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Abstract: Spatiotemporal fusion methods are considered a useful tool for generating multi-temporal
reflectance data with limited high-resolution images and necessary low-resolution images.
In particular, the superiority of sparse representation-based spatiotemporal reflectance fusion
model (SPSTFM) in capturing phenology and type changes of land covers has been preliminarily
demonstrated. Meanwhile, the dictionary training process, which is a key step in the sparse
learning-based fusion algorithm, and its effect on fusion quality are still unclear. In this paper,
an enhanced spatiotemporal fusion scheme based on the single-pair SPSTFM algorithm has been
proposed through improving the process of dictionary learning, and then evaluated using two actual
datasets, with one representing a rural area with phenology changes and the other representing an
urban area with land cover type changes. The validated strategy for enhancing the dictionary learning
process is divided into two modes to enlarge the training datasets with spatially and temporally
extended samples. Compared to the original learning-based algorithm and other employed typical
single-pair-based fusion models, experimental results from the proposed fusion method with two
extension modes show improved performance in modeling reflectance using the two preceding
datasets. Furthermore, the strategy with temporally extended training samples is more effective than
the strategy with spatially extended training samples for the land cover area with phenology changes,
whereas it is opposite for the land cover area with type changes.

Keywords: sparse learning; single image-pair; reflectance fusion; dictionary training; spatiotemporal
extension

1. Introduction

Given the growing application requirements for a variety of refined and high-frequency
monographic studies, such as land use and cover change [1], ecological environment monitoring [2],
forest and pasture [3], oceanographic survey [4], and disaster monitoring [5], possible solutions for
frequent acquisition of high-spatial-resolution remotely sensed data have been widely proposed.
One significant attempt among current works presented a radical solution that involves the
progressively increasing launch of various high-quality remote sensors, some of which adopt high
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spatial (e.g., WorldView-3/4 and Gaojing-1/2 with 0.31 and 0.5 m resolution, respectively), temporal
(e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) and other meteorological satellites),
and spectral resolutions (e.g., EO-1 Hyperion and Gaofen-3, both with 30 m resolution) or even
high quantities (e.g., the Gaojing project, which will send 16 similar optical satellites into space no
later than 2020). These remote sensors cannot technologically possess overall attributes because of
the inherent conflicts among the spatial, temporal, and spectral characteristics of imaging systems.
Given the constrained orbits of carrying platforms, severe climate conditions, and economic costs of
mass spatiotemporal data, this challenging problem would not be resolved in the foreseeable future
despite the increasing number of satellites.

Other attempts that rely on spatiotemporal reconstruction techniques of remotely sensed data are
rapidly being implemented to create a new image with high-quality spatial, temporal, and spectral
resolutions. Coupling spatial and temporal factors is particularly urgent. In a broad sense, analogous
techniques, such as image restoration [6,7], superresolution [8], and gap filling [9,10], can be
simply considered different patterns of image reconstruction. Although acceptable results from
these handling methods can be expected under proper application conditions, restrictions in model
universality, reconstruction precision, and physical principles of remote sensing significantly affect
the depth and scope of their applications. The image fusion strategy, especially in the spatial and
temporal dimension, provides another effective way to synthesize an optimized image by combining
spatial and temporal information from multi-source remote sensors that separately occupy different
spatiotemporal characteristics (e.g., a high-spatial and low-temporal resolution image and a low-spatial
and high-temporal resolution image).

Early image fusion frameworks relying on transformation models that devote high-resolution
multispectral image retrieval from a high-resolution panchromatic image and a low-resolution
multispectral image, such as principal component analysis [11], hue intensity saturation, and [12]
wavelet transforms [13] based only on digital number, and a few mathematical models, are inherited
from the digital image processing field. The virtual effect of generated images is remarkably
enhanced by these traditional approaches, whereas the physical meanings of the fused image itself
and application-oriented analysis and validation are generally absent [14]. Thus, this category of
fusion strategies is inadequate for enhancing or further parsing user-interested image information.
Spatiotemporal fusion, which aims to achieve high-temporal prediction of high-resolution images by
blending high-resolution images at observed dates and low-resolution images under relative dates,
has been emerging in this research field as a promising way to resolve the previously mentioned
problem. Unlike early fusion methods, spatiotemporal fusion models establish spatiotemporal
correlations between inputted high- and low-resolution images based on physical parameters in remote
sensing, such as radiance and apparent or surface reflectance. However, from another perspective,
spatiotemporal fusion methods that rely on geological or physical parameters do not provide such a
novel technique as a thinking mode of fusion strategies by which spectral unmixing, spatiotemporal
filtering, and sparse learning are currently utilized for an accurate description of the radiometric
spectrum changes of surface features.

The unmixing-based fusion methodology that is considered effective for the case without
significant seasonal changes was first presented by Fortin et al. [15] and Zhukov et al. [16] and then
validated and improved by Minghelli [17], Zurita [18], and Gevaert and Garcia [19]. The difference
among the preceding methods is that neighborhood spectral information was not introduced by
Fortin et al. [15] and Maselli [20] but was embedded in the works of Zhukov et al. [16] and
Cherchali et al. [21]. In addition, the linear unmixing model resolved by least squares or multiple
linear regression is preferred due to its simplicity and efficiency. Recently, a flexible spatiotemporal
data fusion (FSDAF) method was proposed by combining spectral unmixing analysis and a thin-plate
spline interpolator [22] and compared with the algorithm of Zurita [18]. FSDAF demonstrates superior
performance in capturing reflectance changes due to land cover conversions.



Remote Sens. 2018, 10, 1207 3 of 19

As a popular spatiotemporal fusion strategy, models based on spatiotemporal filtering assign
additional temporal and spectral information to a high-resolution image with the help of ancillary
low-spatial and high-temporal resolution images. Typically, the spatial and temporal adaptive
reflectance fusion model (STARFM) [23] algorithm provides accurate, efficient, and stable prediction
despite various inputting data conditions. From the viewpoint of sensor observation differences
between different cover types when calculating their weight contribution to the pending pixel [24]
and data optimization [25], two improved versions of STARFM have been proposed. To capture
surface changing information with a short-lived fluctuation in the image, the enhanced STARFM
(ESTARFM) [26] algorithm maintains the weight function and its contributing rules in STARFM and
concentrates on promoting fusion quality for land covers with significant temporal spectrum variation
(e.g., vegetation). Although additional detailed spatial change features can be obtained by ESTARFM,
the temporal characteristics to be simulated should be similar and even very close to the observed data.
Thus, blending high- and low-resolution images at observed date(s) and low-resolution image at a
predicted date is theoretically unreasonable for the prediction when a substantial temporal discrepancy
exists between these images. Apart from the models that have similar theoretical principles [27] or
confined improvements [28] with STARFM and ESTARFM, a reflectance fusion algorithm based on the
semi-physical model [29] provides another novel path to build a spatiotemporal correlation between
multi-source images. This algorithm has been preliminarily validated in a regional application [30].

Another fusion method derived from sparse learning theory was recently developed by
combining super-resolution reconstruction and sparse representation achieved using dictionary
learning. Although learning-based models that currently include the single-pair-based method [31] and
the two-pair-based method [32] according to the number of inputting training images, hold promises for
solving fundamental problems in spatiotemporal fusion [33,34], their performance have been proved
to be less stable than reconstruction-based models, such as STARFM (single-pair) and ESTARFM
(two-pair). Considering that these sparse-learning fusion strategies are built upon the prior learning
process by training insufficient image samples, the dictionary training step in sparse learning models
therefore has difficulty providing a redundant expression of the inputting high- and low-resolution
images. That means the derived “overcomplete” dictionary is not typical for both acquired data
at observed and modeled dates, and the accurate retrieval of transition images, even two-layered
fusion results, is difficult. To this end, an enhanced single-pair learning-based fusion scheme with the
improved dictionary learning step, and its evaluation method for selecting spatiotemporal extension
mode of dictionary training samples are proposed in Section 2. Experimental results are shown in
Section 3, and the discussion is presented in Section 4. Conclusions are drawn in Section 5.

2. Methodology

Although two main existing spatiotemporal fusion methods based on sparse learning theory vary
in model construction, fusion pattern, and complexity, the primary theoretical basis and its contributing
mode for their fusion process are nearly the same. Considering the universality and simplicity of the
algorithm with single image pair, an improved fusion scheme from the single-image-pair method is
firstly proposed on a basis of an enhanced dictionary training strategy and then evaluated by two
remotely sensed datasets.

2.1. Proposed Fusion Scheme with Enhanced Dictionary-Training Process

In the sparse-learning fusion method, remotely sensed images from the same sensor and channel
are treated as different sparse “versions” of an invariable overcomplete dictionary D on different
acquiring dates. Thereinto, the sparse “version” is generally called the sparse coefficient α and
considered as an indicator of the seasonal factor of an acquired remotely sensed image, related
to D (mainly indicates spatial and texture features). When no significant discrepancy in texture
context occurs, the dictionary D derived from the observed image-pair can be on behalf of the one
from the modeled image-pair. The key step of the sparse-learning fusion algorithm is therefore to
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retrieve a high-precision overcomplete dictionary D through training the high- and the low-resolution
image pair at the observed date. If a steadily performing dictionary training algorithm is applied
(e.g., coupled K-SVD algorithm), the accuracy of the sparse-learning fusion results is significantly
related to the sufficiency of inputting training samples, which is, obviously, not satisfied in the original
single-pair-based fusion algorithm.

For the retrieval of high-precision D, an improved sparse-learning fusion method with enhanced
dictionary training process is proposed in this study and the overall processing flow is shown in
Figure 1. In this method, spatiotemporally extended training samples are utilized to promote the
sufficiency of dictionary training operations in both fusion layers of the single-pair learning-based
algorithm. Two modes are furthermore designed to increase employed training samples: the spatially
extended mode and the temporally extended mode. Specifically, the spatially extended mode increases
only the image size (from S0 to S1 in Figure 1) of all the inputting training samples (including the
low-resolution image and the high–low resolution image-pair) at the observed date (t1 in Figure 1).
By contrast, the temporally extended mode increases the number of inputting training samples,
which are all obtained from different acquired dates (t3, t4 to tn in Figure 1) and have the same image
size as the original inputting images.

Considering the case where the single image pair is employed as inputs, assume that H1 and L1

denote high-resolution image and low-resolution image at t1 (observed date), L2 denotes low-resolution
image at t2 (modeled date), H2 denotes high-resolution image at t2 that is to be predicted, and the
image size of L1, L2, M1 and M2 is S0 × S0. The high-resolution dictionary Dh and the low-resolution
dictionary Dl are now derived by minimizing the following improved objective functions:

{Dl , α1} = argmin
Dl ,α1

{
‖Xnew

1 − Dlα1‖2
F

}
(1)

Dh = argmin
Dh
‖Ynew

1 − Dhα1‖2
F (2)

where α1 is the sparse coefficients of Dl and Dh at t1; and Xnew
1 and Ynew

1 , respectively, denote the
spatially or temporally extended training sample matrices instead of the original training sample
matrices X1 and Y1 extracted from the difference image (H1 − L1) and the low-resolution image L1.

As to the dictionary training strategy with the spatially extended mode, the employed training
sample matrices Xnew

1 and Ynew
1 in Equations (1) and (2) are finally extracted from the enlarged

difference image
(

Henl
1 − Lenl

1

)
and the enlarged low-resolution image Lenl

1 both with an spatially
extended image size S1 × S1 rather than the original image size S0 × S0. When no significant seasonal
change occurs between t1 and t2 (type changes), the completeness of dictionary D is mainly limited
by spatial heterogeneity and diversity of surface features. This mode actually intends to address the
issue of completeness of spatial features by learning larger image area where more samples of surface
features can be found.

Another situation is, when the temporally extended mode is selected,
the training sample matrices Xnew

1 and Ynew
1 can be expressed as feature images

respectively derived from the dataset
{

L1, Ladd
3 , Ladd

4 , . . . , Ladd
n

}
and the dataset{

(H1 − L1),
(

Hadd
3 − Ladd

3

)
,
(

Hadd
4 − Ladd

4

)
, . . . ,

(
Hadd

n − Ladd
n

)}
. Thereinto, Hadd

3 , Hadd
4 , . . . , Hadd

n

and Ladd
3 , Ladd

4 , . . . , Ladd
n are additional high- and low-resolution training images (with the same image

size as H1 and L1) observed at t3, t4, . . . , and tn. Under the assumption that seasonal change occurs
between t1 and t2, the temporally extended mode of training samples can improve the description of
phenology features extracted from training data observed at different dates. Since a single dictionary
D is considered to be hard to provide a complete and precise expression for overall seasonal features,
it is reasonable to define an approximately “overcomplete” and phenology-based dictionary.
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Moreover, to find out the effectivity of two modes mentioned above, an evaluation strategy
is presented in Section 3 (Results) to give a convictive selection proposal when both spatially and
temporally extended samples are available and execution efficiency is required.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 19 
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Figure 1. The proposed fusion scheme with spatially or temporally extended samples in dictionary training.

2.2. Assessment Indices of the Proposed Fusion Scheme

To obtain an accurate description of the fusion results, four types of indices are provided
from the aspect of spectral errors per band, similarity of the overall structure, spectral distortion,
and overall spectral errors, and then applied to the modeled reflectance and the actual reflectance
for an all-sided quality evaluation of the fusion results. Five quantitative indices, namely, average
absolute difference (AAD), root-mean-square error (RMSE), structure similarity (SSIM) [35], spectral
angle mapper (SAM) [36], and Erreur Relative Global Adimensionnelle de Synthèse (ERGAS) [37],
which correspond to the indicated aspects of foregoing assessment indices, are gathered to validate the
quality of the predicted images from different assessment views. SSIM, SAM, and ERGAS are obtained
by computing the following equations:

SAM = cos−1

 ∑B
i=1 ρPi ρRi√

∑B
i=1 ρ2

Pi

√
∑B

i=1 ρ2
Ri

 (3)

SSIMi =

(
2µPi µRi + C1

)
(2σPi Ri + C2)

(µ2
Pi
+ µ2

Ri
+ C1)(σ

2
Pi
+ σ2

Ri
+ C2)

(4)

ERGAS = 100
p
r

√
∑B

i=1(RMSEi)
2

B
(5)

where ρPi and ρRi are the reflectance in band i ∈ [1, B] of the modeled image P and the actual image
R;
(
µPi , µRi

)
,
(
σPi , σRi

)
, and σPi Ri correspond to the mean value, standard deviation, and covariance

in band i of P and R, respectively; C1 = (k1 ∗ L)2 and C2 = (k2 ∗ L)2; k1 and k2 are generally set as
0.01 and 0.03; L is the grayscale of reflectance images; RMSEi is the RMSE in band i of P and R; and p
and r are the spatial resolutions of P and R. Small values of AAD, RMSE, SAM, and ERGAS and a
high value of SSIM between the modeled reflectance image and the actual reflectance image indicate a
considerable fusion result.

Scatter plots based on the channel-specified reflectance of the modeled data against actual data
are provided to supplement the aforementioned quantitative indices with the visualized pattern to
provide an intuitive quality assessment of fusion results, and, moreover, the total time-consumption of
employed channels used in fusion strategies with spatiotemporally extended training samples is also
considered here to give a general description of their efficiencies.
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3. Results

In view of only one acquired image-pair (the high- and the low-resolution images) the proposed
learning-based algorithm has required, two reconstruction-based spatiotemporal fusion models,
the STARFM and the semi-physical reflectance fusion model, are employed in comparison to the
original and the improved learning-based fusion algorithms. Specifically, the single-pair version of
STARFM with default parameters and the improved algorithm based on semi-physical fusion model
(SPFM) [30] are finally adopted to perform the experiment.

3.1. Datasets

In this paper, two datasets, which consist of rural and urban datasets, are employed to perform
the fusion strategy that utilizes spatiotemporally extended training samples. The rural dataset uses
the same experimental data as in [23], which has been characterized as a study area with phenology
changes [32] and comprises Landsat ETM+ images with 30 m spatial resolution and the MODIS daily
500 m surface reflectance product (MOD09GHK) acquired on 24 May, 11 July, and 12 August 2001
(Figure 2). Beijing, which is a typical urban area in China, is selected as the urban dataset to validate
the fusion quality with extended spatiotemporal training samples because the sparse learning fusion
method is more sensitive to texture and structural features of fused images than others. For the urban
dataset listed in Table 1, reflectance products comprised the 20 Landsat-8 OLI (30 m spatial resolution)
scenes, and the corresponding MODIS 8-day MOD09-A1 (500 m spatial resolution) and-Q1 (250 m
spatial resolution) acquired from 2013 to 2017 are used to perform the fusion strategy described in
Figure 1. The Landsat-8 Surface Reflectance product, whose performance is accepted to be either
close or better than Landsat TM/ETM+ reflectance products from the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) [38], has been generated from the Landsat Surface Reflectance
Code (LaSRC). By contrast, the MODIS reflectance product is provided by combining the green channel
of the MOD09A1 and the red and NIR channels of the MOD09Q1 that are directly downloaded from
the Land Processes Distributed Active Archive Center (LPDAAC). Notably, only centered sub-images
with 500 × 500 Landsat pixels (covering an area of 15 km × 15 km) of the preceding two datasets are
used in the fusion procedure, and spatially or temporally extended training samples will be merely
utilized in the process of dictionary training.

Figures 2 and 3 show that training samples initially cover an area of 15 km × 15 km (500 × 500
Landsat pixels) for both datasets and finally reach 36 km × 36 km (1200 × 1200 Landsat pixels) for the
rural dataset and 60 km × 60 km (2000 × 2000 Landsat pixels) for the urban dataset as their maximum
sizes in the spatially extended fusion experiment. Between the original and the maximal sizes of
training samples in each dataset, a dozen training samples with different image sizes are clipped
with a size step of 3 km × 3 km (100 × 100 Landsat pixels). As a result, all training samples have
been resized as 500 × 500, 600 × 600, . . . , 1200 × 1200 Landsat pixels for the rural dataset, and 500
× 500, 600 × 600, . . . , 2000 × 2000 for the urban dataset. In consideration of the heterogeneity and
the diversities of the spatial extension of surface features in different directions, all the employed
training samples yield to the same central position as their original training images, which are also
inputted as the observed reflectance for Landsat and MODIS (500 × 500 Landsat pixels). For instance,
the urban study area is positioned at the center of Beijing City proper, which is composed of two main
parts, namely, Dongcheng District and Xicheng District. By this way, the fusion strategy with spatial
extension of training samples tends to be less sensitive to the variety and texture features of land cover
from different study areas. A fair and authentic comparison between the original fusion algorithm and
its modified strategy with spatial extension can therefore be expected.

To ensure a consistent comparison against temporal directions, a bi-direction fusion scheme is
adopted for the preceding two datasets. The dates 24 May and 11 July 2001 are determined as the
bi-direction observed or modeled dates for the rural dataset, while 10 July and 12 September 2017 are
selected for the urban dataset. The bi-direction fusion indicates that one of the bi-directional dates acts
as the observed time, and the other serves as the modeled time (to be predicted). Original inputting
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reflectance images from each dataset at the observed dates are spatially replaced by or temporally
added to the extended training samples to retrieve a new, enhanced training sample.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 19 
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Table 1. Employed Landsat-8 OLI and MODIS reflectance products of the urban dataset.

Landsat-8 OLI MODIS MOD09A1/Q1

Date Data Info Date Data Info

31 July 2013 21 April 2017

Orbit: 123–32
Band: 3–5

Resolution: 30 m

28 July 2013 23 April 2017

Orbit: 26–04,05
Band: 1, 2

(MOD09Q1) and 4
(MOD09A1)

Resolution: 250 m
(MOD09Q1) and
500 (MOD09A1)

1 September 2013 7 May 2017 29 August 2013 9 May 2017
19 August 2014 23 May 2017 21 August 2014 25 May 2017

4 September 2014 10 July 2017 6 September 2014 12 July 2017
22 August 2015 12 September 2017 21 August 2015 14 September 2017

7 September 2015 28 September 2017 6 September 2015 30 September 2017
20 May 2016 30 October 2017 16 May 2016 1 November 2017

11 October 2016 15 November 2017 7 October 2016 17 November 2017
31 January 2017 1 December 2017 2 February 2017 3 December 2017

4 March 2017 17 December 2017 6 March 2017 19 December 2017

3.2. Experimental Results with the Rural Dataset

3.2.1. Experiments with Spatially Extended Training Samples

In this experiment, the rural dataset is employed to implement the bi-directional fusion scheme
for modeling reflectance images on 24 May (Table 2) or 11 July (Table 3) 2001 with different sizes of
spatially extended training samples, which are used in the dictionary learning process. The quality
assessment of fusion results from the aforementioned bi-direction scheme is shown in Tables 2 and 3
and Figure 4 for a graphical description of the total statistics. Several modeled images are selected
from the predicted results and are then validated by scatter plots with actual reflectance (Figure 5).

Table 2. Assessment indices of the spatially extended fusion for modeling reflectance on 24 May 2001
of the rural dataset.

Methods
Training

Image Size
AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

Original
algorithm 500 × 500 0.46 0.79 1.74 0.66 1.16 2.63 96.16 90.79 79.73 1.8065 18.8364

Proposed
algorithm

600 × 600 0.43 0.75 1.55 0.63 1.11 2.33 96.53 91.51 83.17 1.8116 17.7550
700 × 700 0.42 0.72 1.37 0.60 1.08 2.07 96.83 91.89 86.52 1.8151 16.9564
800 × 800 0.41 0.70 1.26 0.59 1.05 1.84 96.95 92.26 89.18 1.8175 16.3198
900 × 900 0.39 0.68 1.19 0.58 1.02 1.75 97.10 92.66 90.16 1.8198 15.8187

1000 × 1000 0.39 0.67 1.16 0.57 1.01 1.69 97.13 92.82 90.80 1.8206 15.6352
1100 × 1100 0.38 0.66 1.13 0.56 0.99 1.63 97.2 92.95 91.32 1.8215 15.3832
1200 × 1200 0.38 0.64 1.11 0.56 0.98 1.63 97.21 93.03 91.37 1.8219 15.2739

STARFM - 0.42 0.69 1.78 0.60 1.08 2.65 97.01 92.11 88.31 1.8123 17.0671

SPFM - 0.41 0.71 1.68 0.59 1.10 2.47 96.49 91.99 88.52 1.8163 16.5105

Table 3. Assessment indices of the spatially extended fusion for modeling reflectance on 11 July 2001
of the rural dataset.

Methods
Training

Image Size
AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

Original
algorithm 500 × 500 0.45 0.67 2.26 0.60 1.00 3.23 96.43 92.29 79.17 1.8050 20.4154

Proposed
algorithm

600 × 600 0.43 0.62 2.17 0.60 0.88 3.15 96.61 93.93 79.75 1.8102 18.7794
700 × 700 0.43 0.61 2.13 0.60 0.87 3.06 96.86 94.06 80.90 1.8130 18.2613
800 × 800 0.40 0.56 1.89 0.55 0.80 2.71 97.36 94.97 84.44 1.8190 16.5935
900 × 900 0.38 0.55 1.82 0.54 0.78 2.61 97.49 95.18 85.52 1.8206 16.1860

1000 × 1000 0.38 0.54 1.79 0.53 0.77 2.58 97.59 95.34 85.78 1.8215 15.9259
1100 × 1100 0.37 0.53 1.77 0.52 0.75 2.52 97.65 95.45 86.29 1.8223 15.6691
1200 × 1200 0.37 0.52 1.75 0.52 0.75 2.51 97.66 95.52 86.33 1.8226 15.5429

STARFM - 0.50 0.68 2.03 0.70 1.06 2.83 96.74 92.54 84.02 1.8172 16.4957

SPFM - 0.41 0.74 1.91 0.59 1.08 2.79 97.10 92.19 84.81 1.8171 16.5169
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Figure 4. Graphical assessment indices of the proposed bi-directional fusion with spatially extended
training samples from the rural dataset, (a) and (b) are respectively for modeling the reflectance on
24 May and 11 July 2001.
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Figure 5. Proposed bi-directional fusion results with spatially extended training samples from the rural
dataset: (a–d) the composited fusion results (NIR/red/green) modeled on 24 May and 11 July 2001 with
training image sizes of 500 × 500 pixels and 1200 × 1200 pixels, respectively; and (e–p) comparisons
among green, red, and NIR bands of the modeled reflectance and the actual reflectance that correspond
to (a–d).
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3.2.2. Experiments with Temporally Extended Training Samples

Considering that only three pairs of temporal reflectance images are held in the rural dataset,
the image pair acquired on 12 August 2001 is always taken as an additional training sample to model
either 24 May or 11 July 2001. The resulting fused images from the bi-directional fusion scheme with
temporally extended training samples and their reflectance scatter plots are shown in Figure 6, and the
assessment indices are listed in Table 4.
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Figure 6. Proposed bi-directional fusion results with temporally extended training samples from the
rural dataset: (a–d) the composited fusion results modeled on 24 May 2001 and the comparison (green,
red, and NIR) with the actual reflectance; (e–h) the composited fusion results modeled on 11 July 2001
and the comparison (green, red, and NIR) with the actual reflectance.

Table 4. Assessment indices of the proposed bi-directional fusion with temporally extended training
samples from the rural dataset.

Modeled Dates
AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

24 May 0.38 0.65 1.13 0.57 1.00 1.66 97.15 92.99 91.11 1.8213 15.4358
11 July 0.38 0.53 1.77 0.53 0.76 2.55 97.59 95.38 85.83 1.8217 15.7507

3.3. Experimental Results with the Urban Dataset

3.3.1. Experiments with Spatially Extended Training Samples

Along with the temporal-corresponding MODIS reflectance product MOD09A1 and MOD09Q1
(Table 1), only the Landsat-8 surface reflectance products acquired on 10 July and 12 September
2017 (Figure 3a,c) are used as basic experimental data to apply the bi-directional fusion scheme with
spatially extended training samples that cover the Beijing urban area. Assessment indices related to
both temporal directions are summarized in Tables 5 and 6, with the graphical presentation shown
in Figure 7. Several typical modeled results and their scatter plots with actual reflectance from this
spatially extended fusion with training image sizes of 500 × 500 and 1500 × 1500 pixels are displayed
in Figure 8.
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Table 5. Assessment indices of the spatially extended fusion with the urban dataset for modeling
reflectance on 10 July 2017.

Methods
Training

Image Size
AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

Original
algorithm 500 × 500 1.76 2.11 3.54 2.41 2.96 4.71 84.48 81.45 77.53 1.7854 26.2220

Proposed
algorithm

600 × 600 1.71 2.02 3.42 2.29 2.79 4.58 86.66 84.08 79.49 1.7946 24.9515
700 × 700 1.70 1.99 3.40 2.27 2.73 4.56 87.34 84.8 79.87 1.7973 24.6278
800 × 800 1.69 1.98 3.39 2.26 2.70 4.54 87.56 85.64 80.35 1.7986 24.3276
900 × 900 1.68 1.97 3.38 2.25 2.69 4.53 87.75 85.72 80.78 1.8002 24.2388

1000 × 1000 1.67 1.96 3.38 2.24 2.68 4.51 87.81 85.88 80.94 1.8010 24.1858
1100 × 1100 1.67 1.96 3.37 2.23 2.68 4.50 87.89 85.91 81.09 1.8009 24.1359
1200 × 1200 1.66 1.95 3.36 2.22 2.66 4.47 87.97 85.94 81.27 1.8025 24.0686
1300 × 1300 1.66 1.94 3.35 2.22 2.66 4.46 87.97 85.99 81.35 1.8024 24.0527
1400 × 1400 1.65 1.93 3.35 2.21 2.64 4.46 88.02 86.03 81.42 1.8028 24.0454
1500 × 1500 1.65 1.92 3.35 2.21 2.64 4.44 88.02 86.05 81.47 1.8031 23.9964
1600 × 1600 1.65 1.92 3.35 2.21 2.64 4.46 88.03 86.05 81.46 1.8030 24.0518
1700 × 1700 1.66 1.94 3.37 2.22 2.65 4.51 88.03 86.03 81.44 1.8027 24.0764
1800 × 1800 1.65 1.92 3.35 2.22 2.64 4.43 88.03 86.04 81.45 1.8030 24.0452
1900 × 1900 1.65 1.92 3.34 2.21 2.63 4.44 88.04 86.07 81.47 1.8032 23.9916
2000 × 2000 1.65 1.92 3.35 2.22 2.64 4.45 88.03 86.06 81.45 1.8028 24.0490

STARFM — 1.66 1.95 3.50 2.22 2.67 4.63 87.96 85.95 78.39 1.8016 24.7963

SPFM — 1.65 2.00 3.61 2.21 2.95 4.86 88.01 85.81 77.28 1.7953 25.1976

Table 6. Assessment indices of the spatially extended fusion with the urban dataset for modeling
reflectance at 12 September 2017.

Methods
Training

Image Size
AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

Original
algorithm 500 × 500 1.73 2.00 3.45 2.18 2.64 4.64 87.55 85.01 79.01 1.7850 29.3382

Proposed
algorithm

600 × 600 1.70 1.97 3.40 2.14 2.59 4.47 88.61 86.35 82.89 1.7922 28.3268
700 × 700 1.70 1.96 3.40 2.14 2.56 4.35 88.63 86.47 82.88 1.7924 28.2852
800 × 800 1.68 1.94 3.38 2.12 2.53 4.31 88.95 87.12 83.30 1.7943 27.8460
900 × 900 1.69 1.95 3.40 2.13 2.54 4.33 88.83 86.79 82.89 1.7886 27.8857

1000 × 1000 1.68 1.93 3.39 2.12 2.53 4.31 89.02 87.21 83.49 1.7947 27.7921
1100 × 1100 1.68 1.92 3.37 2.12 2.53 4.31 89.03 87.44 83.54 1.7947 27.7726
1200 × 1200 1.68 1.91 3.37 2.12 2.52 4.30 89.06 87.56 83.62 1.7949 27.6851
1300 × 1300 1.68 1.90 3.35 2.12 2.52 4.29 89.07 87.61 83.63 1.7952 27.5976
1400 × 1400 1.68 1.90 3.34 2.12 2.51 4.28 89.09 87.63 83.67 1.7964 27.5520
1500 × 1500 1.68 1.90 3.34 2.12 2.51 4.28 89.10 87.66 83.70 1.7985 27.5435
1600 × 1600 1.68 1.90 3.34 2.12 2.51 4.29 89.09 87.64 83.69 1.7980 27.5481
1700 × 1700 1.68 1.89 3.32 2.12 2.49 4.21 89.12 87.71 83.78 1.8000 27.4747
1800 × 1800 1.69 1.91 3.35 2.12 2.53 4.31 89.10 87.65 83.71 1.7975 27.5554
1900 × 1900 1.68 1.90 3.34 2.12 2.51 4.29 89.11 87.66 83.69 1.7989 27.5174
2000 × 2000 1.68 1.90 3.33 2.12 2.51 4.25 89.13 87.69 83.75 1.7991 27.4951

STARFM — 1.70 1.95 3.43 2.16 2.56 4.51 88.51 86.68 82.79 1.7939 28.5247

SPFM — 1.68 2.01 3.44 2.17 2.63 4.50 87.68 84.83 82.45 1.7901 29.2313



Remote Sens. 2018, 10, 1207 12 of 19

Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 

 

Table 5. Assessment indices of the spatially extended fusion with the urban dataset for modeling 
reflectance on 10 July 2017. 

Methods Training 
Image Size 

AAD × 102 RMSE × 102 SSIM × 102 
SAM ERGAS 

G R NIR G R NIR G R NIR 
Original 

algorithm 
500 × 500 1.76 2.11 3.54 2.41 2.96 4.71 84.48 81.45 77.53 1.7854 26.2220 

Proposed 
algorithm 

600 × 600 1.71 2.02 3.42 2.29 2.79 4.58 86.66 84.08 79.49 1.7946 24.9515 
700 × 700 1.70 1.99 3.40 2.27 2.73 4.56 87.34 84.8 79.87 1.7973 24.6278 
800 × 800 1.69 1.98 3.39 2.26 2.70 4.54 87.56 85.64 80.35 1.7986 24.3276 
900 × 900 1.68 1.97 3.38 2.25 2.69 4.53 87.75 85.72 80.78 1.8002 24.2388 

1000 × 1000 1.67 1.96 3.38 2.24 2.68 4.51 87.81 85.88 80.94 1.8010 24.1858 
1100 × 1100 1.67 1.96 3.37 2.23 2.68 4.50 87.89 85.91 81.09 1.8009 24.1359 
1200 × 1200 1.66 1.95 3.36 2.22 2.66 4.47 87.97 85.94 81.27 1.8025 24.0686 
1300 × 1300 1.66 1.94 3.35 2.22 2.66 4.46 87.97 85.99 81.35 1.8024 24.0527 
1400 × 1400 1.65 1.93 3.35 2.21 2.64 4.46 88.02 86.03 81.42 1.8028 24.0454 
1500 × 1500 1.65 1.92 3.35 2.21 2.64 4.44 88.02 86.05 81.47 1.8031 23.9964 
1600 × 1600 1.65 1.92 3.35 2.21 2.64 4.46 88.03 86.05 81.46 1.8030 24.0518 
1700 × 1700 1.66 1.94 3.37 2.22 2.65 4.51 88.03 86.03 81.44 1.8027 24.0764 
1800 × 1800 1.65 1.92 3.35 2.22 2.64 4.43 88.03 86.04 81.45 1.8030 24.0452 
1900 × 1900 1.65 1.92 3.34 2.21 2.63 4.44 88.04 86.07 81.47 1.8032 23.9916 
2000 × 2000 1.65 1.92 3.35 2.22 2.64 4.45 88.03 86.06 81.45 1.8028 24.0490 

STARFM — 1.66 1.95 3.50 2.22 2.67 4.63 87.96 85.95 78.39 1.8016 24.7963 
SPFM — 1.65 2.00 3.61 2.21 2.95 4.86 88.01 85.81 77.28 1.7953 25.1976 

Table 6. Assessment indices of the spatially extended fusion with the urban dataset for modeling 
reflectance at 12 September 2017. 

Methods Training 
Image Size 

AAD × 102 RMSE × 102 SSIM × 102 
SAM ERGAS 

G R NIR G R NIR G R NIR 
Original 

algorithm 
500 × 500 1.73 2.00 3.45 2.18 2.64 4.64 87.55 85.01 79.01 1.7850 29.3382 

Proposed 
algorithm 

600 × 600 1.70 1.97 3.40 2.14 2.59 4.47 88.61 86.35 82.89 1.7922 28.3268 
700 × 700 1.70 1.96 3.40 2.14 2.56 4.35 88.63 86.47 82.88 1.7924 28.2852 
800 × 800 1.68 1.94 3.38 2.12 2.53 4.31 88.95 87.12 83.30 1.7943 27.8460 
900 × 900 1.69 1.95 3.40 2.13 2.54 4.33 88.83 86.79 82.89 1.7886 27.8857 

1000 × 1000 1.68 1.93 3.39 2.12 2.53 4.31 89.02 87.21 83.49 1.7947 27.7921 
1100 × 1100 1.68 1.92 3.37 2.12 2.53 4.31 89.03 87.44 83.54 1.7947 27.7726 
1200 × 1200 1.68 1.91 3.37 2.12 2.52 4.30 89.06 87.56 83.62 1.7949 27.6851 
1300 × 1300 1.68 1.90 3.35 2.12 2.52 4.29 89.07 87.61 83.63 1.7952 27.5976 
1400 × 1400 1.68 1.90 3.34 2.12 2.51 4.28 89.09 87.63 83.67 1.7964 27.5520 
1500 × 1500 1.68 1.90 3.34 2.12 2.51 4.28 89.10 87.66 83.70 1.7985 27.5435 
1600 × 1600 1.68 1.90 3.34 2.12 2.51 4.29 89.09 87.64 83.69 1.7980 27.5481 
1700 × 1700 1.68 1.89 3.32 2.12 2.49 4.21 89.12 87.71 83.78 1.8000 27.4747 
1800 × 1800 1.69 1.91 3.35 2.12 2.53 4.31 89.10 87.65 83.71 1.7975 27.5554 
1900 × 1900 1.68 1.90 3.34 2.12 2.51 4.29 89.11 87.66 83.69 1.7989 27.5174 
2000 × 2000 1.68 1.90 3.33 2.12 2.51 4.25 89.13 87.69 83.75 1.7991 27.4951 

STARFM — 1.70 1.95 3.43 2.16 2.56 4.51 88.51 86.68 82.79 1.7939 28.5247 
SPFM — 1.68 2.01 3.44 2.17 2.63 4.50 87.68 84.83 82.45 1.7901 29.2313 

  
(a) (b) 

Figure 7. Graphical assessment indices of the proposed bi-directional fusion with spatially extended 
training samples from the urban dataset, (a) and (b) are respectively for modeling the reflectance on 
10 July and 12 September 2017. 
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Figure 7. Graphical assessment indices of the proposed bi-directional fusion with spatially extended
training samples from the urban dataset, (a) and (b) are respectively for modeling the reflectance on 10
July and 12 September 2017.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

    
(m) (n) (o) (p) 

Figure 8. Proposed bi-directional fusion results with spatially extended training samples from the 
urban dataset: (a–d) the composited fusion results (NIR/red/green) modeled on 10 July and 12 
September 2017 with training image sizes of 500 × 500 pixels and 1500 × 1500 pixels, respectively; and 
(e–p) the scatter plots of (a–d), which indicate the comparison among the green, red, and NIR bands 
of the modeled and actual reflectance. 

3.3.2. Experiments with Temporal Extended Training Data 

With regard to the temporal extension of training samples, we first defined an optimized 
selection mode for temporal training samples by analyzing the fusion quality of the Beijing urban 
dataset in 2017 and selecting eligible acquired dates from 2013 to 2016 according to Landsat-8 
reflectance data, which are accumulated as additional training samples into the dictionary learning 
process. This bi-directional fusion strategy with the temporally extended training samples is shown 
in Figure 9. 

Nearly all 12 reflectance data acquired from 31 January to 17 December (Table 1) were taken as 
additional training samples for the dictionary learning process, except for two Landsat reflectance 
images acquired on 10 July and 12 September 2017. The assessment indices are listed in Tables 7 and 
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from different acquisition dates, from which the reflectance data are between or close to the observed 
date and the modeled date, slightly higher fusion accuracy can be expected (23 May and 28 September 
2017 in this experiment). Two reflectance images that satisfy the aforementioned assumption were 
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with temporally accumulated training samples (Tables 9 and 10 and Figure 10). 

Figure 8. Proposed bi-directional fusion results with spatially extended training samples from the urban
dataset: (a–d) the composited fusion results (NIR/red/green) modeled on 10 July and 12 September
2017 with training image sizes of 500 × 500 pixels and 1500 × 1500 pixels, respectively; and (e–p) the
scatter plots of (a–d), which indicate the comparison among the green, red, and NIR bands of the
modeled and actual reflectance.
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3.3.2. Experiments with Temporal Extended Training Data

With regard to the temporal extension of training samples, we first defined an optimized selection
mode for temporal training samples by analyzing the fusion quality of the Beijing urban dataset
in 2017 and selecting eligible acquired dates from 2013 to 2016 according to Landsat-8 reflectance
data, which are accumulated as additional training samples into the dictionary learning process.
This bi-directional fusion strategy with the temporally extended training samples is shown in Figure 9.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 19 
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Figure 9. Proposed bi-directional fusion strategy with temporally extended training samples. 
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Table 8. Assessment indices from the proposed fusion with the urban data acquired in 2017 for 
modeling reflectance on 12 September 2017. 
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Figure 9. Proposed bi-directional fusion strategy with temporally extended training samples.

Table 7. Assessment indices from the proposed fusion with the urban data acquired in 2017 for
modeling reflectance on 10 July 2017.

Added Training
Dates

AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

31 January 2017 1.76 2.08 3.57 2.40 2.90 4.83 84.55 82.25 76.36 1.7857 26.1273
4 March 2017 1.74 2.03 3.48 2.37 2.82 4.63 85.23 83.41 78.58 1.7918 25.4679
21 April 2017 1.75 2.01 3.49 2.37 2.79 4.59 85.2 83.97 79.05 1.7930 25.2690
7 May 2017 1.75 2.03 3.52 2.37 2.83 4.65 85.04 83.24 78.44 1.7910 25.5186
23 May 2017 1.73 1.96 3.46 2.35 2.72 4.74 85.63 84.96 77.24 1.7947 25.1566

28 September 2017 1.73 1.97 3.46 2.36 2.73 4.58 85.35 84.73 78.92 1.7953 25.0129
30 October 2017 1.72 2.00 3.47 2.36 2.78 4.67 85.38 84.10 78.06 1.7935 25.3112

15 November 2017 1.76 2.06 3.46 2.41 2.88 4.61 84.59 82.61 78.75 1.7901 25.7875
1 December 2017 1.73 2.07 3.51 2.37 2.89 4.69 85.05 82.45 77.85 1.7903 25.8093
17 December 2017 1.75 2.05 3.63 2.38 2.84 5.00 85.19 83.22 72.14 1.7888 26.0933

Nearly all 12 reflectance data acquired from 31 January to 17 December (Table 1) were taken as
additional training samples for the dictionary learning process, except for two Landsat reflectance
images acquired on 10 July and 12 September 2017. The assessment indices are listed in Tables 7 and 8.
Although only a small discrepancy exists among the fusion results with additional training samples
from different acquisition dates, from which the reflectance data are between or close to the observed
date and the modeled date, slightly higher fusion accuracy can be expected (23 May and 28 September
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2017 in this experiment). Two reflectance images that satisfy the aforementioned assumption were
then selected from each year from 2013 to 2016 and finally used to perform and validate the fusion
with temporally accumulated training samples (Tables 9 and 10 and Figure 10).

Table 8. Assessment indices from the proposed fusion with the urban data acquired in 2017 for
modeling reflectance on 12 September 2017.

Added Training
Dates

AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

31 January 2017 1.72 2.02 3.48 2.17 2.65 4.70 87.22 84.73 78.46 1.7836 29.4916
4 March 2017 1.72 1.98 3.69 2.17 2.59 4.86 87.38 85.26 73.24 1.7813 29.4935
21 April 2017 1.71 2.00 3.4 2.15 2.60 4.45 87.95 85.46 81.61 1.7885 28.7471
7 May 2017 1.71 1.97 3.39 2.15 2.56 4.35 87.98 85.95 82.39 1.7900 28.3728
23 May 2017 1.72 1.95 3.40 2.15 2.53 4.35 87.96 86.15 82.38 1.7902 28.2556

28 September 2017 1.70 1.92 3.35 2.12 2.48 4.34 88.30 86.80 82.27 1.7916 27.8873
30 October 2017 1.72 1.98 3.39 2.18 2.59 4.53 87.49 85.58 80.27 1.7869 28.9585

15 November 2017 1.71 2.00 3.46 2.16 2.64 4.69 87.68 84.99 77.91 1.7844 29.3909
1 December 2017 1.73 2.01 4.63 2.19 2.62 6.42 87.32 85.25 38.30 1.7599 32.9495
17 December 2017 1.72 1.99 3.40 2.18 2.61 4.37 87.40 85.15 82.36 1.7878 28.7952

Table 9. Assessment indices from the proposed fusion with the urban data acquired from 2013 to 2016
for modeling reflectance on 10 July 2017.

Added Training
Years

AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

2013 1.73 2.01 3.47 2.36 2.78 4.62 85.43 84.17 78.66 1.7927 25.2327
2013 and 2014 1.69 1.99 3.45 2.29 2.75 4.62 86.58 84.69 78.72 1.7960 24.8839
2013 to 2015 1.66 1.93 3.38 2.25 2.66 4.45 87.53 85.81 80.64 1.8020 24.1563
2013 to 2016 1.66 1.93 3.37 2.25 2.66 4.47 87.58 85.81 80.37 1.8018 24.2050Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 19 
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Figure 10. Proposed bi-directional fusion results with temporally extended training samples (from
2013 to 2016) using the urban dataset: (a–d) the composited fusion results of modeled reflectance on
10 July 2017 and the comparison with actual reflectance; (e–h) the composited fusion results of modeled
reflectance on 12 September 2017 and the comparison with actual reflectance.
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Table 10. Assessment indices from the proposed fusion with the urban data acquired from 2013 to 2016
for modeling reflectance on 12 September 2017.

Added Training
Years

AAD × 102 RMSE × 102 SSIM × 102

SAM ERGAS
G R NIR G R NIR G R NIR

2013 1.69 1.95 3.38 2.13 2.52 4.4 88.55 86.89 81.97 1.7921 28.1927
2013 and 2014 1.69 1.94 3.36 2.13 2.5 4.3 88.76 87.18 83.32 1.7941 27.8998
2013 to 2015 1.68 1.91 3.34 2.12 2.46 4.25 88.98 87.58 83.86 1.7955 27.6131
2013 to 2016 1.69 1.92 3.36 2.13 2.48 4.41 88.87 87.29 82.07 1.7934 28.0341

4. Discussion

4.1. Fusion Quality with Spatial Extended Training Samples

The resulting assessment indices from the two datasets indicate good agreement in both temporal
directions of the fusion strategy with spatially extended training samples, which varied from 500 ×
500 to 1200 × 1200 and 2000 × 2000 pixels (Tables 2, 3, 5 and 6 and Figures 5 and 8). On the one hand,
the overall fusion quality increases with larger training image sizes, and only small improvements
can be expected when the size of the training images reaches a threshold, which is approximately
two and three times the original image size for the rural and the urban datasets, respectively.
Besides, the proposed fusion algorithm generally has a better performance than STARFM and SPFM
models under the “size threshold” for both the rural dataset (phenology changes) and the urban dataset
(type changes). On the other hand, AAD, RMSE, and SSIM indices show increasing errors from the
green, red, and NIR bands through all training image sizes (Figures 4 and 7). A reasonable explanation
for the threshold size of the training samples is the reduced spatial similarity. Therefore, the features of
image structures become less effective with the increasing image size of the training samples.

The different levels of fusion errors over bands yield different standard deviations for each band.
For the rural dataset with phenology changes, the standard deviations of a reflectance image used
to quantify the spectral amount of variation or dispersion of images for the acquisitions on 24 May
and 11 July 2001 are 0.0102, 0.013, and 0.0476 and 0.0108, 0.0165, and 0.0306, respectively. A more
integrative description of fusion results has been addressed by SSIM, SAM, and ERGAS indices rather
than AAD and RMSE indices. The ERGAS index in particular provides a significant difference between
assessment values of AAD and RMSE indices with very small discrepancies in one or more channels.
Similarly, the increasing fusion errors from the green and the red bands to the NIR band yield standard
deviations of 0.0334, 0.0413, and 0.0611 and 0.031, 0.0374, and 0.0565, for the Beijing urban data
acquired on 10 July and 12 September 2017, respectively. The change in the threshold size of training
images from two times (rural area) to three times (urban area) is mainly ascribed to the difference
in surface features and employed reflectance products (Landsat-7 ETM plus and MODGHK for the
rural dataset, and Landsat-8 OLI and MOD09A1/Q1 for the urban dataset). At the threshold size of
the urban training images (approximately 1500 × 1500 pixels), the modeled images in both temporal
directions, especially for the reflectance on 12 September 2017, seem to have less noise disturbance than
other image sizes (Figure 8). Considering running time of the fusion with spatially extended training
samples, the procedure with larger size of training image become more and more time consuming,
which is growing not linearly but exponentially.

4.2. Fusion Quality with Temporal Extended Training Samples

Unlike the original bi-directional fusion results, the temporally extended fusion strategy can
promote fusion quality and perform better than the spatially extended fusion strategy when an equal
number of training images are handled. The training image size in the temporally extended fusion
scheme with the rural dataset (Table 4) corresponds to the training image size of 700 × 700 pixels used
in the spatially extended fusion scheme (Tables 2 and 3). The temporal extension scheme is therefore
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more efficient than the spatial extension scheme in training the rural dataset with phenology changes.
Moreover, the assessment indices from the urban dataset primarily show decreasing fusion error when
temporal training samples are added (Figure 11), and disagreement occurs when the two reflectance
images acquired in 2016 participate in the training sample set. This phenomenon may be attributed to
the large seasonal difference between the acquisition dates in 2016 and the observed–modeled period.
In addition, a more effective fusion strategy for the rural dataset (the Beijing area) is used to bring the
spatially extended training samples, rather than the temporally extended training samples, into the
training set (Figure 12).
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Figure 12. Quality and efficiency of proposed bi-directional fusion with the spatiotemporally extended
training samples from the urban dataset, (a) and (b) are respectively for the spatially extended mode
and the temporally extended mode.

The results from the rural dataset, especially for the NIR channel, are more sensitive to the added
temporal training image than the urban dataset (Figure 6d,h and Figure 10d,h). Regardless of the
seasonal characteristics of the employed temporal training images, the discrepancy in spatial features,
such as texture and structure, plays a leading role in the comparison of fused results from two datasets
with different change types (primarily the phenology change in the rural dataset and the texture and
structural change in the urban dataset). The time-consumption of the fusion with temporally extended
training samples intends to be similar with the strategy with spatial extension due to the proportional
image size between spatially and temporally extended training samples.
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5. Conclusions

An enhanced fusion scheme based on the single-pair sparse learning fusion model is proposed by
improving the dictionary training process, and its evaluation strategy is designed by employing the
spatially and the temporally extended training samples in this paper. Results from the bi-directional
fusion scheme show high agreement in the assessment indices of the fusion quality, which indicates
a decrease in prediction errors and an increase in image similarity with the extension of spatial or
temporal training samples. This fusion scheme is significantly effective until the spatial threshold size
(approximately two to three times the original image size used here) of the training images is reached
or one or more temporal training sample(s) with dissimilar acquisition seasons is added. Compared
to STARFM and SPFM models, a better fusion quality can also be obtained by the proposed method
with an enhanced “threshold” training size. In detail, the fusion strategy with spatially extended
training samples obtain better performance than the fusion strategy with temporally extended training
samples for the urban dataset, whereas an opposite inference can be derived from the rural dataset.
In consideration of the land cover characteristics of the two datasets, in which phenology changes
occur in the rural dataset and type changes appear in the urban dataset, a reliable approach is to adopt
an adaptive pattern of training samples extended spatially or temporally to promote fusion quality
according to the data acquisition condition and the land cover change type of a study area. The results
of the temporally extended fusion scheme are significantly affected by additional training samples
with different seasonal features. Therefore, the proposed sparse learning-based fusion scheme is more
sensitive to temporal changes than to spatial changes in surface features. To promote the efficiency of
sparse learning-based fusion methods, a spatial and temporal similarity measure should be designed
for filtering and training spatiotemporal samples and then integrated with the fusion procedure after
its availability is validated by typical areas with various land cover changes.

Compared to the whole process of the original sparse-learning algorithm cost 3.7 min for an image
with 500 × 500 pixels, which is more efficient than the STARFM (about 4 min) and less than the SPFM
(2.3 min), the proposed method with spatiotemporally extended training samples will become far more
time consuming if a better fusion result is required. Actually, this issue can be effectively addressed by
some updated sparse coding techniques. For instance, the online dictionary learning methods [39,40]
can significantly reduce the time consumption of the entire training process to 1 min or so for 500× 500
pixels and expect to be more effective with growing image size. By this way, the proposed method has
a high potential in processing large scenes (spatial or temporal acquirements) usually with multiple
channels and taking them into consideration for reflectance reconstruction.
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