.

(3) Feature set Γ is aggregated by the suitable features in A corresponding to the power line
physical characteristics. The power lines are usually distributed regularly and linearly between two
neighboring electric towers or poles with sag. Considering such characteristics, we manually selected
nine optimized core features as set Γ, including the linearity, scattering, anisotropy, changing of
curvature, density, verticality, eigenvalue entropy, radius, and standard deviation of the Z values.

2.4. Classifiers

2.4.1. Support Vector Machines (SVM)

SVM is a non-parametric supervised learning classifier that has become commonly used
in remote sensing images and laser scanning data classification [26–28]. The extracted features
based on multi-scale neighborhood are the predicators of the SVM classifier. After we tried
different kernel functions and compared their corresponding results, we adopted the radial basis
function (RBF) kernel, kernel coefficient with four, and automatic scaling of the predicators using
a heuristic procedure implemented in Matlab. The RBF kernel was commonly used and validated
in many previous SVM applications [26,28,42]. For the RBF SVM, the most important parameters
include gamma (the parameter related to the variance of the Gaussian radial basis function) and C
(the parameter quantifying how much we penalize the “slack variables” in the objective function).
We determined these parameters using the Bayesian optimization method [44] that minimized the
fivefold cross-validation classification errors. We also compared this optimization method with another
commonly used “grid search” method, and found that the Bayesian method had smaller classification
errors and a shorter computation time.

2.4.2. Random Forest (RF)

RF has been increasingly applied in the geographical object extraction and classification from
remote sensing images and LiDAR point cloud data [14,30–32,45]. RF employs a random method to
establish a forest comprising many mutually independent decision trees. The forest is obtained using
the training set, and then each decision tree in the forest makes a judgment about the unlabeled sample



Remote Sens. 2018, 10, 1222 7 of 18

as the category that was voted for most frequently. The number of trees is a key parameter of RF.
Usually, the predictive classification error rate of RF decreases initially, and then reaches a minimum
before increasing again for increasing number of trees [46]. Moreover, the best performance is usually
achieved within the first 250 trees in most datasets. Therefore, we tried different numbers (e.g., 100, 200,
300, and 400) of bagged trees, and investigated the out-of-bag errors over the number of grown trees.
We found that an ensemble RF of 300 bagged trees had the smallest error, and thus used it in this study.

2.4.3. Decision Tree (DT)

The use of decision trees (DTs) for remote sensing image classification has increased in recent
years. For geographical object classification from LiDAR point cloud data, the most important
phase is the construction of an interpretation model (knowledge) for the segmented objects [47–49].
However, it may be difficult to execute in combination with other classifiers, because DTs are similar
to a “white box”: users are easily able to interpret the links between the response variables of classes
and the explanatory features from point cloud data. In this study, a tree is grown by binary recursive
partitioning using the response in the specified formula and choosing splits. According to the
introduction of DTs [50] and a comparison of parameter optimization methods, we also applied
the Bayesian optimization algorithm to minimize the fivefold cross-validation loss for the tree by
varying the parameters, including a maximum number of splits and split criterion.

2.4.4. Naive Bayes (NB)

The Bayes network is a powerful probabilistic representation and reasoning tool when dealing
with conditions of uncertainty. It has also been widely used as a strategy or single classifier for remote
sensing classifications owing to its highly scalable and incremental learning [33,51,52]. Based on the
Bayes’ theorem, the standard naïve Bayes classifier assumes independence of the predictor variables
or features in this study. The problem is to maximize the conditional probability estimation of power
line points.

2.4.5. Discriminant Analysis (DA)

Discriminant analysis (DA) is a classical classification method that has been widely applied in
remote sensing images classification and other purposes [47]. In this study, we extracted Fisher’s linear
discriminants based on various features extracted from LiDAR point cloud data.

2.4.6. Neural Network (NN)

Neural network (NN) or artificial neural network is a computing system vaguely inspired by the
biological neural network that constitutes animal brains. Such systems “learn” tasks by considering
examples, generally without task-specific programming. A NN is based on a collection of connected
units or nodes called artificial neurons. Each connection between artificial neurons can transmit a signal
from one to another. The artificial neuron that receives the signal can process it, and then signal the
artificial neurons that are connected to it. NNs have been widely used on a variety of tasks, including
convolutional neural network framework for object-based classification from high-resolution images
and ALS point cloud [53–56]. The studies [57,58] discussed the framework and key issues of NN, and
the selection rules for the numbers of hidden layers and neurons in the hidden layers. According to
these studies, we applied the two-layer feedforward NN with sigmoid output neurons for power line
classification, and set the number of hidden neurons to 30 by tuning the network performance.

2.5. Experiments

We considered the following three aspects that play crucial roles for the power line classification
from LiDAR points: neighborhood, classifiers, and structural features. Following the procedure
described in the previous sections, we did a comparative analysis of power line classification using
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four different neighborhood types (spherical, vertical cylindrical, k-nearest, and optimal k-nearest
neighborhoods), six different classifiers (SVM, RF, DT, NB, DA, and NN), and three feature sets.

Specifically, we did three kinds of comparative experiments:
(i) Multi-scale neighborhood type experiments based on spherical, vertical cylindrical, and

k-nearest and optimal k-nearest neighborhoods, which were denoted as SP, VC, KN, and OKN,
respectively. Each multi-scale neighborhood resulted from the combination of local neighborhoods,
whose radii were 1 m, 3 m, 5 m, 7 m, 9 m, and 11 m. These construction methods of local neighborhoods
were commonly used in previous studies [9–12]. We adjusted the parameters and applied the SVM
classifier to compare the results of different neighborhoods;

(ii) Classifier experiments including SVM, RF, DT, NB, DA, and NN. We used these six classifiers
to train, validate, and test the five datasets. The features in this experiment were the whole features
extracted from the datasets based on the better neighborhood type in experiment (i);

(iii) Selected feature set experiments including feature set A, B, and Γ. We adopted the better
neighborhood type in experiment (i) and the more suitable classifier in experiment (ii) to compare the
results of the different selected feature sets.

In order to compare the point-level classification results of power lines in these different
experiments, we applied the commonly used fivefold cross-validation based on the manually labeled
points in each data site, respectively. We divided the point clouds into five folds, and used four folds
for training, and the remaining fold for testing in each iteration of cross-validation. We considered
a variety of measures: (i) precision rate (PREC), (ii) recall rate (REC), (iii) quality rate (QUA) and (iv)
processing time (T). The T contains the whole processing time from power line candidate filtering to
classification. The PREC, REC, and QUA are computed as follows:

PREC =
(TP)

(TP) + (FP)
(1)

REC =
(TP)

(TP) + (FN)
(2)

QUA =
(TP)

(TP) + (FP) + (FN)
(3)

where TP is the sum of true positives for power lines, FP is the sum of false positives for power lines,
FN is the sum of false negatives for power lines, PREC depicts the percentage of TP in the power lines
classification results, REC depicts the percentage of TP in the reference data, and QUA depicts the
quality percentage as an overall measurement. The algorithm proposed was programmed in Matlab
(the Mathworks, Inc., Natick, MA, USA). The computer we used has 8 GB RAM and a dual-core
2.20 GHz processor.

3. Results

3.1. Multiple Comparisons between Neighborhood Types

Table 3 summarizes the results of using spherical, vertical cylindrical, k-nearest, and optimal
k-nearest multi-scale neighborhood types for these five datasets.

The vertical cylindrical neighborhood VC had the highest mean PREC, REC, and QUA rates.
The multi-scale neighborhood VC had slightly higher REC and QUA rates than SP in sites I, II, and III,
which used ALS point cloud data. In sites IV and V of MLS point cloud data, the REC and QUA rates of
neighborhood SP were a little higher than the VC ones. Among the five experiment datasets, the PREC
rates were similar to each other between neighborhoods VC and SP. The results of neighborhoods KN
and OKN showed the lower mean PREC, REC, and QUA rates. Additionally, we did the paired-sample
t-test analysis of the QUA rates between any two neighborhoods across five study sites. We found
that neighborhoods VC and SP are statistically significantly better than neighborhoods KN and OKN.
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In contrast, the pair t-test between VC and SP had a p-value of 0.1803, which indicated that VC is not
statistically significantly better than SP. Therefore, we chose VC and SP as the local neighborhood
types in the subsequent experiments.

Table 3. Classification performance for different multi-scale neighborhood types (PREC = precision
rate in %, REC = recall rate in %, QUA = quality rate in %, T = processing time in seconds,
SP = spherical neighborhood, VC = vertical cylindrical neighborhood, KN = k-nearest neighborhood,
and OKN = optimal k-nearest neighborhood).

Data Site Neighborhood Type
Performance Measures

PREC REC QUA T

Site I SP 98.3 83.7 82.5 1064
VC 98.2 98.6 96.8 672
KN 89.0 78.6 71.7 362

OKN 32.6 15.3 11.6 600

Site II SP 97.7 70.3 69.2 508
VC 93.4 79.5 75.2 1110
KN 92.0 38.8 37.5 359

OKN 73.1 12.5 11.9 220

Site III SP 98.6 49.8 49.5 927
VC 94.2 55.0 53.2 1001
KN 36.5 16.6 12.9 607

OKN 28.3 29.2 16.8 466

Site IV SP 99.4 99.1 98.5 1806
VC 99.4 98.3 97.7 2694
KN 61.8 100.0 61.8 1387

OKN 61.8 100.0 61.8 117

Site V SP 98.7 98.6 97.4 108
VC 98.5 98.2 96.7 129
KN 65.1 100.0 65.1 62

OKN 65.1 100.0 65.1 30

Mean SP 98.5 80.3 79.4 882
VC 96.7 85.9 83.9 1121
KN 68.9 66.8 49.8 555

OKN 52.1 51.4 33.4 287

3.2. Comparisons Between Classifiers

We computed the QUA rates of these six classifiers with neighborhood types VC and SP, and
feature sets A, B, and Γ in these five data sites. We also did the paired-sample t-test analysis of QUA
rates between any two classifiers. We found that RF had the highest mean, and at the 5% significance
level, it was statistically significantly better than any other classifiers, except for NN. The best results
were obtained when using neighborhood type VC and feature set A, as shown in Table 4.

Table 4 showed that when using neighborhood type VC and feature set A, the classifiers SVM,
DT, and NN had close mean REC and QUA rates. The classifiers NB and DA performed worse results,
while they needed less processing time. For the ALS datasets in the urban areas of sites I and II,
the classifiers SVM, RF, and NN achieved higher results of PREC, REC, and QUA rates. The classifiers
RF, DT, and NN could be more suitable for the ALS dataset of site III in the forest area.
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Table 4. Classification performance for six different classifiers (PREC = precision rate in %, REC = recall
rate in %, QUA = quality rate in %, T = processing time in seconds, SVM = support vector machines,
RF = random forest, DT = decision tree, NB = Naïve Bayes, DA = discriminant analysis, and
NN = neural network).

Data Site Classifier
Performance Measures

PREC REC QUA T

Site I SVM 98.2 98.6 96.8 672
RF 98.5 95.1 93.8 412
DT 93.1 91.0 85.3 372
NB 37.6 96.2 37.1 321
DA 79.5 77.9 64.9 342
NN 96.3 96.1 92.6 341

Site II SVM 93.4 79.5 75.2 1110
RF 98.5 76.0 75.1 418
DT 81.9 68.4 59.4 356
NB 20.7 41.9 16.1 307
DA 90.1 34.2 33.0 342
NN 88.2 71.6 65.3 325

Site III SVM 94.2 55.0 53.2 1001
RF 98.1 74.2 73.1 1003
DT 96.3 72.2 70.3 958
NB 9.7 90.5 9.6 879
DA 72.5 22.6 20.8 916
NN 99.2 61.2 60.9 914

Site IV SVM 99.4 98.3 97.7 2694
RF 99.6 99.5 99.1 2451
DT 99.2 98.5 97.7 2376
NB 93.9 97.4 91.6 2327
DA 98.6 96.5 95.1 2349
NN 99.1 97.5 96.7 2345

Site V SVM 98.5 98.2 96.7 129
RF 98.9 98.6 97.6 108
DT 98.6 98.2 96.8 107
NB 94.1 94.7 89.3 80
DA 97.0 97.0 94.2 89
NN 98.7 96.3 95.1 83

Mean SVM 96.7 85.9 83.9 1121
RF 98.7 88.7 87.8 878
DT 93.8 85.7 81.9 834
NB 51.2 84.1 48.7 783
DA 87.5 65.7 61.6 808
NN 96.3 84.5 82.1 802

We found that the REC rates for site II were very low, regardless of the classifiers. The reasons are
that (1) site II was in an urban scene where the points from trees, buildings, and other objects were
close to the ones from power lines; it was even more complex than site I; and (2) the point density
of site II was much smaller than those of site IV and site V. The recall rates for site IV were generally
low as well, mainly because it had the lowest point density among all of the sites: the points’ local
neighborhoods in site III contained fewer points, which tended to be misclassified as points from
irregular features such as trees.

Among the six classifiers, the classifier NB performed the worst in this study. The omission errors
of NB for site I and II were slightly higher than classifiers SVM, RF, and NN. Sites I and II have different
geographical scenes. Site I is in a simple urban area, and the power lines are almost distributed linearly
and close to some trees. Site II is in a more complex urban area, and the power lines are distributed in
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disorder and very close to trees and buildings. These differences result in a low omission error in site I,
and a high omission error in site II, for the NB classifier.

For sites IV and V with MLS datasets, these six classifiers all performed very well with precision,
recall, and quality rates mostly greater than 94%. In contrast, their performance varied substantially
over the other three sites with ALS datasets. This indicates that increasing point density is an effective
approach to improve the power line classification accuracy. In contrast, when the point density is
relatively low, even the common powerful machine learning methods, such as RF and SVM, could suffer
when classifying power lines (especially in sites II and III). Overall, the non-parametric classifiers RF,
DT, and SVM had higher rates than the parametric classifiers NB and DA.

3.3. Comparisons between Selected Feature Sets

We computed the QUA rates of these three feature sets with neighborhood types VC and SP, and
six classifiers in these five data sites. We also did the paired sample t-test analysis of QUA rates between
any two feature sets, and found that feature set A had the highest mean, and at the 5% significance
level, was statistically significantly better than the other feature sets. When the neighborhood type
VC was used, it had the highest mean QUA rate. Table 5 listed the classification results of these five
datasets for all of the feature sets using neighborhood type VC.

Table 5. Classification performance for three different feature sets (PREC = precision rate in %,
REC = recall rate in %, QUA = quality rate in %, T = processing time in seconds).

Data Site Feature Set
Performance Measures

PREC REC QUA T

Site I A 98.5 95.1 93.8 412
B 83.1 38.4 35.6 365
Γ 98.0 95.7 93.9 202

Site II A 98.5 76.0 75.1 418
B 89.7 41.2 39.3 357
Γ 88.5 71.3 66.7 205

Site III A 98.1 74.2 73.1 1003
B 93.1 51.6 49.7 1001
Γ 85.1 72.5 69.6 415

Site IV A 99.6 99.5 99.1 2451
B 95.7 97.9 93.8 2361
Γ 99.4 99.0 98.5 1061

Site V A 98.9 98.6 97.6 108
B 94.8 97.8 92.8 91
Γ 98.9 98.4 97.4 54

Mean A 98.7 88.7 87.8 878
B 91.3 65.4 62.2 835
Γ 94.0 87.4 85.2 387

The results in Table 5 showed that when the neighborhood type VC was used, the selected feature
set Γ had similar mean PREC, REC, and QUA rates to the all of those in feature set A. The feature set
B, which was obtained by PCA method, had the lowest mean rates. For the mean processing time T,
it had dropped dramatically from 878 s in A to 387 s in Γ, because of the smaller number of features in
Γ. The T results had not dramatically improved in B compared with A.

For sites IV and V with MLS datasets, the different feature sets all performed relatively well,
with the precision, recall, and quality rates being greater than 92%. For the three sites (I, II, and III) with
ALS datasets, feature B had the worst performance, with substantially lower quality rates. Relatively,
feature set A has the best performance. Compared with feature set A, feature set Γ had a moderate
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decrease in precision (from 98.4% to 90.5%) and slight decreases in recall (from 81.8% to 78.8%) and
quality (from 80.6% to 76.7%) for these three ALS sites.

As an example to visualize the classification, we used the vertical cylindrical neighborhood VC,
classifier RF (due to its highest mean classification accuracy, as shown in Table 4), and feature set Γ

(due to its relatively high quality rate) to classify power lines across the five data sites (Figure 3a–c).
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Figure 3. Visualization of the experiment results of power line classification for the five light detection
and ranging (LiDAR) data sites, which involve the non-ground LiDAR point cloud, true power line
points, and classified power line points. (a) is the power line classification result of data site II, which is
a complex urban scene and ALS point cloud; (b) is the power line classification result of data site III,
which is a forest scene and ALS point cloud; and (c) is the power line classification result of data site V,
which is a suburban scene and MLS point cloud.

4. Discussion

The aim of this study was to systematically compare the classification methods of power lines
from ALS and MLS point cloud data through comparisons between neighborhood types, classifiers,
and feature sets. We applied different methodology parameters of proposed classification architecture
in the experiment data sites, involving the low density of ALS data and high density of MLS data,
as well as forest, suburban, and urban scenes.

4.1. Sensitivity Analysis of Local Neighborhood

The local neighborhood construction of the considered points is an important task for pointwise
objects classification from LiDAR point cloud data. Based on the constructed neighborhood,
the extraction of crucial features, determination of suitable classifiers, and consequent processing can
be realized. The neighborhood types and scales are the two key elements for the local neighborhood.
According to the previous studies [9,12,42,59,60], the commonly used neighborhood types are spherical,
vertical cylindrical, k-nearest, optimal k-nearest, and slant cylindrical neighborhoods, while the
neighborhood scale could be usually divided into single scale and multi-scale types.

Considering the neighborhood types, we found that the four common used ones (spherical,
vertical cylindrical, k-nearest, and optimal k-nearest) were widely applied in the classification of
different geographical objects (ground, trees, buildings, cars, etc.). The optimal k-nearest type might
achieve higher precision results for the classification of special objects. However, it is more time
consuming to compute the optimized k for each point, especially when the data volume is very big
in large areas or MLS datasets. The experiment in Section 3.1 also revealed that the results of the
optimal k-nearest neighborhood type had lower accuracy rates than the others. Therefore, the optimal
k-nearest neighborhood type is unacceptable for application in the power line classification. The slant
cylindrical neighborhood is more tailored for power line classification, but it needs the power line
corridor direction information beforehand. Therefore, in this study, we considered the spherical,
vertical cylindrical, k-nearest, and optimal k-nearest neighborhoods in our experiments.
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In the aspect of neighborhood scales, it’s obvious that the multi-scale neighborhood has more
benefits than the single scale neighborhood, because the former one represents more spatial structure
characteristics between points. The scale of neighborhoods is commonly identified by the radius
parameter, such as 1 m, 3 m, etc. We applied multi-scale neighborhood in this study, which combined
multiple single scales of 1 m, 3 m, 5 m, 7 m, 9 m, and 11 m. Obviously, the higher the number of
single scales in the multi-scale neighborhood, the more time-consuming the feature extraction and
consequent processing.

There should be a balance between the number of scales and the amount of time required.
The larger number of single scales covers a wider power line corridor. Therefore, the multi-scale
neighborhood could capture more useful physical information of the power lines.

4.2. Effects of Different Classifiers

We compared six common classifiers for the power line classification from LiDAR point cloud
data in this study. These classifiers contain SVM, RF, DT, NB, DA, and NN, which are popular
in the classification of geographical objects from remote sensing images or laser scanning point
cloud [16,26,27,33,42]. However, it is difficult to know whether these classifiers are suitable for power
line classification or different types of point cloud data. Therefore, we applied six classifiers and five
different data sites in our experiments, which could be more creditable in various situations.

By exploiting the experiment results, we found that the RF and NN classifiers could be better
options for power line classification from ALS and MLS point cloud data. The accuracy was similar to
each other for these two classifiers. Generally, the classifiers of RF, DT, and NN were more suitable
for ALS data, while those of RF, DT, and SVM were better for MLS data. Moreover, the six compared
classifiers performed consistently better for MLS point clouds (sites IV and V) than ALS ones (sites
I, II, and III). The classification results of these six classifiers had slight differences for MLS point
clouds, but had noticeable differences for the ALS point clouds. The main difference between ALS
and MLS data is the point density. The point density of ALS was usually <10 points/m2, while that of
MLS could be up to 150 points/m2. The local neighborhoods of points in MLS, which include more
points, could provide more detailed spatial structure information. Therefore, it was revealed that:
the higher the point density in the raw LiDAR point cloud, the better the classification result that could
be achieved.

4.3. Differences between Selected Feature Sets

The selection of feature set in the power line classification is crucial to the processing time and
performance of the proposed methodology. The previous studies [9,10,12,13] proposed up to 26 features
for the classification of different objects from airborne LiDAR point cloud data. We concentrated these
features as the initial whole feature set, as they were validated in the applications of building, tree, and
car classification. Based on these features, we obtained two other feature sets by applying the PCA
method and manual selection. According to the physical distribution characteristics of power lines,
we selected some core features that could better represent the contextual information.

The experiments revealed that the selected core feature set could achieve accuracy that was close
to the whole feature set for MLS datasets and had a slightly lower accuracy for the ALS datasets.
Meanwhile, it decreased the processing time dramatically from 878 s to 387 s for these data sites on
average. Such core features are useful when computation speed is critical (e.g., processing large-area
data with limited computer resources) and for users who can slightly sacrifice accuracy.

5. Conclusions

In this study, we systematically compared the power line classification methods for ALS and
MLS point cloud data. Based on the various parameters of the model, we specially focused on
the result comparison of different local neighborhood types, classifiers, and selected feature sets.
Through comparison analysis, we provided a common simple and validated framework of power
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line classification method for different types of point cloud, variable geographical scenes, and point
density. We found that the classification method composed with the multi-scale vertical cylindrical
neighborhood, the RF classifier, and selected core feature sets could be an optimal solution that
can balance both classification accuracy and processing time. The high point density of MLS could
achieve higher classification accuracy than ALS. On the other hand, the methods in this study almost
belonged to supervised classification algorithms. In the future work, we should develop an efficient
unsupervised power line classification method from LiDAR point cloud in complex scenes.
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