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Abstract: The foliage Clumping Index (CI) is an important vegetation structure parameter that allows
for the accurate separation of sunlit and shaded leaves in a canopy. The CI and its seasonality are
critical for global Leaf Area Index (LAI) estimating and ecological modelling. However, the cover
of snow tends to reduce the reflectance anisotropy of the vegetation canopy and thus probably
influences CI estimates. In this paper, we investigate the influence of snow on the magnitude and
seasonal variation of the CI retrieved from Moderate-resolution Imaging Spectroradiometer (MODIS)
Bidirectional Reflectance Distribution Function (BRDF) products based on field-measured CI and
statistics from the global MODIS CI product. We find that the backup algorithm can effectively correct
abnormally large CI values and obtain more reasonable CI retrievals than the main algorithm without
any constraints in snow-covered areas. Validation indicates that the time-series CI product shows the
potential in investigating the trajectories of the clumping effect in snow seasons. For evergreen forests,
the clumping effect is relatively stable throughout the year; however, for deciduous vegetation types,
CI values tend to display significant seasonal variations. This study suggests that the latest version of
the global MODIS CI product, in which the backup algorithm is used to process the snow-covered
pixels, has improved accuracy for CI retrievals in snow-covered areas and thus is probably more
suitable as the input parameter for ecological and meteorological models.

Keywords: clumping index; seasonality; MODIS; NDHD; BRDF

1. Introduction

The leaves of natural vegetation canopies are usually organized into various canopy structures,
including tree crowns, whorls, branches, and shoots [1,2]. The foliage Clumping Index (CI)
characterizes the degree of foliage grouping relative to a random spatial distribution of leaves [2,3]. CI is
a key canopy structure parameter of plant canopies (1) for estimating the true Leaf Area Index (LAI)
from the typically measured effective LAI [1,4–6] and (2) for the accurate simulation of the canopy-level
gross primary production [7] (3) that can affect the interception and distribution of radiation within
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the canopy [4], which in turn affects evapotranspiration [8–10] and photosynthesis [11–16]. Therefore,
CI is very useful in ecological, hydrological and land surface models [17–20] as well as remote sensing
applications [21–31].

The relationship between the Normalized Difference between Hotspot and Darkspot (NDHD)
and the CI, which was originally developed by Chen et al. [4], has been used to produce regional and
global CI products based on various multi-angular data from the Polarization and Directionality
of the Earth’s Reflectances (POLDER, ~6 km resolution) sensor [4,32–34], Moderate Resolution
Imaging Spectroradiometer (MODIS, ~500 m resolution) sensor [24,26,35–39] and Multi-angle Imaging
SpectroRadiometer (MISR, ~275 m resolution) sensor [5]. The early global CI maps were usually
generated with only one annual group of CI values that were retrieved by extracting either the
minimum [4,24] or median CI [26]. The CI is usually assumed to be seasonally invariant in land surface
models [40–42] because of the limited data availability. However, the seasonality of the CI is critical for
LAI estimating and ecological modelling [37]. Several studies based on the ground measurements of
long-term time series CI data indicate that the CI could have very strong seasonal variations due to
species phenology [5,23,43,44]. In addition, various studies based on spaceborne CI products indicate
that the retrieved CI values exhibit distinguishable seasonal variations [4–6,37–39]. Therefore, the
seasonality of the CI should be carefully explored in spaceborne CI products.

One difficulty in capturing the seasonality of spaceborne CI products is that the seasonal variation
of the CI may be contaminated by short-term fluctuations in the retrieved CI time series data [37].
For example, abnormally small or large values can be found in the CI retrievals from MODIS BRDF
products at validation sites [37,38]. Recent studies found that outliers might be caused by ephemeral
rain [37] or snow events [39]. Jiao et al. [39] reported that ephemeral snow during winter decreases
the accuracy of MODIS Bidirectional Reflectance Distribution Function (BRDF) retrievals during
leaf-off seasons, which leads to lower CI quality. Therefore, the influence of snow on spaceborne CI
products should be further investigated to improve the accuracy of the global MODIS CI product
when investigating the seasonality of the CI.

In this study, we mainly aim to investigate (1) the influence of ephemeral snow on the magnitude
of the CI and (2) the seasonal variation of the CI after correcting for or excluding the influence of
ephemeral snow. For these purposes, we collect ground measurements of CI time series data in three
validation sites and the MODIS snow cover product to analyze the influence of snow on the CI product
retrieved by Jiao et al. [39] from MODIS BRDF products. In addition, we summarize and analyze the
CI statistics for various International Geosphere-Biosphere Programme (IGBP) classes after correcting
or excluding the snow-covered pixels on the global scale to investigate the influence of snow on the
magnitude and seasonal variation of spaceborne CI products.

2. Materials and Methods

2.1. Global MODIS CI Product

The global MODIS CI product used in this study, hereby termed CIMODIS, is retrieved by
Jiao et al. [39] with a spatial resolution of ~500 m and an 8-day temporal resolution from January
2001 to December 2013. CIMODIS is retrieved from the MODIS BRDF products [45] based on the
following linear relationship between CI and NDHD:

CI = A × NDHD + B (1)

where A and B are the linear regression coefficients determined by a set of model simulations based
on the 4-scale geometrical optical model [46] in Chen et al. [4]. The values of A and B vary with solar
zenith angle (θ), spectral band and crown shape [4]. NDHD is defined as follows:

NDHD =
RHot − RDark
RHot + RDark

. (2)
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where RHot and RDark are the reflectance in hotspots and darkspots, respectively. NDHD can
be calculated based on the three BRDF parameters in the MODIS BRDF product using the
hotspot-corrected version of the kernel-driven model (RTCLSR) developed by Jiao et al. [47]. Here,
the MODIS BRDF parameters in the red band are selected to calculate the NDHD since He et al. [26]
reported that the CIs retrieved from the red band were more accurate than those retrieved from
the near-infrared (NIR) band. Accordingly, CI can be calculated based on Equation (1) using the
corresponding coefficients (when θ = 45◦) in the red band.

The abovementioned algorithm based on the linear CI-NDHD relationship is called the main
algorithm. If CI retrievals by the main algorithm are outside of the closed interval [0.33, 1.00] or the
pixels are covered by snow, then a backup algorithm will be used instead of the main algorithm to
achieve more reasonable CI values [39].

The backup algorithm is developed based on the angular index Anisotropic Flat Index
(AFX) [48–51]. The AFX indicates the general variability of BRDF shapes (dome or bowl-shaped
BRDFs) in terms of the value around unity. Jiao et al. [39] assumed that the pixels with similar canopy
structures would capture similar BRDF shapes that can be identified by similar AFX values (i.e., in
an AFX interval of 0.01). Therefore, a lookup table (LUT) between the CI and AFX for each IGBP
class can be built based on the accumulated high quality MODIS BRDF data, which are marked as
best quality by the MCD43A2 product and are not covered by snow. In the LUT, the CIs for each
corresponding AFX value in each IGBP class can be calculated based on the following procedure.
Firstly, a density separation method is adapted to slice the AFX range (i.e., 0.5 to 1.5) at an interval of
0.01. Then, the high-quality BRDF shapes in each AFX interval are averaged to achieve a typical BRDF
archetype (i.e., an average BRDF shape) that can represent the BRDF shapes in the corresponding AFX
interval. Finally, the CIs for each corresponding AFX value in each IGBP class can be calculated from
the BRDF archetype using the liner relationship between the CI and NDHD. More details can be found
in Jiao et al. [39].

CI retrievals by the main algorithm are marked with a MODIS CI QA flag of 0 or 1, and those by
the backup algorithm are marked with a MODIS CI QA flag of 2.

2.2. MODIS Snow Cover Product

The MODIS Snow Cover product (MOD10A2, version 6) [52] is derived from the Normalized
Difference Snow Index (NDSI). It reports the maximum snow cover extent during an eight-day
period in 1200 km × 1200 km tiles with a spatial resolution of ~500 m. The MOD10A2 product from
January 2001 to December 2013 and other MODIS products used in this study were downloaded from
https://search.earthdata.nasa.gov/.

In this study, the dataset of maximum snow cover extent in the MOD10A2 product is used to
select or mask the pixels that are covered by snow. The dataset is generated from the MOD10A1 tiles.
If snow is observed in a pixel on any day in the period of MOD10A2, the pixel will be marked as snow.
If no snow is found, the pixel will be marked as the land cover that is observed most often (snow-free
land, lake and so on). If the pixel is covered by clouds for all eight days in the period, the pixel will be
marked as a cloud.

2.3. MODIS Land Cover Type Product

The MODIS land cover type product (MCD12Q1) describes the land cover properties derived
from the observations spanning a year of MODIS data [53]. It incorporates five land cover classification
schemes derived using a supervised decision-tree classification method. The IGBP global vegetation
classification dataset is used in this study for consistency with the MODIS CI product.

https://search.earthdata.nasa.gov/
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2.4. Collected Ground Measurements of CI Time Series

The ground measurements of the CI time series for three validation sites were collected from
previous studies [6,37] and compared with CIMODIS to analyze the seasonal variation of the CI. Details
on the three validation sites are shown in Table 1.

Table 1. Detailed description of the three validation sites with the seasonal profiles of the clumping
index (CI).

.Site Location Latitude Longitude Species IGBP Time of
Measurements References

TP39 Canada 42.710 −80.360 White pine 1 5/2011–9/2012 He et al. (2016)
TP74 Canada 42.707 −80.348 White pine 1 5/2011–9/2012 He et al. (2016)

Honghe Farm China 47.652 133.522 Paddy rice 12 6/2012–9/2012 Fang et al. (2014)

The TP39 and TP74 sites representing Evergreen Needleleaf Forest (ENF) are in Ontario, Canada.
The areas are dominated by mature white pine [54]. The CIs at the two sites are measured by the Tracing
Radiation and Architecture of Canopies (TRAC) instrument using the gap size distribution [1,25,55,56]
method [37]. The Honghe Farm site is in the Heilongjiang Province, China. It is dominated by large, flat,
homogeneous rice paddy fields (homogeneity > 5 km). The paddy rice is grown and transplanted in
late May; flowering occurs in early July, grain-filling in early August and maturity in early September.
The CI of this site was continuously measured from June (Day of Year (DOY) 163) to September
(DOY 261) 2012, which includes the main period of paddy rice development from germination to
maturity [57].

2.5. Analytical Method Regarding the Influence of Snow on the Maginutde and Seasonal Variation of CIMODIS

First, we compare the ground measurements of the CI time series for the three validation sites
using CIMODIS to investigate the influence of snow on the magnitude of CIMODIS. The MOD10A2
product is used to mask snow-covered pixels. The CIMODIS of the sites will be recalculated using
the corrected IGBP type if the IGBP class in the MCD12Q1 product is not consistent with the real
IGBP class of the sites. Then, we investigate the extent of the areas influenced by snow for various
IGBP classes based on the global snow cover and CI maps on a specific day in February 2006. Finally,
we compare the temporal sequences of the average snow-free CIMODIS with the snow-covered CIMODIS

for the typical IGBP classes in the northern hemisphere at latitudes ≥ 30◦N from January 2001 to
December 2013 to further investigate the influence of snow on the magnitude and seasonal variation
of CIMODIS.

3. Results

3.1. Influence of Snow on CIMODIS at Validation sites

Figure 1 shows the seasonal variation of the in situ CI (red circles) and CIMODIS. Figure 1a,b shows
that although CIMODIS retrieved by the main algorithm matches quite well with the field-measured
CI at the TP39 and TP74 sites on some of the snow-free days, the CIMODIS fluctuates too much with
comparison to the in-situ measurements in snow-free seasons. The CIMODIS values retrieved by the
main algorithm are much larger than the field-measured CI values on snow-covered days. In contrast,
the CIMODIS values retrieved by the backup algorithm can correct the influence of snow and show
good consistency with the field-measured CI on snow-covered days. Several CIMODIS values retrieved
by the main algorithm are larger than 0.6 or smaller than 0.5 during the period from May to October.
The fluctuation of CIMODIS may be caused by noise from rain events [37]. Interestingly, the backup
algorithm shows a higher accuracy than the main algorithm when those outliers (CI > 0.6 or CI < 0.5)
are retrieved by the main algorithm. In contrast, the main algorithm performs better than the backup
algorithm on the snow-free days expect for the days when outliers are retrieved by the main algorithm.
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At the Honghe Farm site, a rapid change in the CI can be observed from the in situ measurements
of the CI (Figure 1c), since the structure of paddy rice varies rapidly during the growing season.
CIMODIS retrieved by the main algorithm significantly captures the minimum, maximum and
trajectories of the field-measured CI. The values of CIMODIS are much smaller than the values of
the field-measured CI on DOYs 163, 164, 259, and 260 since CIMODIS is retrieved from the MODIS
BRDF product, which assumes that the BRDF of the observed target remains consistent during
the 16 days. Therefore, it is difficult for CIMODIS to capture the sudden real-time change of the CI.
Apparently, the main algorithm performs better than the backup algorithm on snow-free days, which
is consistent with our previous result that the main algorithm outperforms backup algorithm except
for CI outliers [39]. In contrast, the CIMODIS retrieved by the main algorithm on snow-covered days are
all larger than 1.00 and thus should be considerably larger than the real CI since the values of the CI
are unlikely to exceed 1.00 in theory [4]. The results indicate that the CIMODIS retrieved by the backup
algorithm should be more reasonable than that retrieved by the main algorithm on snow-covered days.
The accuracy of the CIMODIS retrieved by the backup algorithm on snow-covered days needs further
evaluation with sufficient validation data on snow-covered days.
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Figure 1. Seasonal profiles of the in situ CI and CIMODIS for the three validation sites. “Main-No Snow”
and “Main-Snow” indicate that the CIMODIS values are retrieved by the main algorithm on snow-free
and snow-covered days, respectively. “Backup” indicates that the CIMODIS values are retrieved by the
backup algorithm.

3.2. Areas Influenced by Snow at a Global Scale

In winter, snowfall can often be observed in temperate and frigid zones. Figure 2 shows that snow
covers most areas of the North Frigid Zone and the northern region of the North Temperate Zone
on DOY 041, 2006. Statistics indicate that nearly 31 percent of the areas in the northern hemisphere
(Latitude > 0◦N) on DOY 041 are covered by snow. Detailed statistics for various IGBP classes are
shown in Figure 3. The ENF and Deciduous Needleleaf Forest (DNF) are more prone to be affected
by snowfall. By contrast, Evergreen Broadleaf Forest (EBF) is less prone to be affected by snowfall,
since most EBF are distributed in tropical and subtropical regions (where snowfall rarely occurs).
Therefore, the influence of snow on CIMODIS should be carefully investigated in winter, especially for
needleleaf forests.
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Figure 3. The percent of snow-covered pixels on DOY 041, 2006 for various IGBP classes in the northern
hemisphere (Latitude > 0◦N). UA is the abbreviation for the Urban and Build-up IGBP class. Detailed
descriptions of other IGBP classes are shown in Table 2.

As shown in Figure 2, most CIMODIS values for snow-covered areas are either larger than 1.00 or
have no value. Statistics indicate that in areas with latitudes ≥ 30◦N in the northern hemisphere, 94%
of the pixels with a CIMODIS ≥ 1.00 are covered by snow. The snow on the ground is highly isotropic
scattered, thus reducing the contrast between the sunlit and shadowed components of the vegetation
canopy [58–60], resulting in a smaller NDHD. Therefore, a larger CIMODIS will be retrieved from the
snow-covered pixels. The results further demonstrate that snow cover reduces the quality of the
retrieved CIMODIS, resulting in either abnormally large CI values or no values. Therefore, the CIMODIS

retrieved from snow-covered pixels should be corrected or excluded for various applications when
studying the seasonal variation of CIMODIS at a global scale, especially in winter.

3.3. Influence of Snow on the Magnitude and Seasonal Variations of CIMODIS at a Global Scale

We summarize the temporal sequence of the average CIMODIS in snow-covered and snow-free
areas for typical IGBP classes in the northern hemisphere at latitudes ≥ 30◦N (Figure 4) to investigate
the influence of snow on the magnitude and seasonal variation of CIMODIS. CIMODIS statistics for
snow-free areas are presented in Table 2. For snow-covered areas, only the average CIMODIS in winter
(from December to February) are presented in Figure 4 to ensure there are enough snow-covered pixels.
The average CIMODIS of snow-covered areas for the EBF class are not presented in Figure 4 since very
few pixels in the EBF class are covered by snow (Figure 3). The average CIMODIS for EBF is calculated
based on the pixels in the northern hemisphere at latitudes ≥ 0◦N (instead of latitudes ≥ 30◦N) since
most EBF (>95%) are distributed in tropical and subtropical regions.

Figure 4 shows that CIMODIS retrievals from the snow-covered pixels are considerably larger than
the snow-free pixels. In addition, the biases of the CI retrieved by the main algorithm between the
snow-covered and snow-free areas for open shrubs and herbaceous plants are larger than the biases for
forests and closed shrubs since the open shrubs and herbaceous plants are more open than the forests
and closed shrubs. A more open landcover type would have a stronger snow homogenization effect,
which increases the bias of the CI between the snow-covered and snow-free areas. If the snow-covered
pixels are not excluded from the statistics, a considerably larger seasonal variation will be observed for
CIMODIS, even for the ENF class. However, the CIMODIS of the ENF class should be seasonally invariant
since the structure of the ENF is relatively stable throughout the year [4]. Therefore, the CIMODIS

retrieved from snow-covered pixels should be corrected or excluded from the statistics. It can be found
from Figure 4 and Table 2 that the CIMODIS of different IGBP classes shows similar seasonal tendencies
over the years. For deciduous vegetation classes, the clumping effect usually reaches a maximum in
the summer and a minimum in the winter [39]. The clumping effect of evergreen forests, especially
in EBF, is relatively stable throughout the year. In contrast, CIMODIS of the DBF class displays a large
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seasonal variation that varies from 0.67 in the summer to 0.81 in the winter. The magnitude of the
seasonal variation for the DBF class is nearly 3 times that of the EBF class. As shown in Table 2, forests
are usually more clumped than shrubs and herbaceous plants. In addition, needleleaf forests tend to
have smaller CIMODIS than broadleaf forests. The ENF class has the highest clumping effect, with an
average CI of ~0.56. In contrast, grassland (GL) is the least clumped class, with an average CI of ~0.83.

Table 2. CIMODIS statistics for snow-free areas over a consecutive 13-year period from 2001 to 2013.
The min, max and mean represent the average CI calculated from 13 CIminimum, CImaximum and CImean

in corresponding years.

Abbreviation IGBP Class Min Max Mean

ENF Evergreen Needleleaf Forest 0.53 0.59 0.56
EBF Evergreen Broadleaf Forest 0.70 0.74 0.72
DNF Deciduous Needleleaf Forest 0.56 0.66 0.60
DBF Deciduous Broadleaf Forest 0.67 0.81 0.74
MiF Mixed Forest 0.68 0.78 0.73
CSh Closed Shrublands 0.64 0.79 0.70
OSh Open Shrublands 0.78 0.86 0.81
WSa Woody Savannas 0.70 0.84 0.76
Sav Savannas 0.73 0.87 0.79
GL Grasslands 0.78 0.87 0.81
PW Permanent Wetlands 0.77 0.93 0.83
CL Croplands 0.77 0.91 0.83

VM Cropland Natural
Vegetation Mosaic 0.74 0.87 0.79
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Figure 4. Temporal sequence of the average CIMODIS for various IGBP classes in the northern
hemisphere at latitudes ≥ 30◦N. The average CIMODIS for EBF are calculated based on the areas in the
northern hemisphere at latitudes ≥ 0◦N instead of latitudes ≥ 30◦N. “Main-No Snow,” “Main-Snow”
and “Main-All” indicate CI retrievals by the main algorithm for snow-free, snow-covered, and both
snow-free and snow-covered areas, respectively.

Figure 5 shows a scatterplot that compares the CI retrieved by the main algorithm for the snow-free
areas (CImain-snow-free) with the CI retrievals by the main algorithm (red dots, CImain-snow) or backup
algorithm (blue dots, CIbackup-snow) for snow-covered areas. Figures 4 and 5 show that CImain-snow is
considerably larger than CImain-snow-free with a bias of ~0.13 for needleleaf forests and ~0.32 for other
vegetation types. CIbackup-snow shows better agreement with CImain-snow-free with a smaller RMSE and
bias. The CIbackup-snow of the forests and herbaceous plants slightly underestimate CImain-snow-free,
while the CIbackup-snow of the shrubs slightly overestimates CImain-snow-free. The magnitude of
CIbackup-snow seems very stable because CI retrievals by the backup algorithm are calculated from the
BRDF archetypes, which are the average BRDF shapes [39]. In summary, the backup algorithm can
correct for the influence of snow to obtain a more reasonable CI for snow-covered areas. The backup
algorithm can provide superior output in snow seasons probably because the CIs in the LUT of the
backup algorithm are calculated based on the high-quality BRDF shapes of snow-free pixels. Thus, the
CI calculated from the typical BRDF archetype in the LUT can represent the average CI of snow-free
pixels for the corresponding AFX interval and should be closer to the real CIs than the CIs retrieved by
the main algorithm in snow seasons.

The invariant CI retrieved by the backup algorithm in snow seasons is probably due to the relatively
flat BRDF shapes of snow-covered pixels in snow seasons. We summarize the statistics of the AFX in the
snow-covered areas on DOY 041, 2006 (Figure 6). Figure 6 shows that the AFX values of snow-covered
pixels are mainly distributed in the AFX interval of [0.87, 1.05]. This statistics further demonstrate that
snow-covered pixels capture a narrow range of AFX variations around unity (i.e., [0.87, 1.05]). Thus,
the CI values retrieved by the backup algorithm are almost invariant in the AFX interval of [0.87, 1.05]
compared to the entire AFX interval of [0.5, 1.5] according to the CI-AFX LUT in Jiao et al. [39].
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4. Discussion

In this study, we investigate the influence of snow on CIMODIS based on in situ CI measurements
and spaceborne CI product statistics. For in situ CI measurements, it is difficult to measure the CI
on snow-covered days due to various environmental limitations, such as the safety of surveyors,
the accessibility of the research area and the performance of instruments at low temperatures
during winter. Therefore, few CI measurements are available for snow-covered days in the current
accumulated field-measured CI database. The field-measured CI values of snow-covered ENF in
TP39 and TP74 [37] provide an opportunity to investigate the influence of snow on CIMODIS with
real validation data. The results in Figure 1 indicate that CI retrievals using only the NDHD-CI
equations usually present abnormally larger fluctuations than field-measured CIs. Similar results
with considerably large CIs can also be found in the CI product derived by Wei and Fang [38] in the
VALERI sites. In comparison, the CIs retrieved by the backup algorithm show good consistency with
the field-measured CIs once such abnormal CI values occur in the main algorithm. Therefore, the
results here show the efficiency of the backup algorithm in processing snow-covered pixels.

As indicated in the Figure 1, the CIMODIS retrieved by the main algorithm fluctuates too much
with comparison to the in-situ measurements in snow-free seasons. It is still challenging to capture the
seasonality of CI using spaceborne CI data since the seasonal variation of the CI may be contaminated
by short-term fluctuations in the retrieved CI time series data [37]. Abnormally small or large values can
also be found in the recent seasonal CI retrievals from MODIS BRDF products based on the CI-NDHD
equations at validation sites [37–39]. In this study, we mainly focus on correcting the abnormally large
CI values caused by the ephemeral snow in snow seasons. Further research is definitely needed to
improve our understanding in the seasonal variation of CI, especially in rainy seasons.

For current available spaceborne CI products, CI are mainly retrieved based on the NDHD-CI
equations developed by Chen et al. [4]. The cover of snow reduces the contrast between the sunlit
and shadowed components of the vegetation canopy. Thus, the CI retrievals based on the NDHD-CI
equations are greatly influenced by snow. The CI values of snow-covered pixels are usually marked as
low quality and excluded from research when studying the seasonality of the CI [5,6,37,39], which may
be appropriate depending on the research purpose. However, when the global CI product is used as
the input parameter for ecological, hydrological and land surface models, the accuracy of the models
will be greatly influenced if the CI values in the snow-covered areas are not corrected because more
than 30 percent of the pixels in the northern hemisphere are covered by snow in winter. As shown
in Figures 1, 4 and 5, the backup algorithm provides a good correction for the influence of snow to
obtain more reasonable CI values. Therefore, in the latest version of our global CI product, the backup
algorithm will be used to process the pixels marked as “snow” to further improve the quality of the
CI product. After such a process, the CI product should be more suitable as the input parameter for
ecological, hydrological and land surface models.

5. Conclusions

The CI and its seasonality are critical for global LAI estimating and ecological modeling. In this
study, we investigate the influence of snow on the magnitude and seasonal variation of the CI retrieved
from MODIS BRDF products based on the ground measurements of CI time series data for the three
validation sites and global CI product statistics. The result highlights are as follows:

(1) For snow-covered areas, the cover of snow will reduce the accuracy of CI retrievals by the main
algorithm and result in abnormally larger CI values than the CI values for snow-free areas, with an
average bias of ~0.13 for needleleaf forests and ~0.32 for other vegetation types. However, the backup
algorithm can correct for the influence of snow to obtain more reasonable CI. Therefore, in the latest
version of our global CI product, the backup algorithm will be further used to process the pixels of
snow-covered areas. The CI product will have improved accuracy in snow-covered areas and is more
suitable as the input parameters for ecological and meteorological models. (2) The time-series (e.g.,
8-day) CI product shows the potential in investigating the trajectories of the clumping effect in snow
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seasons. However, extensive validation of the time-series CI product using field measurements is still
a challenge, particularly in snow seasons. (3) The clumping effect of evergreen forests, especially for
EBF, is relatively stable throughout the year. In contrast, the CI displays significant seasonal variation
for deciduous vegetation types, particularly for DBF.

Snow cover information can not only be regarded as noise in CI determination but also as a
clue to help retrieve a CI with higher accuracy. A more reasonable CI in snow-covered areas will be
retrieved if the detailed information of snow (e.g., snow aging and ice re-crystallization processes) can
be obtained from the corresponding product. In our future work, we will try to make full use of snow
information to produce a global CI product that is more suitable as the input parameter for ecological
and meteorological models.
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