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Abstract: Geometric three-dimensional (3D) reconstruction has emerged as a powerful tool for plant
phenotyping and plant breeding. Although laser scanning is one of the most intensely used sensing
techniques for 3D reconstruction projects, it still has many limitations, such as the high investment cost.
To overcome such limitations, in the present study, a low-cost, novel, and efficient imaging system
consisting of a red-green-blue (RGB) camera and a photonic mixer detector (PMD) was developed,
and its usability for plant phenotyping was demonstrated via a 3D reconstruction of a soybean plant
that contains color information. To reconstruct soybean canopies, a density-based spatial clustering
of applications with noise (DBSCAN) algorithm was used to extract canopy information from the raw
3D point cloud. Principal component analysis (PCA) and iterative closest point (ICP) algorithms were
then used to register the multisource images for the 3D reconstruction of a soybean plant from both
the side and top views. We then assessed phenotypic traits such as plant height and the greenness
index based on the deviations of test samples. The results showed that compared with manual
measurements, the side view-based assessments yielded a determination coefficient (R2) of 0.9890 for
the estimation of soybean height and a R2 of 0.6059 for the estimation of soybean canopy greenness
index; the top view-based assessment yielded a R2 of 0.9936 for the estimation of soybean height
and a R2 of 0.8864 for the estimation of soybean canopy greenness. Together, the results indicated
that an assembled 3D imaging device applying the algorithms developed in this study could be
used as a reliable and robust platform for plant phenotyping, and potentially for automated and
high-throughput applications under both natural light and indoor conditions.

Keywords: soybean plant; 3D reconstruction; multisource imaging; phenotyping; plant
height; Greenness

1. Introduction

Soybeans are one of the main cash crops worldwide. To meet the needs of the growing
human population, plant scientists and breeders must increase the productivity and yield of soybean
crops, which is a substantial challenge [1]. High-throughput phenotyping platforms are essential for
tracking the growth of soybean plants in the field and the contributions of these plants to both the
food supply and the generation of bioenergy from their biomass [2]. Plant phenotyping involves
the comprehensive assessment of plant characteristics that result from genetic and environmental
factors [3–6]. Phenotypic characteristics include external morphological parameters such as plant
height, size, petiole length, and initiation angle, as well as internal properties such as chlorophyll
and nutrient (nitrogen, phosphorus, and potassium) contents [7,8]. The measurement and evaluation
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of these phenotypic traits can provide guidelines for plant breeding. However, most of the plant
phenotyping methods depend on observations and manual measurements with contact sensors; these
methods are considered low throughput, costly, and labor-intensive [9]. Furthermore, these traditional
techniques typically require the destruction of plant organs, which negatively affects the normal
growth of the measured plants [10]. Alternatively, plant phenotyping, which involves noninvasive
measurements, is an emerging technology that has recently attracted the attention of researchers in the
plant science and agricultural fields.

A current bottleneck that restricts phenotyping analysis lies in the development of the noninvasive
and automated calculation methods that quantify the phenotypic traits of plants. In this regard,
computer vision technologies show great potential for noninvasive measurement methods [11,12].
Currently, by recording whole three-dimensional (3D) datasets and reconstructing entire plants, 3D
laser scanners can be used to acquire highly detailed plant phenotypic information on geometric
traits, such as plant height. Photogrammetric information can be obtained via several different 3D
techniques and laser devices, such as handheld laser scanners [13]. 3D plant models can then be
generated by multiview stereo algorithms or by structure from motion [9,14]. Having very high
resolutions, these techniques also present disadvantages, such as sensitivity to occlusion, a lack of color
information, and failure to accurately reflect important phenotypic traits. Moreover, for the automatic
phenotypic analysis of plant structure, 3D point clouds generated by laser scanners must be properly
extracted from a large amount of 3D data, and must be classified. In addition, the high cost and limited
availability of laser scanning devices have prevented their widespread application.

In addition to geometric traits, spectral reflectance in visible spectrum is another
important characteristic for phenotyping analysis, especially for diagnosing nutrient conditions.
Significant correlations between “soil and plant analyzer development (SPAD)” readings, leaf N
concentration (LNC), and image color indices in RGB color space were observed for rice in natural light
conditions [15]. Additionally, the strong relationship between the deficiency of nitrogen, phosphorus,
potassium, and image color indices in RGB color space was further proved for soybean plants in
an outdoor environment [16]. Although light intensity is one of the major factors that lead to color
distortion, this kind of distortion can be registered by reference-based approaches to a great degree [17].

The above-mentioned studies showed that the nutrient conditions of plants of different cultivars
and at different growth stages can be estimated in an effective way, that is, by using R, G, and B
channel values that can be obtained by low-cost RGB cameras, without a wet lab, field-based sensors,
or expensive image acquisition equipment.

Currently, geometric and spectral characteristics are acquired separately by different devices.
With respect to agricultural applications, the spectral reflectance of plants’ canopies can be obtained
by using an RGB-based camera or a multispectral camera [18,19], whereas the geometric information
therein, such as plant height and canopy width, can be calculated via 3D cloud points generated by
using 3D imaging devices such as terrestrial laser scanners or handheld laser scanners. Although some
devices such as Kinect sensors [20] can capture image information (i.e., RGB images) and 3D
distance information simultaneously, these two types of information cannot be acquired within the
same coordinate system. Consequently, to obtain 3D plants with color information, a coordinate
transformation is further required to be performed on these two types of information, thereby fusing
multisource images. However, few techniques integrated with image fusion have been developed for
the phenotyping analysis of plants, especially for soybean plants. Thus, there is still an urgent need in
3D reconstruction for plant canopies with both geometric and color information.

Although soybean plants are globally important crops for providing oils, most studies on
reconstruction and phenotyping have focused on a single plant in a laboratory circumstance, such as a
plant grown in a greenhouse [21]. These laboratory-based systems can be useful for obtaining certain
phenotypic traits such as plant height, but they also have limitations. The main shortcoming is that
certain traits calculated from an individual plant can not reflect the true cases in the field due to the
artificial laboratory environment, which can significantly affect plant growth. Thus, phenotyping
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methods under natural light conditions are highly desirable for plant breeding. However, in contrast
with progress made in laboratory-based research [22], the lack of a well-constructed platform has
hindered the development of plant phenotyping under natural light conditions in large plantations.
Therefore, there is a great opportunity for innovation with respect to the development of 3D-based
technology for plant phenotyping under natural growing conditions.

To address these issues, it is demonstrated in this paper that it is feasible to reconstruct the
3D geometric characteristics containing the color information of soybean plants under natural
light conditions by using a relatively low-cost multisource imaging system. This reconstruction
was carried out through the efficient extraction and registration of multisource images by using
density-based spatial clustering of applications with noise (DBSCAN), principal component analysis
(PCA), and iterative closest point (ICP) algorithms. Our approach resulted in the successful
characterization of soybean plant phenotypic traits (plant height and greenness index) acquired from
3D reconstructed images. This technique provides an alternative for the large-scale characterization of
plant phenotypes under natural conditions.

2. Materials and Methods

2.1. Overall Process Flow for 3D Reconstruction

The overall processes and methods for performing a 3D reconstruction of the soybean canopy and
the calculation of phenotypic traits are shown in Figure 1. First, raw 3D point cloud data including the
soybean canopy information were captured from the side view (Figure 1a) and top view (Figure 1b),
respectively, by using a multisource imaging system consisting of a photonic mixer detector (PMD;
model: Camcube 3.0, PMDTech Company, Siegen, Germany) and an RGB camera (model: C270,
Logitech Company, Lausanne, Switzerland). Second, the soybean canopies (Figure 1d,f) were extracted
from the raw 3D cloud point data by executing the DBSCAN algorithm. Third, the RGB image and
associated 3D point cloud information were fused together to reconstruct the geometric morphology
of the soybean canopies (Figure 1g,h) by executing the PCA algorithm for a rough registration and the
ICP algorithm for optimal registration between the input point cloud and reference point cloud. Last,
phenotypic traits such as plant height and the greenness index were calculated. The phenotypic data
of the soybean canopies were compared with the data collected by manual measurements, such that
the accuracy of the developed system can be evaluated.

2.2. Experimental Treatments and Measurement of Phenotypic Traits

The plantation experiment was conducted in 2016 at the Heilongjiang Bayi Agricultural University.
A total of 70 soybean plants, including four varieties (namely, Kennong23, Kennong29, Kennong30,
and Kennong33), were cultivated in pots. The experiment was conducted in accordance with a
randomized complete block design. Each variety was replicated 17 times and planted in a polyvinyl
chloride (PVC) pot (25-cm diameter and 40-cm height) prior to disinfection and germination treatments
of soybean seeds. Twenty kilograms of soil and sand (2:1 w/w) were mixed together and added to
each pot. The nitrogen, phosphorus, and potassium nutrient compositions were 50 mg/kg, 30 mg/kg,
and 30 mg/kg, respectively. One, two, or three soybean plants were grown in an individual pot. Plant
height was measured with a ruler.
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Figure 1. Framework for the three-dimensional (3D) reconstruction of soybean canopies.

2.3. Multisource Imaging System

The multisource imaging system (Figure 2) was composed of a PMD camera and an RGB camera.
The PMD is a developer of complementary metal oxide semiconductor (CMOS) 3D time-of-flight (TOF)
components, and a provider of engineering support in the field of digital 3D imaging. With its active
imaging system, this depth camera can irradiate an active light source onto objects. The light reflected
from the objects is then used to generate the depth image by calculating the TOF between the emission
and reception [11]. In addition to generating depth images, the PMD camera was used to construct
three additional multisource images: an intensity image, an amplitude image, and a flag image.
The intensity image was recorded to illustrate the average intensity of incident light, natural light,
and near-infrared light mixed together, and the amplitude image was used to indicate the reflecting
ability of the objects. The flag image reflected the quality of the image pixels. Although this imaging
system has the powerful capability of acquiring multisource images, there is no color information
therein. This deficiency can be overcome by using the spectral reflectance acquired from an RGB
camera at a spatial resolution of 640 × 480 pixels. Moreover, the PMD camera can be operated at a
high frame rate (40 frames/s), but a resolution thereof (200 × 200 pixels) is relatively low.

Figure 1. Framework for the three-dimensional (3D) reconstruction of soybean canopies.

2.3. Multisource Imaging System

The multisource imaging system (Figure 2) was composed of a PMD camera and an RGB camera.
The PMD is a developer of complementary metal oxide semiconductor (CMOS) 3D time-of-flight (TOF)
components, and a provider of engineering support in the field of digital 3D imaging. With its active
imaging system, this depth camera can irradiate an active light source onto objects. The light reflected
from the objects is then used to generate the depth image by calculating the TOF between the emission
and reception [11]. In addition to generating depth images, the PMD camera was used to construct
three additional multisource images: an intensity image, an amplitude image, and a flag image.
The intensity image was recorded to illustrate the average intensity of incident light, natural light,
and near-infrared light mixed together, and the amplitude image was used to indicate the reflecting
ability of the objects. The flag image reflected the quality of the image pixels. Although this imaging
system has the powerful capability of acquiring multisource images, there is no color information
therein. This deficiency can be overcome by using the spectral reflectance acquired from an RGB
camera at a spatial resolution of 640 × 480 pixels. Moreover, the PMD camera can be operated at a
high frame rate (40 frames/s), but a resolution thereof (200 × 200 pixels) is relatively low.
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Figure 2. Multisource imaging system used in the soybean field.

Figure 2. Multisource imaging system used in the soybean field.

Figure 3 shows examples of the multisource images, including an RGB image, a distance image,
an amplitude image, a flag image, and an intensity image. The multisource images played an important
role in the 3D reconstruction of soybean canopies, and the RGB images provided rich color information
of the 3D canopies. The distance images were used to generate accurate 3D distance information,
including the information with respect to x, y, and z-axes. Additionally, the amplitude images aided
in the removal of the background of the RGB images. The flag images could be used to verify the
quality of the multisource images when the valid images were selected. Last, the intensity images and
RGB images were used together to calibrate the binocular cameras via the manual selection of feature
points. Therefore, the combination of these two cameras is advantageous for the 3D reconstruction of
soybean canopies with color information therein. Figure 2 shows an integration of the RGB camera
and the PMD camera. In this way, these two cameras (integrated as a multisource imaging system)
could collect images simultaneously via the software preinstalled thereon.
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2.4. Calibration of Multisource Imaging System

The multisource imaging system was a binocular vision system composed of a PMD camera
and an RGB camera (Figure 4). The camera calibration toolbox of MATLAB (version: 8.2) was used
to calibrate both cameras. The position of any point P in the space could be approximated as a
pinhole imaging model. There were four coordinate systems (Figure 4): the camera coordinate system
(OcL-XLYLZL and OcR-XRYRZR), the imaging plane coordinate system (OL-XLYL and OR-XRYR),
the image coordinate system (O1-uLvL and O2-uRvR), and the world coordinate system.
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The coordinates of P were (X1, Y1, Z1), (x1, y1), and (u1, v1) in the PMD camera’s coordinate
system, imaging plane coordinate system, and image coordinate system, respectively. The coordinates
of P were (X2, Y2, Z2), (x2, y2), and (u2, v2) in the RGB camera’s coordinate system, imaging plane
coordinate system, and image coordinate system, respectively.

The relationship between the PMD and RGB coordinate systems is expressed by Equation (1): X2

Y2

Z2

 = R ·

 X1

Y1

Z1

+ T (1)

where R is a 3 × 3 orthogonal matrix and T is a translation vector, which was the external parameter
determined by the position of the cameras.

R and T are solved by using the calibration method provided by Zhou [23], and the final results
of R and T are as follows:

R =

 1.0000 0.0064 0.0023
−0.0061 0.9930 −0.1178
−0.0031 0.1178 0.9930

 T =

 −22.89743
290.58127
−22.86262


The imaging system (the PMD and RGB cameras) achieved the optimal calibration effect via the

optical calibration method mentioned above. However, due to the complexity of soybean canopies,
we further calibrated the PMD and RGB cameras for fusion by using the registration method of image
feature points based on the optical calibration method, so as to accurately reconstruct 3D soybean
plants (Section 2.6.2).

2.5. Data Collection and RGB Image Preprocessing

The images were acquired by using the multisource imaging system between 10 am and 12 pm
between 4–8 July 2016. The images were captured under natural environmental conditions at 28 ◦C
and a light intensity of 1000 lux, and then stored in the laptop computer in a native raw format.
Two shooting methods—namely, shooting from side view and shooting from top view—were compared
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based on an assessment of their ability to reflect plant height and greenness index. In addition,
the effectiveness of 3D reconstruction by both methods was evaluated. Regardless of which method
was used, when the images were collected, the whole plant or canopy had to be fitted within the field
of view (FOV) of the cameras.

Since the imaging effect of RGB images is easy to be affected by natural light, thus, the values of
the R, G, and B channels acquired by a RGB camera need to be corrected. A calibration chart was used
for correction so as to obtain RGB images that have uniform spectral reflectance [17,24].

2.6. 3D Reconstruction

A three-step framework was proposed to reconstruct an individual soybean plant in the side view
and top view. We compared the two data acquisition methods in terms of their ability to calculate
two phenotypic traits. The comparison results were used to further evaluate the accuracy of the
3D reconstruction.

2.6.1. DBSCAN Algorithm for Point Cloud Filtering

We started with a raw point cloud without considering geometric and color information. Thus,
the first important step in 3D reconstruction was to classify the useful points from the raw point
clouds. We proposed extraction tasks with the DBSCAN [25] algorithm for side-view and top-view
image acquisition methods (Figure 5). The information embedded in the raw data required for 3D
reconstruction was not only reconstituted from the soybean plant, but also related to the background
(building, sky, or people) within seven meters.
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In this study, P was one set of 3D points in the raw data, and could be written as follows:

P = {P1, P2, P3, · · · , Pi|1 ≤ i ≤ n} (2)

where Pi = {(x, y, z)|x ∈ r, y ∈ r, z ∈ r}, (x, y, z) are the coordinates of Pi, and r represents the real
number set. NH represents the neighborhood of Pi, which belongs to the following aggregate:

NH(Pi) =

{
Pj

∣∣∣∣√(Pi − Pj
)(

Pi − Pj
)T ≤ NH

}
(3)

To apply DBSCAN clustering for the extraction of plant information, the raw points were divided
into core points, (density) reachable points, and outliers, and are defined as follows: a core point Pi
must be within distance k (k was the maximum radius of the neighborhood from Pi); a point Q is
reachable from Pi if there is a path T1, . . . , Tn, with T1 = Pi and Tn = Q, whereas each Ti + 1 is directly
reachable from Ti; the outliers are the points that are not reachable from any other point. If Pi was a
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core point, then it formed a cluster together with all of the points (core or non-core) that were reachable
from it. Each cluster contained at least one core point; non-core points could be part of a cluster, but
they formed its “edge” because they could not be used to reach additional points.

In Figure 6, minPts = 4. The point Pi and the other blue points were core points, as the area
surrounding these points in an NH radius contained at least four points (including the point itself);
since they were all reachable from one another, they formed a single cluster. Points N and Q were not
core points, but were reachable from Pi (via other core points); thus, points N and Q belonged to the
cluster as well. Point M is a noise point that is neither a core point nor directly reachable.

For running DBSCAN, in addition to parameter k, a minimum number of points was needed to
build a dense region, starting with a random point that had not been accessed before. A k-neighborhood
of this starting point was then retrieved. In this research, if it contained at least 30 points within 0.06 m,
a new cluster was generated. Otherwise, the point was marked as a noise point. If a point was a dense
part of a cluster, then its k-neighborhood was also classified as that cluster. Hence, all of the points
in the k-neighborhood were added to the cluster. This process continued until the density-connected
cluster was thoroughly retrieved. All of the unvisited points were then traversed and processed for
the purpose of detecting an additional cluster or noise point. After the DBSCAN algorithm was run,
at least 32,690 points were filtered from the raw point cloud consisting of 200 × 200 points. Thus,
7310 effective points were extracted to form the 3D shape of a soybean plant.
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2.6.2. Fusion of Multisource Images

The fusion of multisource images is a recent development and remains an active research
field [26]. A major fusion problem concerning these multisource sensors resulted from the merging of
a low-spatial resolution distance image and a high-spatial resolution RGB image. During this process,
the PMD amplitude image and its corresponding RGB image were fused together to construct a 3D
soybean plant containing color information. The whole procedure of this fusion involved coordinate
selection, affine transformation, and the assignment of color information for 3D points.

First, coordinate transformation was implemented based on the PMD camera coordinate system
to generate two different coordinate systems that had uniform structures. A control point selection
tool called cpselect (Figure 7) in the MATLAB (version: 8.2) environment was used to select three
pairs of control points between the PMD amplitude image and its related RGB image, after which the
coordinates of the control points were returned to a cpstruct structure.
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Figure 7. Control point selection tool.

After obtaining the cpstruct structure, the coordinate system of the RGB camera was transformed
to that of the PMD camera via affine transformation, which is a linear mapping method that strongly
preserves shapes for points, straight lines, and planes in an RGB image. Furthermore, to assign
color information to its corresponding 3D point, a color index matrix was defined, which stored the
corresponding relations between the coordinates of 3D points and the values of R, G, and B channels.
After the images were fused, a new distance image with color information was constructed in a 3D
coordinate system. In the resultant RGB image, the size was changed to 200 × 200 pixels, which was a
one-to-one match with its original distance image according to the color index matrix.

2.6.3. Registration of 3D Point Clouds between Front and Back Sides

The whole canopy image could be obtained simultaneously by cameras in the top view. As such,
the multisource images acquired in the top view were not subjected to image registration between
two sides (front and back), while this process was needed for those images collected in the side view.
In this study, to show the 3D reconstruction of a soybean plant in the side view, the images acquired
from both sides (front and back) of the plant were processed by registering the 3D point clouds.

In this research, Ck was the aggregate of the point clouds, Ck =
{

xk
i

∣∣∣i = 1, 2, . . . , m
}

; x represents

the center of a point cloud, x = 1
m

m
∑

i=1
(xi); the variance was σ2

x = 1
m

m
∑

i=1
(xi − x)2; and the covariance

matrix was Covx = 1
m

m
∑

i=1
(xi − x)(xi − x)T .

For the input point cloud xi and the reference point cloud yi, the purpose of the registration was
to determine the optimum similarity transformation T = [sR|t] and apply this transformation on xi,
which transformed the coordinate of xi to the counterpart of yi.

yi = sRxi + t (4)

where R, t, and s are the rotation matrix, translation vector, and scale factor, respectively.
The ICP, which is an algorithm [27] that is capable of maximally reducing the difference between

the two point clouds, was used to perform the two abovementioned processes of point cloud
registration. Many variants of ICP, which has been widely used for the geometric alignment of
3D surfaces generated by various scan methods, have been developed. The two most popular variants
are point-to-point and point-to-projection algorithms. The former performs better at registration tasks
primarily because the PCA algorithm [28] is applied in advance to obtain a rough registration of the
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two components of the point clouds. This work was achieved by the combination of the PCA and ICP
algorithms. R and t of Equation (4) could ultimately be solved by the singular value decomposition
(SVD) of the ICP algorithm.

(1) PCA for rough registration

The PCA algorithm was applied to determine the principal axis direction between xi and yi,
and the rough registration results were used as inputs for the ICP algorithm for exact registration by
the ICP algorithm. The processes were as follows:

First, the point cloud xi was decomposed by SVD, from which the left singular vector U,
eigenvalue matrix D, and right singular vector V could be obtained at the same time. The SVD
operation for xi was calculated by Equation (2):

UDVT = svd(Covx) (5)

Second, the PCA coordinate was established, and the direction of axis was determined by U and
V. Afterward, a similarity transformation TPCA was calculated by Equation (6), during which xi was
transformed from the original coordinate to the PCA coordinate.

TPCA = U[I|−x] (6)

There were four candidate transformations because of the uncertainty of the principal axis
direction. Thus, the optimal transformation must be selected from four transformations, which could
minimize the registration error and maximize the normal vector consistency for xi and yi.

The PCA algorithm ultimately achieved basic registration between the input and reference point
clouds via rotation, translation, and zoom operations. The basic registration result was subsequently
used as an input for the ICP algorithm.

(2) ICP for optimal registration

We defined P and Q as having the same points, although they were from two point cloud
aggregates (xi and yi, respectively). The coordinates of P and Q were (x1, y1, z1) and (x2, y2, z2); any
point in aggregate yi could be expressed by Tk. Thus, the Euclidean distance between P and Qi was
then calculated by the following:

d(P, Qi) = ||P−Qi|| =
√
(x1 − x2i)

2 + (y1 − y2i)
2 + (z1 − z2i)

2 (7)

Essentially, the steps of the ICP algorithm for optimal registration are described as follows:
First, we obtained the source point cloud xi and the reference point cloud yi.
Second, we searched the nearest point Bk in input point cloud xi for any point Ak in reference

point cloud yi using Formula (7), which could best align each source point to its match after weighting
and rejecting outlier points.

Next, we solved the rotation transform matrix R, the translation vector t and the deviation s via
SVD in accordance with Equations (9) to (15). In addition, Equation (8) served as the objective function
with the minimum square error [29].

e2(R, t, s) =
1
n

n

∑
i=1
‖yi − (sRxi + t)‖2 (8)

Covyx =
1
n∑

i
(y− y)(x− x)T (9)

UDVT = svd(Covx) (10)
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S =

{
I, |U||V| = 1
diag(1, · · · 1,−1), |U||V| = 1

(11)

R = USVT (12)

t = y− sRx (13)

s =
1

σX2 tr(DS) (14)

Ticp = [sR|t] (15)

Further, we transformed the source points xi using the obtained transformation in the previous
step to obtain Ak+1.

We then analyzed whether the deviation Dk was convergent or not. If it was, the final matrix of
the coordinate transformation and Ak+1 were determined; otherwise, it was iterated from step 2 until
Dk was a convergence. The similarity transformation Ticp could be obtained after the convergence of S.

The final transformation matrix T from xi to yi was as follows:

T = T−1
pca(re f )Ticp(input, re f )Tpca(input) (16)

When the algorithms above were integrated together, the 3D shape of the soybean plant was
reconstructed by registering the two point clouds acquired from the front and back. Traditionally,
missing data due to occlusions and misarranged 3D point positions are calibrated by hole-filling
algorithms according to the curvature of the surrounding triangle mesh [30]. Although an entire 3D
model could be built in accordance with this method, it was not applicable for reconstruction with
color information primarily because the values of the R, G, and B channels of the point generated
by the hole-filling algorithms could not represent the real spectral reflectance of soybean canopies.
Therefore, the next step for phenotyping analysis was based on the 3D plant model built without
hole-filing algorithms applied.

2.7. Methods of Calculating 3D Phenotypic Traits

Referring to the current 3D reconstruction approaches for soybean plants, we used a mathematical
method to describe plant organs, aiming at simplifying data processing and providing a repeatable
and objective parameterization of growth processes. We simulated relevant plant phenotypic traits
such as plant height and canopy greenness index in the side view and top view separately. These traits
are important parameters for evaluating plant quality, as they play an important role in the entire
growth stage via photosynthesis. A total of 70 soybean plants (35 plants for the side view and 35 plants
for the top view) were selected from the field for measuring these two traits.

2.7.1. Method of Calculating Plant Height

Plant height is defined as the shortest distance from the upper boundary of the main
photosynthetic tissues (excluding inflorescences) on a plant to the ground level [31,32], expressed in
meters. Among various phenotypes, plant height is an important geometric parameter; it can be used
not only as an indicator of whole soybean growth, but also to quantify other advanced parameters
such as yield and total biomass [33,34]. Soybean plant height is a particularly important factor used by
breeders for screening and selecting improved varieties.

Plant height is traditionally measured manually with rulers or handheld devices such as laser
rangefinders. However, these methods are time-consuming and labor-intensive, and thus are not
applicable for large-scale phenotyping analysis. Advances in 3D imaging techniques allow the
measurement of geometric traits such as plant height via the acquisition of accurate and efficient
data concerning the 3D structures of plants.
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For top-view depth images, the camera was installed on a tripod that had an adjustable height,
and each plant was placed on the ground in the center of the camera’s FOV. According to the TOF
principle, the pixel intensity reflected the distance between objects and the lens of the camera in
millimeters. A pixel would be invalid if its intensity was zero because of no reflection from an object.
According to Figure 5(right), soybean plant height was calculated via Equation (17) in the 3D space of
the soybean reconstruction model.

H = Hc − h−min(Dp) p ∈ P and Dp > 0 (17)

where H represents the height of the soybean plant in millimeters and Hc is the distance from the lens
of the camera to the ground level in millimeters; Hc was 2000 mm when the images were captured
via the top view-based method. To capture the whole canopy image, an adjusted value was used
according to the actual plant height. In addition, in this equation, h, P, p, and D indicate the pot height
shown in the image, the pixel set in a distance image, one pixel in the pixel set P, and the distance
value of pixel p, respectively. Consequently, a total of 35 plant height measurements were made for
calculating the relative error between the 3D measurements and manual measurements.

Moreover, for the side-view depth images, plant height was derived as follows:

H = Ymax − h (18)

where H and h have the same meaning as above, and Ymax is the maximum value of the coordinate
Y of the depth image. Further, the height of 35 plants was subjected to correlation analysis with the
manual measurements.

2.7.2. Method of Calculating Greenness Index

The greenness index is a primary phenotypic trait concerning the color characteristic of the leaf,
which can be used for the classification of plant health status [35] and the inversion of both the nitrogen
content and chlorophyll content [19]. Conventionally, visual inspection and chemical analysis have
been the major methods used for the evaluation of plant health. Methods involving leaf color charts
(LCCs) are widespread among farmers, but much subjectivity is involved in the results. The chemical
analysis-based approach is destructive and not conducive to continuous plant growth. The image
color indices in RGB color space can serve as a more objective yet nondestructive method for plant
health assessment [36].

In this study, the values of the R, G, and B channels of each point cloud were extracted from the
3D plant canopy. The invalid points and object colors were omitted from the calculation according
to the distance value of the objects if they were not derived from the canopy. All of the points of the
3D point cloud were traversed to extract their values of the R, G, and B channels for the purpose of
calculating the greenness index.

An original input 3D image with color information was investigated in the RGB color space.
The imaging effect therein was subjected to a white balance treatment [17] that was processed in its
corresponding 2D image prior to the RGB decomposition in which the R, G, and B channels of the
image were extracted for determining the greenness index. We applied the following scheme to obtain
the greenness index, which was used to quantify the relative health of the leaves [16]:

GS = Bxyz/(Rxyz + Gxyz + Bxyz) (19)

where GS is the greenness index and Rxyz, Gxyz and Bxyz represented the values of the R, G, and B
channels at coordinates (x, y, z) respectively. Consequently, 35 values of canopy greenness from the
side view and 35 values of canopy greenness from the top view were compared with those obtained
manually. The manual measurement values of canopy greenness index were calculated via the
following method: all of the 2D images of the soybean canopies acquired by the RGB camera of the
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multisource imaging system were extracted from their complex background, and the average values of
the R, G, and B channels of the whole canopy image were calculated separately by Adobe Photoshop
software (version: CS6). The manually measured greenness values of greenness were determined
according to Equation (19).

3. Results

3.1. 3D Reconstruction

For illustration purposes in this paper, a single plant and multiple plants were selected as typical
examples for showing the reconstruction results. Soybean plants studied via two different acquisition
methods (side view and top view) can be distinguished by the color of their pots. During data
collection, the multisource imaging system was placed 80 cm from the target potted soybean plants;
the positions were not changed. Thus, each pot was rotated 180 degrees around the center of the pot to
acquire the back images after obtaining the front images of a soybean plant.

For the side view, the target 3D points (Figure 8d,e) from the front and back sides were extracted
from the complex background (Figure 8c) via the DBSCAN algorithm mentioned in Section 2.6.1,
and were then fused with color information according to the corresponding control points between the
RGB image and amplitude image. Figure 8f,g illustrates the rough registration and exact registration
results via PCA and ICP algorithms, respectively. Final reconstruction results for a single plant
are shown in Figure 8h, which demonstrates that the entire shape with color information was
reconstructed well, although some scattered 3D points were not fully clustered. Moreover, the accuracy
of correspondence between RGB and 3D coordinates needs to be improved further.
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Although many more phenotypic traits such as stem diameter and leaf angle can be researched
via the 3D reconstruction of a soybean plant in the side view compared with the top view, relatively
complex and time-consuming algorithms such as DBSCAN and registration algorithms were used
to reconstruct the 3D shape of soybean canopies. Thus, for the two phenotypic traits (plant height
and greenness index) in this paper, the much simpler top-view acquisition method was used to
extract information on plant height and greenness index; this information was not subjected to image
registration between the front and back of the soybean canopies. In addition, for the purpose of
avoiding the effects of wind, the plants were moved indoors for acquiring images from the top view.
Similarly, the canopy images were segmented from the raw data (Figure 9b) based on the DBSCAN
algorithm combined with distance thresholding (TH = 80 mm) to remove any miscellaneous points.
Notably, the thresholding needed to be adjusted according to the height of the plants. The canopy
depth and plant height indicated by color bar in Figure 9c were calculated by Equation (17), and the
3D canopy was ultimately reconstructed by the fusion of the distance image and the two-dimensional
(2D) RGB image. As shown in Figure 9d, the pixels at the edge of the leaves were missing because of
the weak reflection at the edges. In addition, some useless red pixels, which were part of the pot, were
observed in the final reconstruction. This phenomenon occurred mainly because a few leaves covered
some sections of the pot, which affected the threshold setting. However, these red pixels did not affect
the greenness calculations, and did not negatively impact the plant height measurements.
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The resolution of the 3D reconstruction of soybean plants is 200 × 200 pixels not only for the side
view, but also for the top view. Each pixel pitch is 45 µm, which depended on the resolution of the
PMD camera.
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3.2. Accuracy of Plant Height Measurements in the Side and Top Views

The plant height data obtained from the side view-based and top view-based 3D reconstructions
were compared with the manually measured data (Figure 10). The plant height was measured via the
algorithm described in Section 2.7.1. The linear best-fit models comparing the side view-based and
top view-based plant height measurements with the manual measurements yielded determination
coefficient (R2) values of 0.9890 and 0.9936, respectively. However, there were some biases: the side
view-based plant heights fluctuated to some degree (by −1.8 cm to 1.7 cm), and the top view-based
errors in the plant height calculations ranged from −1.1 cm to 1.5 cm. The average error for the side
view and top view was 0.6713 cm and 0.2600 cm, respectively.

Remote Sens. 2018, 10, x FOR PEER REVIEW    15 of 20 

 

The resolution of the 3D reconstruction of soybean plants is 200 × 200 pixels not only for the side 

view, but also for the top view. Each pixel pitch is 45 μm, which depended on the resolution of the 

PMD camera. 

 

Figure 9. Reconstruction results of soybean in the top view. 

3.2. Accuracy of Plant Height Measurements in the Side and Top Views 

The  plant  height  data  obtained  from  the  side  view‐based  and  top  view‐based  3D 

reconstructions were compared with the manually measured data (Figure 10). The plant height was 

measured via the algorithm described in Section 2.7.1. The linear best‐fit models comparing the side 

view‐based and top view‐based plant height measurements with the manual measurements yielded 

determination coefficient (R2) values of 0.9890 and 0.9936, respectively. However, there were some 

biases: the side view‐based plant heights fluctuated to some degree (by −1.8 cm to 1.7 cm), and the 

top view‐based errors in the plant height calculations ranged from −1.1 cm to 1.5 cm. The average 

error for the side view and top view was 0.6713 cm and 0.2600 cm, respectively. 

 

Figure  10. Plant height  correlations between  3D measurements and manual measurements.  (left) 

Side view‐based correlation; (right) top view‐based correlation. 
Figure 10. Plant height correlations between 3D measurements and manual measurements. (left) Side
view-based correlation; (right) top view-based correlation.



Remote Sens. 2018, 10, 1206 16 of 20

The 3D measurements indicated that the multisource imaging system could measure soybean
plant height with a high degree of accuracy under both natural light conditions and indoor conditions.
These findings provided useful guidelines for soybean plant height measurements under field
conditions. Plant height phenotypes could be applied to guide the screening of soybean genotypes.
For example, plant height is an indicator of early maturing soybean cultivars, which could reduce
yield losses due to pests and diseases. Additionally, plant height can also be used to predict leaf area
index and yield.

3.3. Accuracy of Greenness in the Side and Top Views

A crucial focus of this study was to produce a practical method for determining the greenness
index, which provides valuable data to crop experts for diagnosing the diseases and nutrient conditions
of soybean plants. The greenness index was calculated using the procedure described in Section 2.6.2.
Figure 11 shows a comparison of the results of the 3D measurements and manual measurements.
The greenness index was highly correlated with that assessed manually (R2 of 0.8864 and an average
error of 0.0117) for top view-based data; the minimum and maximum deviations were −0.03 and 0.03,
respectively. The side view-based measurements yielded a correlation of R2 = 0.6059, with an average
error of 0.0386, and the deviation of calculation fluctuated between −0.14 and 0.07.
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Although the top view-based plant height and greenness measurements were more accurate than
their side view-based counterparts, other phenotypic traits such as leaf angle, branch angle, and stem
diameter could not be measured effectively from the top view. Consequently, we performed 3D
soybean reconstructions in the side view. The above-mentioned phenotypic traits will be considered
in our future research. Furthermore, side-view 3D reconstruction will be improved by considering
weather factors during data collection.

4. Discussion

4.1. Analysis of Experimental Results

In this paper, algorithms of the 3D reconstruction of soybean canopies were proposed for use
in phenotyping analysis based on two acquisition methods (side view and top view). Additionally,
plant height and greenness index were calculated.

In terms of accuracy, there was no significant difference in plant height between the side view
and top view; the R2 values from the side view and top view were 0.9890 and 0.9936, respectively.
However, the side view-based greenness was less accurate than its top-view counterpart because of the
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random environmental factors under the natural light conditions affecting the 3D reconstructions of
soybean canopies. The R2 values from the side view and top view were 0.6059 and 0.8864, respectively.

Although the present experimental results meet the requirements for calculating the plant height
and greenness index of soybean canopies, some aspects should be considered for obtaining more
accurate greenness index data in the side view under natural conditions. The first aspect involves
environmental factors, especially weather conditions. The ideal weather conditions involve a sunny
day with no wind. However, the actual environmental conditions, such as high winds or rainy weather,
cannot be controlled, but can be avoided. The second aspect involves the algorithms; both the DBSCAN
and registration algorithms should be improved to acquire the optimal 3D reconstruction results of
soybean canopies. The use of a modified DBSCAN algorithm [37] to cluster a 3D point cloud for
extracting soybean canopies from complex backgrounds will be studied. In addition, compared with
classic algorithms, improved ICP algorithms [38] can be used for more accurate and efficient exact
registration between two pieces of 3D point clouds.

4.2. Evaluation of Algorithm Robustness

Robustness is a key indicator in algorithm evaluation. The algorithms in this research met
the requirements needed for the 3D reconstruction and phenotyping analysis of soybean plants.
The robustness of the algorithms could be evaluated from the aspects described below.

First, it is well known that light intensity will impact imaging. Therefore, to prove the applicability
of the algorithms for 3D reconstruction, the multisource images were acquired both indoors and under
natural conditions. Image acquisition under natural light was performed between 10 am and 12 pm,
and the maximum light intensity reached 1000 lux. Under these circumstances, the algorithms worked
well for the 3D reconstruction of soybean canopies.

Moreover, wind is another factor that affects 3D reconstruction. The presence of wind during
data collection might result in the vibration or color distortion of the canopy, leading to inaccurate
fusion between the 3D points and the RGB image. Some results proved that there was obvious image
distortion at the edges and thickness of leaf organs when the wind speed varied from 0.9 m/s to
2.4 m/s. Therefore, to improve the stability of the algorithms, weather conditions with no or low wind
(less than 2.4 m/s) are the best environments in which to obtain optimal 3D reconstructions of soybean
canopies for phenotyping analysis [39,40].

In addition, background complexity is the third factor that affects imaging. During image
acquisition, the background consisted of buildings, plants, sky, and ground, which could be considered
a complex environment (Figure 3a). Furthermore, we acquired images under the conditions indicated
above (sunny day, gentle breeze, and complex background).

Our correlation results yielded an R2 value of 0.9890 for plant height and an R2 value of 0.6059 for
the greenness index under natural light conditions, both of which could be used to evaluate 3D
reconstruction results. In addition, these experimental results, which were based on existing soybean
samples, were accurate. Thus, the algorithms proposed in this paper exhibited excellent robustness for
plant phenotyping analysis.

4.3. Advantages of Multisource Imaging Systems

This study has shown the capability of using both the fusion of PMD and RGB camera images and
the proposed algorithm to measure the plant height and greenness index of soybean canopies rapidly
and accurately. From plant science and breeding perspectives, the plant height trait could be used
for selecting soybean genotypes. For example, plant height is used as an indicator of early maturing
plant cultivars [41,42] to avoid yield losses that result from diseases and insect–pest complexes.
In addition, measuring the greenness index over time at every growth stage could be used to indicate
the effectiveness of plant energy consumption, which can be potentially used for the diagnosis of
nutrient deficiencies. From a technical perspective, plant height and greenness can also be accurately
measured with other imaging sensors such as light detection and ranging (LiDAR) [43] and more
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accurate RGB cameras in hue, saturation, and intensity (HSI) or hue, saturation, and value (HSV) color
spaces [44], respectively. The use of PMDs to reconstruct the 3D geometry of plants has been explored,
and the results of the present study demonstrated that a PMD camera operating in tandem with an
RGB camera can provide accurate measurements of plant height and greenness, which creates new
opportunities for field-based soybean plant phenotyping.

4.4. Future Work

In the present framework of phenotyping, plants are usually monitored one after another with
noninvasive measurement devices. As an initial proof of feasibility, we have studied soybean plants
cultivated in pots. However, a promising strategy could be developed to increase the throughput at
larger observation scales by capturing multiple soybean plants in a single image. Additionally, under
field conditions, the spatial arrangement of soybean plants is less regular than that in well-controlled
environments. Thus, it is challenging to quantify the effects of crop spatial arrangement.

In addition, both views (side view and top view) are important for phenotyping analysis.
Plant height, the leaf area index, and the greenness index can be measured accurately from the top view,
but this view is not suitable for measuring other phenotypic traits such as leaf angle, branch angle,
and stem diameter, which can be calculated effectively from the side view. Thus, future work will focus
on improving the algorithms for 3D reconstruction from not only the side view but also the top view
to acquire additional elaborate phenotypic traits. Notably, environmental factors—especially weather
conditions—should be considered when data are collected in natural environments. Sunny days with
low wind are considered the best conditions for phenotyping analysis.

5. Conclusions

In this paper, we developed a streamlined method to measure the specific phenotypic traits of
soybean plants based on a 3D reconstruction containing color information. The main achievements are
summarized as follows:

(1) An active imaging system consisting of a PMD camera and an RGB camera was used to collect
multi-images of soybean plants. First, the DBSCAN algorithm was used to extract soybean plant
information from the complex raw dataset. Next, the multisource images were fused together for
the purpose of constructing 3D images that contain color information. Last, 3D points from the
front and back sides were registered using the ICP algorithm. The proposed methodology can be
used to reconstruct a 3D soybean plant for a phenotyping analysis that includes measurements of
plant height and greenness.

(2) By combining this multisource imaging system and the proposed algorithms, we can accurately
measure soybean plant height. Correlation analysis between the estimated and manual
measurements yielded R2 values of 0.9890 and 0.9936 for the side view and top view, respectively,
and their average errors were 0.6713 cm and 0.2600 cm, respectively. From a plant breeding
perspective, this finding could be especially useful for rapidly predetecting a subset of soybean
genotypes that are of suitable height for expected yields and machine harvesting.

(3) Compared with the side view-based greenness, the top view-based greenness was much more
accurate. The greenness index estimated from the top view-based data was highly correlated
with the manually assessed greenness index: the R2 value was 0.8864, and the average error
was 0.0117. However, the R2 value decreased to 0.6059 (average error of 0.0386) for the side
view-based results. This result was primarily due to the impact of the natural environment,
such as wind and sunlight, which led to some fusion and registration deviations between the 3D
points and their corresponding RGB images. The algorithm itself needs to be improved.
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