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Abstract: This study examined the relationship between the leaf reflectance of different seasons and
the concentration of heavy metal elements in leaves, such as Co, Cu, Mo, and Ni in a post-mining
area. The reflectance spectra and leaf samples of three typical plants were measured and collected in a
whole growth cycle (June, July, August, and September). The Red Edge Position (REP), Readjustment
Normalized Difference Vegetation Index (RE-NDVI), and Photochemical Reflectance Index (PRI) were
extracted and used to explore its relation with the heavy metals concentrations in leaves between
different seasons. The results show that all three Vegetation Indices (VIs) were insensitive indicators
for monitoring the metal effects of vegetation in different seasons, which showed similar trends.
Based on this, the Continuum Removal Indices (CRIs) were proposed from the continuum removed
approach and extended for detecting the effects of heavy metal pollution over a full growth cycle.
The relationship between the metal concentrations and CRIs of different plants was respectively
analyzed by Stepwise Multiple Linear Regression (SMLR) and Partial Least Squares Regression
(PLSR). It is found that a significant correlation exists between the band depth and the concentration
of Cu and Ni based on the White birch data sets using the PLSR, resulting in a small deviation
from the established relationships. Compared with VIs, the approach of coupling CRIs and multiple
regressions was effective for improving the estimation accuracy. The presented study provides a
detection model of leaf heavy metals that can be adapted to different growing cycles, even an arbitrary
growing cycle.

Keywords: foliar metal concentration; different seasons; spectral vegetation indices; continuum
removal; multivariate regression

1. Introduction

One of the major environmental problems resulting from mining areas is the metal pollutants [1–3].
Currently, heavy metal pollution monitoring mainly depends on the traditional geochemical methods,
which are time consuming with a low efficiency and unsuitable for large-scale monitoring [4,5].
However, the vegetation was shown to play an important role in element migration, which could
adsorb and transport ore-forming elements to the surface and result in a near-surface medium
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anomaly [6]. When plants uptake excessive concentrations of heavy metals in soil, their growth
will lead to a certain extent of harmful changes, such as a decrease in chlorophyll content and/or
changes in the leaf internal structure [7,8]. These directly or indirectly influence the spectral feature of
the plant leaves [9,10]. Therefore, exploring the spectral response of the plant leaves by metal-induced
stress is of the utmost importance for monitoring the phytoremediation of metal mine-polluted land or
finding the concealed deposits using remote sensing techniques, with its advantages of fast dynamic,
subtle recognition, and nondestructive detection.

Early spectral analysis of the interaction between vegetation and metal dates back to the period of
1970–1980, such as the works by Collins et al. [11], Milton et al. [12], and Horler et al. [13], who defined
the Red Edge Position (REP) and demonstrated shifts in the REP of vegetation reflectance-based heavy
metals stress. Based on this, a substantial amount of studies explored the effects of the metals on
vegetation spectra. The most fundamental characteristic is the ‘blue shift’ of REP that occurs when
vegetation is subjected to a heavy metal concentration, which refers to the spectra that tend to shift
toward the left and shorter wavelengths. Stress also tends to produce an increase in reflectance at
around 680 nm absorption. Some previous studies have been conducted under controlled laboratory
conditions rather than field environments. In the laboratory, the specific plants were grown at the
controlling levels of the certain metal over a full growth cycle [14–17]. Many of these studies tended to
identify comparatively obvious spectral features by metals stress, which often manifests as a higher
simulation accuracy of heavy metal content than the field studies. However, the vegetation spectral
properties are a function that depends on the many geographical variations and applying the results
of the laboratory to the natural environment still needs to be explored [17–19]. Field studies that
examine the plant response to metal-contaminated soil have mostly focused on old waste deposit
sites [1–3], river floodplains [19,20], polluted farms [21,22], etc. In these studies, the dominant species
of plant in specific growth stages were selected as the study object, and then the VIs were used to
explore relationships between the metal content and spectral response. The spatial distribution of
metal contaminants can be indirectly inferred from these relationships at the leaf scale or canopy
level [22,23]. Although many scholars have carried out relevant research work and developed some
meaningful VIs, there have been no field studies of the multiple-metals effect on the spectra of varying
vegetation species in the different seasons. On the other hand, the metal trans-location properties from
roots to leaves for different species of plant still need to be discussed, which is a necessary first-step for
exploring the spectral response of the plant by metal-induced stress [24,25].

Several VIs have been developed and used to assess plant stress. These VIs using reflectance
measurements in the red and near-infrared regions are sensitive even to small changes in vegetation
status produced by heavy metals stress. The most widely used VI is REP, and the shift of REP
towards shorter or longer wavelengths, respectively, was used to detect the stress or growth of green
vegetation [13,26]. Currently, this fundamental spectroscopic-plant principle in these previous studies
is widely used in vegetation detection [9,17]. Many researches focused on exploring the change of
several existing VIs around the red edge corresponding to stress, such as the Normalized Difference
Vegetation Index (NDVI) [2,22,27], Photochemical Reflectance Index (PRI) [14,28], and Ratio Vegetation
Index (RVI) [16,22], and wavelet-fractal analysis [29] has also been demonstrated to be a successful
indicator of a variety of metal stresses. However, these VIs were applied to different species, with no
comparison with other techniques and without being applied to the plant in different seasons, and the
optimum stages of vegetation samples for detecting metals were not guaranteed to have been collected
in the field. Meanwhile, the majority of the well-succeeded works on the VIs developed and applied
have been achieved by exploring detached leaves rather than canopies, and a variety of classic VIs
(e.g., REP, PRI) were developed at leaf level. Thus, it is particularly important to explore a hyperspectral
detection mode of a heavy metal at the leaf level.

The continuum removal method at a specific waveband is another spectral analysis approach
that has been assessed for biochemical parameter estimation [30,31]. The individual absorption
features of continuum removal can be compared by normalizing them to the common baseline [32],
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and this method and its derived parameters have been proved useful for mineral mapping [33]
and have also been extended to estimating the foliar biochemical parameters (nitrogen, lignin,
and cellulose, etc.) [34–36]. Limited work has used the continuum removal to assess the plant response
to metal-include due to geochemical stress or for old waste deposit sites. Thus, the comparison of VIs
and CRIs utilizing hyperspectral vegetation data sets at different growth stages for the detection of
multi-metals pollutants is necessary and forms the focus of this study.

Multivariate regression has become a promising method to process the large amount of
spectral information, for example, SMLR has been successfully used to simulate the vegetation
parameters [34,37]. However, it may be impacted by multicollinearity in the processing of hyperspectral
data. This typically happens when the number of wavelengths studied is larger than the number of
observations [38]. In contrast, PLSR was first developed to deal with the multicollinearity problem in
chemical application areas, and this statistical technique has been successfully extended to simulate
vegetation biochemical properties [39,40] and biophysical properties [41,42]. An optimal selection of
spectral bands and an appropriate statistical method for heavy metal estimation among the vast array
of those available are required.

For the above reasons, the purposes of the research are to: (i) explore the sensitivity of the most
common VIs used to monitor the metal effects in different growth stages; and (ii) extend the CRIs
derived from continuum removal to analyse the plant response to multiple-metals over a full growth
cycle. To achieve these objectives, this study measured the spectra of a native representative plant
in the waste copper mines over a full growth cycle to extract three representative VIs and CRIs.
Univariate regression with VIs and two multivariate regression methods with CRIs were applied to
evaluate the relation between vegetation reflectance and metal concentration. The response of the
hyperspectral indices of different plant species under different metal levels and seasons by this relation
was discussed.

2. Materials and Methods

2.1. Study Area

The study area is located in the Duobaoshan copper mine of the Lesser Khingan, Heihe City,
in the Midwest of Heilongjiang Province, China. According to the retrieval data from the website of
Weather China, Heihe experiences a monsoon-influenced humid continental climate, and the average
annual rainfall is 490~540 mm, close to two-thirds of that in the months of June to August. It is rich in
polymetallic mineral resources of Co, Cu, Mo, and Ni. The two sampling points were distributed in the
two main ore deposits located roughly 3 km apart, which are large Cu-Mo deposits of the porphyry
type. In addition, a control group was collected from Woduhe forest farm situated to the north of the
mine. In sum, three sampling points were selected for the experiment, including one control point (S0)
in the forest farm and two points (S1 and S2) in the copper mine (as shown in Figure 1).

In the two main ore deposits, due to artificial exploitation, two vertical abandoned pits of
accumulated waste rock have formed, which was easy to use for producing the ore-forming elements’
migration and resulted in a near-surface medium anomaly. The herbaceous and woody specimens
have always coexisted at sampling points. The major plant species include White birch, Mongolian
oak, and Cotton grass (as shown in Figure 2). As the vegetation coverage is relatively high in the two
sampling points, this provides an opportunity to assess the effects of the metal on leaf reflectance.
Meanwhile, the repair of abandoned pits using the vegetation is being conducted by Duobaoshan
Copper Ltd. (Heihe, Heilongjiang, China). Thus, this is an ideal area for the study of the spectral
response of metals-stressed leaves from the perspectives of the mineral environment and resources.
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Figure 2. Pictures of three plants in the field. In the figure, (a–c) are White birch, Mongolian oak, 
and Cotton grass, respectively. 
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For measuring leaf spectra, in order to reduce the effects of the sun’s position and ensure the 
minimum amount of samples required for element testing, two to three leaves were randomly 
selected from each plant and cut at the leaf stalk using steel scissors. Each leaf was placed on a black 
paperboard in the open ground, to minimize the background spectral noise or radiation transmitted 
through the leaf. The foreoptics were aligned vertically and the height of the foreoptics was kept 
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less than 1 cm in diameter, which ensured that the FOV filled the leaf without being influenced by 
the surroundings. Prior to each leaf reflectance measurement, a reflectance reference measurement 
with a Spectralon panel (Labsphere Inc., North Sutton NH, USA) was measured under the same 
conditions immediately. The final conversion to spectral reflectance was done by dividing the 
measured spectrum of the leaf samples by that of the Spectralon panel. The ASD was configured to 
average 15 consecutively acquired spectra for each record. For each plant, the mean of all spectra 
from two to three leaves in different positions was calculated for subsequent analysis, in order to 
average out the differences in reflectance as the result of different angles. All spectral measurements 
were taken under cloudless or near-cloudless conditions between 11:30 a.m. and 2:00 p.m. In order 

Figure 2. Pictures of three plants in the field. In the figure, (a–c) are White birch, Mongolian oak,
and Cotton grass, respectively.

2.2. Field Ground Data Collection

ASD FieldSpec Pro (Analytical Spectral Devices, Boulder, CO, USA) is a common portable
spectroradiometer, which has been widely used in the detection and analysis of stress caused by
environmental pollution [16,17,19,43]. In this study, leaf reflectance spectra were measured in situ
using an ASD FieldSpec 3 High-Resolution Pro spectrometer, with a 25◦ field of view (FOV) through
a permanent fiber optic probe. This instrument detects electromagnetic radiation in the wavelength
range of 350–2500 nm; a sampling interval of 1.4 nm between 350–1000 nm and 2 nm between
1000–2500 nm; and a spectral resolution of 3 nm (@ 350–1000 nm), 8.5 nm (@ 1000–1900 nm), and 6.5 nm
(@ 1900–2500 nm).

For measuring leaf spectra, in order to reduce the effects of the sun’s position and ensure the
minimum amount of samples required for element testing, two to three leaves were randomly selected
from each plant and cut at the leaf stalk using steel scissors. Each leaf was placed on a black paperboard
in the open ground, to minimize the background spectral noise or radiation transmitted through the
leaf. The foreoptics were aligned vertically and the height of the foreoptics was kept within 5 cm above
the leaf surface at a nadir position. The leaf area observer by the ASD sensor was less than 1 cm in
diameter, which ensured that the FOV filled the leaf without being influenced by the surroundings.
Prior to each leaf reflectance measurement, a reflectance reference measurement with a Spectralon
panel (Labsphere Inc., North Sutton NH, USA) was measured under the same conditions immediately.
The final conversion to spectral reflectance was done by dividing the measured spectrum of the
leaf samples by that of the Spectralon panel. The ASD was configured to average 15 consecutively
acquired spectra for each record. For each plant, the mean of all spectra from two to three leaves in



Remote Sens. 2018, 10, 1211 6 of 21

different positions was calculated for subsequent analysis, in order to average out the differences in
reflectance as the result of different angles. All spectral measurements were taken under cloudless
or near-cloudless conditions between 11:30 a.m. and 2:00 p.m. In order to reduce the effects of the
illumination changes, the Spectralon panel was measured for 20 min of use or the light changed
significantly in twenty minutes.

Leaf samples were collected almost synchronously with the leaf spectral reflectance measurements
in the field. In addition to the collection of the measured leaves, the plant roots were immediately
collected for evaluating the translocation characteristics of heavy metal from the root to leaf by the
calculation of the Translocation Factor (TF). The TF for metals within a plant was expressed as the
ratio of [metal]Leaf/[metal]Root, which has been widely used to evaluate the capability of plants to
accumulate the metal from roots to above ground parts [24,25]. All samples were put into sample bags
with labels, which were stored in an insulated cabinet filled with ice. The ice was changed every day
for keeping the samples fresh. The samples were sent to a commercial laboratory and analyzed for
total metal concentrations of Co, Cu, Mo, and Ni by flame atomic absorption spectrometry (AAS).

Field work was initially conducted during four months of a typical plant growing season from
June to September 2013, which corresponded to the tiller, booting, mature, and fall growth stages of
vegetation. We considered that only sampling points from 2013 were used for building and validating
the model, which might cause instability of the model, and we were prepared to collect additional
samples in 2014. However, large areas of vegetation already exhibited dead leaves and fall because of
the cold weather in September 2014, and Duobaoshan Copper Ltd. (Heihe, Heilongjiang, China) were
repairing the two ore deposits in 2015, which led to difficulty in gaining access to the sampling points.
Thus, we supplemented the samples with those from June to August 2014 and June to September 2016,
so a total of 135 (S0: 45, S1: 45, S2:45, in which 2013: 36, 2014: 27, 2016: 72) data were measured for
subsequent analysis.

2.3. Vegetation Spectral Analysis

(1) REP: The red edge is defined as the slope of the steep rise in the reflectance spectra of the
green plant between 690 and 740 nm [9]. A variety of algorithms for quantitative analysis of the REP,
such as: (i) the first difference transformation [44], which needs narrow and wider bandwidth spectra
and can enhance the absorption features that might be impacted by background absorptions [44,45];
(ii) the inverted Gaussian method, which smoothens the spectral signature in the red-edge region
using the inverted Gaussian function with complicated calculation procedures [46]; (iii) and the linear
methods, which only use three or four fixed wavelengths to calculate the REP [47,48], and which
has the advantage of rapidity; however, it overestimates the REP when compared to the other two
methods [48]. Meanwhile, the latter two methods did not make full use of the very fine spectral
resolution of the spectroradiometer that was used [49]. Thus, we used the maximum of the first
derivative to calculate REP that can be expressed as Equation (1), and REP is the wavelength of the
maximum of FDT.

FDTλ(i) = (Rλ(j+1) − Rλ(j))/∆λ (1)

where FDT is the first-difference transformation at a wavelength i, at the midpoint between wavebands
j and j + 1; Rλ(j) is the reflectance at the j waveband; Rλ(j+1) is the reflectance at the j + 1 waveband;
and ∆λ is the difference in wavelengths between j and j+1.

(2) VIs: VIs are a linear or nonlinear combination of values of two or more bands. Two types of
two-band VIs were calculated, including RE-NDVI and PRI, which were confirmed for detection of the
metal stress through vegetation reflectance in the literature [17,22,50].

(I) RE-NDVI: The RE-NDVI was based on the chlorophyll index developed by Gitelson and
Merzlyak [51] and showed a high sensitivity to pigment changes, exhibiting a better stability than
NDVI when applied across a wide range of species and plant functional types [52]. The RE-NDVI was
derived from hyperspectral data and calculated by the following formula:
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RE− NDVI = (R750 − R705)/(R750 + R705) (2)

(II) PRI: The PRI was originally developed by Gamon, Peñuelas, and Field to assess the rapid
changes in the pigment concentrations due to a variety of stress conditions [28], and thus serves as an
estimate of metal concentration. PRI was defined as follows:

PRI = (R531 − R570)/(R531 + R570) (3)

In Equations (2) and (3), Rxxx refers to leaf reflectance at wavelength xxx in nanometers.
(3) Continuum Removal Indices (CRIs): The continuum is a convex hull (continuum line) fitted

over the top of a spectrum to connect local spectral maxima [32]. The parameters of the continuum
removal methodology are derived by calculating the continuum removed reflectance (CRR). The CRR
is defined as the original reflectance (OR) value divided by the value of the continuum line (CL) for
each waveband i of the absorption feature [47].

CRR(i) = OR(i)/CL(i) (4)

The start and end spectral values of a specific wavelength interval are on the hull, which are given
the number 1 by the continuum removed. As a result, the relative value of the output curves will be
between 0 and 1, where the absorption troughs are enhanced.

Previous studies show that the damage of plants caused by heavy metal decreases photosynthesis
in vivo replacement of the central Mg2+ ion in the chlorophyll molecule by a heavy metal ion [7].
Although the replacement amount depends on the metal variety, the plant photosynthesis is more or
less inhibited by the replacement, which could affect the major absorption pit ranging from 550 nm to
750 nm [9]. In the short-wavelength infrared bands (SWIR, 800 nm~2500 nm), the vegetation spectrum
is dominated by the internal leaf cellular structure and water absorption, which is in contrast to
the near-infrared bands where chemical absorption is largely masked by water [26,30,53]. However,
determining the metal stress from reflectance on a fresh leaf is extremely complex due, among other
things, to the strong effect of water [54]. The visible bands (VIS) have a stronger capacity in the
detection and analysis of heavy metals stress than the SWIR bands, which was confirmed by a previous
study [14,22].

Therefore, we were interested in isolating the specific absorption feature in this study, and linear
continua were fitted between the start (550 nm) and endpoint (750 nm) of the absorption feature and
then continuum removal was applied. Three variables were derived by continuum removal as follows:

(I) The band depth (BD) at each wavelength (i) within the absorption feature was calculated by
subtracting the continuum removed reflectance (CRR) from 1 [55]:

BD(i) = 1− CRR(i) (5)

(II) A normalization method using band indices was developed to reduce the effects of the soil
background and water [55]. The normalized band depth ratio (BDR) was calculated by dividing the
BD of each wavelength i by the band depth center (BDc), which is the maximum BD [32].

BDR(i) = BD(i)/BDc (6)

(III) The normalized band depth index (NBDI) was inspired by the form of the NDVI, which was
calculated using the following formula [32,55]:

NBDI(i) = (BD(i)− BDc)/(BD(i) + BDc) (7)

where i is the particular wavelength between 550 nm and 750 nm.
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2.4. Statistical Analysis

Analysis of variance (ANOVA) was used to ascertain the level of the statistically significant
differences between the sampling points, and the normality and homogeneity of variance were
evaluated prior to ANOVA, which was performed in SPSS 13 (SPSS, Inc., Chicago, IL, USA).
The significance level (p) for ANOVA was classified as weakly significant (0.1 ≤ p < 0.05), significant
(0.05 ≤ p < 0.01), or highly significant (p ≤ 0.01) [56]. Pearson’s correlation coefficient (r) was used to
identify the strength of a linear association between two variables in this study, and the strength of
the correlation was set as weak (|r| ≤ 0.39), moderate (0.40 ≤ |r| ≤ 0.59), or strong (|r| ≥ 0.60) [57–60].
Two regression analysis methods (SMLR and PLSR) were performed to evaluate the relationship
between metal concentrations and the leaf reflectance between 550 nm~750 nm, which were tested for
the data sets of all vegetation samples and three divided vegetation samples.

Since the number of samples is limited, independent testing samples were not used to measure
the validity of the models, but we used a cross-validation procedure. The cross-validation method has
the ability to detect outliers and provide nearly impartial estimations of the simulation error [61,62].
It was conducted by assigning each sample population into groups, and each sample was evaluated by
the rest of the samples. The statistical results were assessed according to coefficient of determination
(R2) and Root Mean Square Error of Cross-Validation (RMSECV). Since there is no corresponding
module in SPSS, two regression analyses (i.e., SMLR and PLSR) were performed using the Statistics
Toolbox within Matlab TM.

Stepwise regression fits a dependent dataset (i.e., metal concentration) using a linear combination
of independent variables (i.e., spectral indices). SMLR computes the F-statistic for each wavelength and
metal concentrations significance levels (p-values) for wavelengths to enter and to stay in the equation,
which ends when none of the wavelengths outside the equation have a significance (p-values) at or
below the enter level and all wavelengths in the equation are significant above the stay level. p-values
to enter and move wavelengths were set at 0.01 and 0.02 [37,63], respectively, in order to have a highly
significant level between the selection of the wavelengths and the metal concentrations. In comparison,
PLSR is a method used to reduce the large amount of highly collinear spectral variables into a limited
number of uncorrelated latent variables or factors while combining the most useful information,
which is similar to the principal components approach [37]. Whereas principal component regression
is based on the decomposition of spectral data alone, PLSR conducts the decomposition on both the
spectral data and the response variable simultaneously. This process greatly avoids the latent over
fitting problem while using as much information as possible [9,64].

3. Results

3.1. Metal Elements in Leaf and Root

The variations of concentrations for Co, Cu, Mo, and Ni within all plant samples of the different
sampling points are shown in Table 1. Among all the samples that were analyzed, the accumulation
of Co, Cu, Mo, and Ni was significantly (p < 0.05) higher in the leaves of S1 and S2, which was
approximately three to five times that in S0. Meanwhile, the element content of S2 was generally
higher than that in S1. Comparing different seasons, the contents of four elements in August and
September were higher than in the other two months. The average contents of four elements in S1

and S2 were relatively lower after repair by Duobaoshan Copper Ltd. (Heihe, Heilongjiang, China)
(i.e., after 2016 data are in), which were still above those in S0. There was a ten-fold difference in
the metal concentrations of leaves between Cu/Ni and Co/Mo. Co, Cu, and Mo concentrations in
White birch and Cotton grass were higher than in Mongolian oak. Cotton grass had the lowest Ni
concentration when comparing all the kinds of plant.
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Table 1. Metal concentrations in leaves and roots (mean ± SD mg kg−1 dry weight) at different sampling points.

S0 S1 S2

White Birch Mongolian Oak Cotton Grass White Birch Mongolian Oak Cotton Grass WHITE BIRCH Mongolian Oak Cotton Grass

Co
Leaf 0.27 ± 0.07 0.17 ± 0.03 0.40 ± 0.09 0.75 ± 0.22 0.51 ± 0.14 0.52 ± 0.17 0.86 ± 0.17 0.58 ± 0.15 0.78 ± 0.26
Root 0.24 ± 0.08 0.19 ± 0.04 0.55 ± 0.13 0.51 ± 0.16 0.42 ± 0.13 0.66 ± 0.24 0.56 ± 0.15 0.50 ± 0.15 1.19 ± 0.41

Cu
Leaf 7.87 ± 4.46 6.32 ± 2.57 8.07 ± 4.20 23.81 ± 11.20 21.11 ± 8.19 20.46 ± 7.71 25.96 ± 8.23 18.28 ± 2.48 25.75 ± 9.55
Root 5.84 ± 3.30 5.48 ± 2.07 6.05 ± 2.82 16.28 ± 7.97 18.81 ± 9.51 15.67 ± 6.81 15.65 ± 5.88 15.71 ± 2.49 17.72 ± 7.75

Mo
Leaf 0.18 ± 0.05 0.21 ± 0.04 0.16 ± 0.04 0.66 ± 0.19 0.44 ± 0.14 0.48 ± 0.20 0.77 ± 0.25 0.45 ± 0.08 0.77 ± 0.33
Root 0.15 ± 0.06 0.33 ± 0.81 0.13 ± 0.03 0.44 ± 0.13 0.54 ± 1.45 0.44 ± 0.23 0.51 ± 0.18 0.60 ± 0.17 0.65 ± 0.25

Ni
Leaf 1.73 ± 0.55 1.48 ± 0.30 0.93 ± 0.20 5.31 ± 1.88 5.30 ± 2.30 3.52 ± 0.93 5.77 ± 1.36 5.64 ± 1.40 4.22 ± 1.36
Root 1.09 ± 0.33 1.22 ± 0.34 0.86 ± 0.32 2.88 ± 0.82 3.99 ± 1.48 2.71 ± 0.85 3.34 ± 0.86 4.09 ± 1.37 3.59 ± 1.50
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The correlation coefficients (r) between the metal concentration in the leaf and root of different
plant species at S1 and S2 sampling points were calculated and the results are shown in Table 2.
White birch, Mongolian oak, and Cotton grass showed significant positive correlations and the
significance level was p < 0.01. Among them, the average value of r for White birch and all four
elements was the highest (r = 0.75), followed by Mongolian oak (r = 0.71), and Cotton grass (r = 0.65).
This implies that the metal concentrations in the leaf increased linearly as the root concentration of
the respective plant increased. Meanwhile, the TF of different plants at S1 and S2 sampling points is
shown in Table 2. At S1 and S2 sampling points, for all elements, the TF of White birch was greater
than 1.5. For Co, Cu, and Ni, the TF of Mongolian oak was greater than 1.0. For Cu and Mo, the TF of
Cotton grass was greater than 1.0.

Table 2. r and TF values of different plant species at different sampling points.

S1 S2

White Birch Mongolian Oak Cotton Grass White Birch Mongolian Oak Cotton Grass

Co
r 0.79 0.73 0.62 0.77 0.81 0.70

TF 1.51 1.22 0.81 1.53 1.17 0.66

Cu
r 0.82 0.76 0.64 0.81 0.61 0.65

TF 1.52 1.20 1.35 1.76 1.18 1.50

Mo
r 0.72 0.75 0.59 0.64 0.59 0.68

TF 1.50 0.82 1.16 1.53 0.79 1.20

Ni
r 0.73 0.67 0.63 0.68 0.75 0.65

TF 1.84 1.35 1.33 1.75 1.42 1.24

3.2. Analysis of REP, PRI and RE-NDVI

The averaged leaf reflectance spectra of different plant species at S0, S1, and S2 sampling points
are given in Figure 3a. In order to explain the consistency of spectral measurements, the vertical error
bars were added in the form of standard deviations to Figure 3a (see Figure 3b). However, as space is
limited, different plant species of all sampling points are not provided, so take S1 sampling point as
an example.

The differences in the reflectance of three plants between three sampling points were mainly
located after 550 nm or 750 nm. With the influence of multiple factors such as leaf internal factors (water,
leaf structure, etc.) and the external environment, the formation mechanism of vegetation reflectance
after 750 nm was complicated, which resulted in the differences in reflectance and the standard
deviation after 750 nm was relatively larger (as shown in Figure 3b). In comparison, the differences in
reflectance located in the range of 550 nm~750 nm were relatively smaller, and there are some rules in
terms of the change of green peak and red edge. Compared with the S0 point, the green peak becomes
shallow and the slope of the red edge becomes slow in the reflectance of three plants at the S2 point
that has a relatively higher heavy metals concentration. However, cotton grass displayed the opposite
change, which is probably because the moderate consumption of heavy metal can promote the growth
of plants.

Three VIs (REP, PRI, and RE-NDVI) results of different sampling points and plant species obtained
during the different seasons are given in Figure 4. The plants from S1 and S2 showed no significant
difference in VIs compared to plants of S0, and there were no more unified changing rules between
the three points. In June, REP, PRI, and RE-NDVI were lower in S0 than in S2; however, the REP and
PRI exhibited the opposite feature in July and August, which were higher in S0 compared to S1 and
S2. In September, for the three VIs, there are no uniform rules between S0, S1, and S2, whereas the
RE-NDVI of the S1 and S2 appears greatly different to S0. Differences in VIs were relatively small
and were not in order between the three dominant plants. However, three VIs of the Mongolian
oak in September were relatively lower, which was a relatively special result, and this was due to
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the senescence rate of the Mongolian oak in September being relatively quicker than in the other
two plants.Remote Sens. 2018, 10, x FOR PEER  11 of 22 
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Figure 3. (a) Averaged leaf reflectance spectra of different vegetation species at S0, S1, and S2 sampling
points. (b) For the S1 sampling point, range of reflectance spectra calculated throughout the growing
season measurements (mean ± one standard deviation).

For different sampling points and different plant species, both VIs appeared to have significant
differences (p < 0.05) during different seasons. Compared with July and August, the REP in June and
September tended to shift toward the left to shorter wavelengths. The general trend for the changes in
REP was that June was less than July and August and greater than September. The range of the ‘red
shift’ from June to July and August increased by 13 nm~15 nm, and the range of the ‘blue shift’ form
July and August to September descended by 18 nm~20 nm. Compared with PRI and REP, it was shown
that both exhibited similar change trends from June to September. The PRI was negative in June and
September and significantly lower than July and August. In contrast with REP and PRI, the RE-NDVI
displayed no significant difference between June, July, and August. Nonetheless, the RE-NDVI in
September was significantly lower than the other three months.

In the next study, the data in S1 and S2 points were grouped into four data sets (all vegetation
samples, White birch, Mongolian oak, Cotton grass) based on the plant species, to explore the
relationship between VIs and the concentration of metal elements. The correlation coefficient (r)
between the concentration of Co, Cu, Mo, and Ni and three VIs for four different data sets (n = 90)
were calculated. The results are shown in Figure 5, where the correlativity between the concentration
of four heavy metal and three VIs was relatively weak. The |r| value range between 0.122 and
0.505, and the best correlation, appears for the Cu concentration and REP of the White birch data set
(r = −0.505). Compared with the r value that was obtained from the three VIs, the REP exhibited a
better performance, and there was no significant difference between the other two VIS. Of the four
metal elements, the correlations of Cu and Ni were stronger than Co and Mo. The VIs of most data
sets show a negative correlation with the contents of heavy metal, except for the correlation between
the VIs of the partial data set and Mo. Comparing the four different data sets, the results showed no
significant differences (p > 0.05) between the r value of each metal element.
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Figure 5. Differences in the correlation coefficient between the metal element concentrations and VIs
derived from the different data sets. In the figure, (a–d) represent all vegetation samples, White birch,
Mongolian oak, and Cotton grass, respectively.

3.3. Results of Continuum Removal Analysis

(1) SMLR: All four CRIs (OR, BD, BDR, and NBDI) used the SMLR on the four different data sets
to develop relationships between the four metal elements’ (Co, Cu, Mo, and Ni) concentrations and
the vegetation reflectance. The stepwise regression was run with a narrow range of multiple F to enter
and move on OR, BD, BDR, and NBDI data and metal concentrations. First, the stepwise regression
was applied to select the optimized bands between 550 nm and 750 nm to be included in the model.
Then, the optimal bands were used for calculating the cross-validated statistics.

The results from the analyses of the four variables by the continuum-removed absorption features
are shown in Table 3. Considering the R2 and RMSECV values, most of the correlations established
are weak to moderate, R2 varies between 0.21 and 0.58 and the average R2 of all four data sets is 0.37,
and the RMSECV produced the same result as the R2. However, comparing the simulative ability of
the four CRIs, BD, BDR and NBDI were better than OR, BD was relatively good, and there were no
significant differences between BDR and NBDI. The simulating ability of Cu and Ni was superior to
that of Co and Mo, and the White birch data set to Cu (R2 from 0.47 to 0.58) and the Cotton grass data
set to Ni (R2 from 0.42 to 0.56) were expected to have better performances. Compared with the other
three data sets, the simulating ability of all vegetation samples to all elements was relatively steady.

Between one and six optimized wavebands were selected, and two–three optimized bands were
in the majority. The numbers of optimized bands from the BD data and NBDI data, respectively,
were the highest (3~6) and the lowest (1~3). As shown in Figure 6, the optimized bands for simulating
Co element content were changes in a wide range and ranged from 640 nm to 690 nm. The bands
for Cu and Mo were more centrally distributed, which were all located around 570 nm and 665 nm,
whilst Ni was more concentrated close to 650 nm and 670 nm.

(2) PLSR: The relationships between elements’ concentration and the four indices (OR, BD, BDR,
and NBDI) were modeled using PLSR. The optimum number of PLS factors preventing over-fitting
was determined by setting the criterion and adding an additional factor that must reduce the RMSECV

by >2%. The number of factors in the final model ranged from two to six. The derived assessing
statistical indicators are given in Table 4. The simulated ability of PLSR was significantly superior to
SMLR, R2 varies between 0.32 and 0.77, and the average R2 of all four data sets is 0.49. In addition to
BD, BDR can also obtain a preferable simulation accuracy, and the lowest R2 and the highest RMSECV

were still produced by using OR. Similar to SMLR, the simulating ability of the Cu and Ni was superior
to that of Co and Mo, and a good accuracy was obtained for the White birch data set to Cu (R2 from
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0.43 to 0.77). However, the Mongolian oak data set to Ni (R2 from 0.45 to 0.74) was expected to have a
moderate performance, which was different from SMLR.

Table 3. Performance of SMLR for simulating element contents.

OR BD BDR NBDI

R2 RMSECV R2 RMSECV R2 RMSECV R2 RMSECV

White birch (n = 30)

Co 0.21 0.48 0.36 0.23 0.22 0.45 0.31 0.34
Cu 0.39 10.88 0.58 5.84 0.49 7.76 0.47 8.05
Mo 0.28 0.61 0.33 0.55 0.34 0.56 0.24 0.82
Ni 0.39 3.06 0.49 1.84 0.44 2.23 0.34 4.11

Mongolian oak (n = 30)

Co 0.23 0.38 0.35 0.21 0.36 0.21 0.21 0.45
Cu 0.28 14.27 0.44 8.45 0.35 11.29 0.40 9.84
Mo 0.33 0.56 0.43 0.37 0.38 0.50 0.30 0.76
Ni 0.26 4.72 0.47 1.98 0.40 2.95 0.29 4.34

Cotton grass (n = 30)

Co 0.34 0.28 0.41 0.17 0.37 0.24 0.26 0.41
Cu 0.36 11.57 0.51 6.19 0.44 8.23 0.48 7.74
Mo 0.26 0.64 0.39 0.43 0.36 0.48 0.29 0.72
Ni 0.36 3.43 0.56 1.13 0.50 1.84 0.42 2.15

All vegetation samples (n = 90)

Co 0.27 0.33 0.37 0.19 0.37 0.21 0.24 0.42
Cu 0.37 11.32 0.53 6.05 0.43 8.74 0.45 8.26
Mo 0.25 0.72 0.39 0.41 0.35 0.54 0.29 0.74
Ni 0.34 3.49 0.51 1.63 0.43 2.52 0.37 3.04
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Figure 7 shows a scatter plot for the best simulated results versus the fitted measured metal
concentration, which were obtained by comparing various indexes and the modeling approach.
The best simulated results were mostly derived from the BD index of White birch by using PLSR,
which, respectively, are the BD of White birch to Cu (R2 = 0.77, RMSE = 4.54), BD of Mongolian oak
to Ni (R2 = 0.74, RMSE = 1.24), BDR of White birch to Mo (R2 = 0.51, RMSE = 0.29), and BD of White
birch to Co (R2 = 0.48, RMSE = 0.22).
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Table 4. Performance of PLSR for simulating element contents.

OR BD BDR NBDI

R2 RMSECV R2 RMSECV R2 RMSECV R2 RMSECV

White birch (n = 30)

Co 0.35 0.32 0.48 0.22 0.43 0.23 0.39 0.27
Cu 0.43 9.46 0.77 4.54 0.69 5.36 0.55 7.47
Mo 0.32 0.59 0.45 0.46 0.51 0.29 0.37 0.55
Ni 0.38 3.26 0.64 2.17 0.65 2.04 0.54 2.65

Mongolian oak (n = 30)

Co 0.28 0.42 0.45 0.29 0.43 0.32 0.35 0.39
Cu 0.41 9.87 0.68 5.74 0.63 6.75 0.49 8.73
Mo 0.33 0.52 0.46 0.46 0.43 0.44 0.38 0.51
Ni 0.45 2.42 0.74 1.24 0.68 1.83 0.52 2.67

Cotton grass (n = 30)

Co 0.33 0.38 0.43 0.28 0.32 0.41 0.25 0.49
Cu 0.47 8.48 0.69 5.37 0.71 4.85 0.53 8.02
Mo 0.39 0.62 0.48 0.41 0.46 0.39 0.46 0.42
Ni 0.35 3.89 0.65 2.15 0.67 2.08 0.48 3.41

All vegetation samples (n = 90)

Co 0.32 0.37 0.46 0.26 0.40 0.37 0.33 0.41
Cu 0.48 9.11 0.72 4.44 0.69 5.65 0.52 8.07
Mo 0.35 0.59 0.49 0.41 0.47 0.48 0.41 0.50
Ni 0.41 3.04 0.69 2.08 0.67 2.12 0.52 2.87
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4. Discussion

The vegetation analysis of this study revealed a latent effect of the formerly disposed ore deposits
at S1 and S2. Since S1 and S2 are probably three to five times the metal concentration of the plant leaves
at S0, it is clear that two sites are affected by heavy metal pollution. The wasted time of the pit in
S2 was relatively short, according to the characteristic of most rainfall in summer, thus we consider
that there is less loss of mineral elements by flow erosion, which is probably the main reason that the
element content of S2 was higher than S1. The heavy metals readily combine with other substances
in the leaves to form the chelate, which were not easy to discharge and easily accumulated [65,66].
The metal complexes tended to increase with plant growth, leading to the element contents in August
or September being relatively higher. The major sources of pollution identified were open pits, as the
metal ions migrated from the open pits by dissolution and infiltration into the soil, which were
then absorbed by the plant root. There is good significance between the metal concentration in
the root and leaf (r = 0.63~0.74), which indicated that the stem transports metal ions from the root,
which are subsequently accumulated in the leaf. However, another factor that should not be neglected
is the dust containing metal ions. Considering the formation mechanism of the vegetation spectrum,
the reflectance after 750 nm with great difference appears to follow no discernible laws between the
three sampling points. However, 550 nm~750 nm with little difference can be regarded as an indicator
for heavy metals, which was in conformity with previous studies [14,22].

According to previous results, the shift of REP is strongly correlated with photosynthetic activity
and shows a greatly sensitive indicator of the health of the vegetation. In addition, two types of
two-band VIs (RE-NDVI and RPI) have been confirmed for detection of the metal stress on the
vegetation in the literature. Thus, we attempted to correlate the metal concentrations to three VIs of
the vegetation in different seasons. As shown in Figures 4 and 5, it is clearly shown that three VIs
of the four months were significantly different. The correlation coefficients between REP, RE-NDVI,
PRI, and the foliar concentration of heavy metals were relatively poor. Despite many studies having
shown that when a plant is stressed by the heavy metals, the spectra tend to occur as the blue shift
of the red edge, they only focused on a specific growth stage. However, the photosynthetic activity
through various stages of senescence should be considered when investigating the sensitivity of
VIs to heavy metals. The minor change of VIs is a comprehensive result for the absorbing material
(chlorophyll and other pigments), which is influenced by the increasing photosynthetic activity and
decreasing excessive heavy metals. The photosynthetic activity was gradually strengthened from June
to August, which is usually accompanied by an increase in the indicative bands of the pigment as the
plant absorbs more energy in the photosynthetic process. Thus, the shifts or changes of the three VIs
well reflected a full growth cycle of vegetation, which was insensitive to the metal stress. Despite this,
the VIs of the leaf spectra can still reflect the heavy metal influence on vegetation to a certain degree.
The right amount of heavy metal can accelerate plant growth in the early growth stage, which can be
expressed by comparing the three VIs of S1/S2 points to the S0 point in June (see Figure 4). The uptake
and transport ability of heavy metals by the plant root are obviously improved and increased with
plant growth. Heavy metals enriched in plant leaves caused the REP and PRI to be higher in S0

compared to the S1 and S2 in July and August. Comparing the three VIs, as the most classical indicative
factor of plant healthy status, REP obtained a better performance than the other two VIs; however,
this result may be influenced by the illumination geometry with changes of the solar altitudinal angle
of the study area. RE-NDVI was less sensitive to heavy metals and did not significantly differ between
S0, S1, and S2 points, which can also be confirmed by the correlation coefficient between the heavy
metals concentrations and RE-NDVI (see Figure 5, |r| < 0.35).

The relationship between metal and continuum-removed absorption features was explained by
multivariate analyses (SMLR and PLSR). According to the results in Table 4, the average regression
determination coefficient for the four elements obtained from three CRIs by PLSR and SMLR are
respectively increased by 26.7% and 38.9% compared to OR, and BD yielded relatively higher R2 and
lower RMSECV, which are, respectively, 44.7% and 53.4%. CRIs benefited from the continuum removal
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method and intensified the difference of the absorption strength, which shows that the continuum
removal methods are better than original reflectance for monitoring elements. Among the two
statistical methods, the PLSR achieved the highest R2 values, which is consistent with the researchers
demonstrating that the multivariate method improved the simulation performance, such as PLSR
combined with continuum-removed absorption features for foliar biochemical parameter estimation.
REP, RE-NDVI, and PRI were designed based on the optical mechanism of the plants while being
combined by the fixed band. Figure 5 show that the VIs had a poor response on the plants of a
full growth cycle affected by heavy metals. On the contrary, the optimal bands or factors were
selected by the SMLR or PLSR, which might not have comparatively clear and recognized physical
significance. However, most of the wavelengths selected for the four metal elements using SMLR are
positioned close to the known Chlorophyll a and b absorption wavelengths (570 nm, Penuelas et al. [67];
640 nm, Kumar et al. [68]; 660 nm, Curran, [55]), which are strongly influenced by the photosynthesis
of vegetation.

As for the different metals, simulation models of Cu and Ni produced higher accuracies. Co and
Mo showed a higher deviation from the established relationships, resulting in smaller R2 values and
larger RMSECV. The explanation of this result is that the two mines are large Cu-Mo deposits of the
porphyry type, which leads to the background value of Cu being relative higher. Despite this, the study
area is rich in polymetallic mineral resources of Co, Cu, Mo, and Ni, all of which have been only found
in the soil. There was a ten-fold difference in the metal concentrations of leaves between Cu/Ni and
Co/Mo (see Table 1), which suggests that the plants possess the properties of heavy metal elements
absorbing selectively. Meanwhile, the difference between the four elements in the TF indicated that the
absorption capacity and tolerance of different plants to the four elements are diverse to an extent [25].
In addition, in the full growth cycle of vegetation, the various heavy metals existed as a mixture and
their interactions strongly influence actually occurring affects, such as the synergistic and antagonistic
action between different elements [69]. Cu and Ni are known as phytotoxins, which may have caused
damage to the chlorophyll and leaf structure of the plants [70]. In this study, Co/Mo are probably not
the principal reason for the spectral stress indicators. By comparing the capabilities for simulating
the metal concentration with different data sets, satisfactory results were obtained using White birch.
Meanwhile, White birch had a higher TF for all elements, which can be used as a dominant species
for metal uptake in the hope that phytoremediation would be an alternative solution to mitigate
the hot spots in the study site, and this is consistent with the main plant varieties planted in 2015
by Duobaoshan Copper Ltd. (Heihe, Heilongjiang, China). Therefore, White birch is one of the
most susceptible indicator species for monitoring heavy metal pollution or for repairing ecological
environments in this region.

The simulation accuracy of heavy metal is relatively lower in this study compared with in the
greenhouse experiments. The determination coefficient (R2) of the four elements ranged from 0.46~0.72,
and was still at a middle level, which was derived from the BD data of all vegetation samples using
PLSR. Here, a number of limiting factors need to be considered. Firstly, the stress levels are controlled
in the greenhouse experiments and the researchers could pay attention to rule out factors so as
to minimize the environmental impact. However, in the field, the element accumulation became
stronger with the vegetation growth; meanwhile, the content of chlorophyll, water, macro-nutrients,
and environment-induced noise had a corresponding change. So, many factors may have influenced
the plants’ spectra, so further experiments are required to identify the potential causes of spectral
variability shown here. Secondly, heavy metal was a relatively independent factor affecting vegetation
in the greenhouse experiments. The transport of heavy metal was limited by several factors in the
field, such as rain wash, illumination changes, wind blowing, etc. The heavy metal concentrations of
vegetation leaves were at a lower level, which results in variable features of vegetation spectrum not
being significant.
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5. Conclusions

In summary, our study compared the simulated ability of the three VIs and CRIs of heavy metal
concentrations in leaves of different seasons. The estimation models were established by CRIs within
the specific spectral range (550 nm~750 nm). From the result of the SMLR method, the majority
of wavelengths selected for the four metal elements are positioned close to the known chlorophyll
absorption positions. Comparing the SMLR and PLSR method, it appears that PLSR provides a
better option for hyperspectral data mining. BD has the highest accuracy and is most sensitive to
the metal-induced stress in the vegetation of different seasons, which is validated by different plant
species in different seasons. Thus, when applying the results of this field study to airborne or satellite
hyperspectral image sin this region, the model established by BD of White birch using PLSR is a
relatively ideal choice. However, applying the result to evaluate pollution levels by the airborne
hyperspectral image will need to consider additional factors, such as the spatial resolution, which is
one of the primary problems. Meanwhile, the quality of the results of such investigations is influenced
not only by the indices which best assess the vegetation status, but also by the correlation with
the environmental on-site conditions. In conclusion, our study provides evidence of leaf spectrum
alterations in different seasons caused by heavy metal pollution. We suppose that the presented
approach can be applied to hyperspectral data of vegetation during different seasons and has potential
for the monitoring of the heavy metal content of plants, and thus, the assessment of reclamation quality
in post-mining regions.
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