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Abstract: The automating classification of point clouds capturing urban scenes is critical for
supporting applications that demand three-dimensional (3D) models. Achieving this goal, however,
is met with challenges because of the varying densities of the point clouds and the complexity of
the 3D data. In order to increase the level of automation in the point cloud classification, this study
proposes a segment-based parameter learning method that incorporates a two-dimensional (2D) land
cover map, in which a strategy of fusing the 2D land cover map and the 3D points is first adopted
to create labelled samples, and a formalized procedure is then implemented to automatically learn
the following parameters of point cloud classification: the optimal scale of the neighborhood for
segmentation, optimal feature set, and the training classifier. It comprises four main steps, namely:
(1) point cloud segmentation; (2) sample selection; (3) optimal feature set selection; and (4) point
cloud classification. Three datasets containing the point cloud data were used in this study to
validate the efficiency of the proposed method. The first two datasets cover two areas of the National
University of Singapore (NUS) campus while the third dataset is a widely used benchmark point
cloud dataset of Oakland, Pennsylvania. The classification parameters were learned from the first
dataset consisting of a terrestrial laser-scanning data and a 2D land cover map, and were subsequently
used to classify both of the NUS datasets. The evaluation of the classification results showed overall
accuracies of 94.07% and 91.13%, respectively, indicating that the transition of the knowledge learned
from one dataset to another was satisfactory. The classification of the Oakland dataset achieved
an overall accuracy of 97.08%, which further verified the transferability of the proposed approach.
An experiment of the point-based classification was also conducted on the first dataset and the
result was compared to that of the segment-based classification. The evaluation revealed that the
overall accuracy of the segment-based classification is indeed higher than that of the point-based
classification, demonstrating the advantage of the segment-based approaches.

Keywords: point cloud classification; 2D map; segment-based; neighborhood scale; sample selection

1. Introduction

Constructing semantic three-dimensional (3D) models of the urban environment is an important
enabler for knowledge sharing, decision-making, and complex problem solving with applications in
virtual tourism, navigation, and urban planning. Recent works in this direction have increasingly
adopted Light Detection and Ranging (LiDAR) generated point clouds as the source data. As raw
LiDAR point clouds usually do not contain any semantics or classes (e.g., facade or roof), classifying
these point clouds so that they are attributed with meaningful classes is a crucial step toward
an effective construction of semantic 3D models.
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Existing research into classifying point clouds has produced rich literature the approaches to
handling airborne laser-scanning (ALS) data [1–3]. Adopting these approaches to mobile laser-scanning
(MLS) or terrestrial laser-scanning (TLS) data is, however, not ideal. The main difficulty stems from the
fact that ALS data is often considered as 2.5D whereas MLS and TLS data are truly 3D [4,5], and the
existing approaches to handling ALS data cannot handle 3D data, nor are there efficient ways to turn
3D data into 2.5D data without losing valuable information. In addition, MLS and TLS data tend to
exhibit variable degrees of resolution and completeness, and the amount of MLS or TLS data tends to
be much larger than the ALS data [5]. Coupled with a high level of heterogeneity and the complexity
of urban environments, classifying the MLS or TLS data efficiently and accurately remains challenging.

Regardless of the sources, the approaches to classifying LiDAR point clouds are generally
point-based or segment-based. Point-based approaches classify individual points using the features
extracted from their neighborhoods. Existing research into point-based approaches have suggested the
types of features to be extracted [6] and the optimal neighborhood scales to be used [5,7,8] for better
classification results. The segment-based approaches involve first grouping the neighboring points
into segments, and second, labelling the individual segments through classification. Various methods
to group the neighboring points have been proposed [9–13]. For labelling the segments, the existing
approaches have attempted to extract building classes [14] or urban scene classes [11]. To classify the
MLS and TLS data, segment-based approaches tend to be more efficient than point-based approaches,
because of their lower computational load; for the same point clouds, the number of segments to be
processed is much less than the number of points [12,13]. In addition, through forming segments, it is
highly likely that one would more faithfully capture the points belonging to a real object and thus
derive useful contextual information for their classification [15].

Despite these advantages, the existing segment-based approaches are known to suffer from the
following limitations during segmentation and classification. The first limitation is the identification
of a suitable neighborhood scale when segmenting the point clouds. Although scale is also an issue
in point-based classification approaches, and thus has been widely researched for those approaches,
there are virtually no suggested scale selection strategies for segment-based approaches. The second
limitation concerns sample selection. Most of the existing approaches for point cloud classification
are based on supervised approaches (e.g., support vector machine [5], latent Dirichlet allocation [7],
adaptive boosting [16], random forest [17], and conditional random field [2]), whose accuracies are highly
dependent on the samples used. However, few suggestions were provided regarding the sample selection
because the existing research either used a benchmark dataset with samples already being provided [5,18]
or selected samples through manual work [5,8]. As achieving satisfactory classification performance
requires a large sample of points, the manual selection of samples is challenging. In addition, the manual
labelling of samples tends to introduce biases because the limitation of the human visual capability
restricts the number of features that can be considered during the sample selections. The third limitation
concerns the feature selection. Segment-based methods permit generating more features than point-based
methods (e.g., statistical spectral and geometrical features). However, not all of the features are useful
for distinguishing the classes, as some of these features may be highly correlated. The larger number of
useful features inevitably leads to the requirement of a larger number of training samples, which in turn
increases the demand for computational resources and processing time. Recently, there have been studies
using deep convolutional neural networks (CNNs) to extract features for point cloud classification, such as
PointNet [19], where deep learning was used to capture the point-based deep features. PointNet++ [20]
extended PointNet with a hierarchical deep feature learning approach. Similarly, Zhao et al. [21] learned
deep features by using a multi-scale convolutional neural network (MCNN) from contextual images
converted from ALS point clouds. Their results demonstrated that deep features were efficient for point
cloud classification. However, all of the features extracted by deep learning were point-based, and it is also
challenging to understand the complex relations between the deep features and physical variables.

This study proposes an intelligent segment-based approach that combines two-dimensional (2D)
land cover maps and point clouds, to create labelled samples and to automate the optimal scale
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selection and feature learning. To address the need to determine the optimal scale, the proposed
approach uses two indices that measure over- and under-segmentation and identify the optimal scale
for point cloud segmentation. To reach an optimal number of features leading to more accurate point
cloud classification, the proposed method adopts a feature selection approach that selects a set of
features from all of the features [22]. We chose not to use the alternative feature mapping approaches,
such as the principal component analysis or latent Dirichlet allocation methods [23], because we not
only aimed to reduce the dimensions of the features, but also aimed to analyze the relevance of the
features and their contributions to classification. Two-dimensional land cover maps are introduced as
ancillary data to address the need to select point cloud samples in an efficient and automatic manner.
Note that the use of 2D land cover maps in this study is not as straightforward as using 2D land cover
maps to assist with image classification [24,25], because the correspondences between the z values and
(x, y) coordinates in point cloud segmentations are non-unique.

To sum up, the contribution of this study is two-fold. Firstly, a method fusing a 2D GIS map
and LiDAR points is proposed. It models the topological relationship of the 2D GIS elements and
3D LiDAR points for the inference of point labels. Secondly, we propose a formalized method to
automate the selection of parameters for segment-based point cloud classification, including a scale of
neighborhood, feature set, and the training classifier, which lead to the optimal classification result.

The remainder of the paper is organized as follows. The next section provides detailed accounts
of the proposed approach in the automatic parameter selection and point cloud classification. Section 3
introduces the study areas and the datasets used in this study. Section 4 presents the results and
analysis. Section 5 presents the conclusions.

2. Parameter Learning Method

Figure 1 shows the workflow of the proposed method. It consists of four main steps, namely:
(1) segmenting 3D point clouds through a region growing algorithm and assessing its quality;
(2) automatically selecting samples from point segments with the aid of a 2D land cover map;
(3) selecting an optimal feature set; and (4) classifying the point cloud segments with the selected
samples and optimal feature set.

Figure 1. The main flowchart for the proposed approach of point cloud classification. Taking point
clouds and the two-dimensional (2D) land cover map as input, the framework includes steps of point
cloud segmentation, sample selection, feature selection, and random forest classification.
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2.1. Segmentation of Point Clouds and Segmentation Assessment

For any segment-based approach, one important step is to determine the neighborhood parameter
for identifying segments, as a result of its impact on the classification results. As suggested in Section 1,
segmentation divides an input point cloud dataset into meaningful subsets. In the proposed approach,
region growing segmentation [10,26,27] has been adopted.

2.1.1. Region Growing Segmentation

The region growing approach is a bottom-up technique that expands from selected seed
points to neighboring points, and groups points deemed to be from the same surface patches.
During the expansion process, a similarity index based on the chosen homogeneity criteria is computed.
The process terminates when no additional neighboring points that meet the homogeneity criteria can
be found. The success of this approach hinges on the choice of seed points, the homogeneity criteria,
and the identification of the neighborhood [28].

To determine the seed regions, this study firstly calculates the curvature value of each point,
and secondly, it sorts all of the points in the ascending order according to their curvature values. A seed
list is subsequently built, with the first seed point being selected as the one with minimum curvature
value. The seed list is maintained by adding the neighboring points of the current seed and removing
the current seed. If the seed list is empty, a new seed point with a minimum curvature value of the
remaining points is added. This process iterates until all of the points are segmented.

To determine the homogeneity criteria, the normal of each point is calculated by incorporating its
neighboring points. A smoothness threshold θth is defined in terms of the angle between the current
seed point and its neighboring points.

The identification of the neighborhood typically employs either the k-nearest-neighborhood
(KNN) search [29] or the instance radius search [5]. The former is based on a fixed number of k
neighboring points that approximates the density-adaptive search. The latter is based on a fixed search
radius that corresponds to a fixed geometrical range. For the proposed approach in this study, the KNN
search has been adopted, given that the TLS point cloud density tends to vary greatly according to the
distance to the scanner and noises.

The number of nearest points, k, can be regarded as the neighborhood scale, which not only
impacts segmentation, but also affects the feature extraction and classification in the later steps.
The adaptive determination of a suitable scale of the analysis for each point cloud dataset is therefore
warranted. A two-step method of finding an optimal scale is proposed in this study. In the first step,
a series of segmentations with different k values are conducted. In the second step, the segmentation
results are evaluated and compared. In the next sub-section, the method of assessing the segmentation
results is elaborated.

2.1.2. Quality Assessment

Existing literature has suggested a number of quantitative metrics for assessing the segmentation
outcomes [27,30], which can be either over- or under-segmentation. Over-segmentation refers to two
neighboring segments belonging to the same surface that are separated. Quantitatively, it can be evaluated
by a two-step process. The first step involves obtaining the surface roughness of a segment, as follows:

Surface Roughness =

√
∑n

i=1 d2
i

n
(1)

where n is the number of points in a segment and di is the normal distance of point i to the best-fitted
plane of the segment.

The second step used a pairwise comparison of the surface roughness values of the two
neighboring segments. If the surface roughness values are equal to or lower than those of the
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constituent segments, the two segments are combined. The degree of over-segmentation is then
calculated using the following equation:

OSeg =
nOseg

ns
(2)

where nOseg is the number of over-segmentation, and ns the number of the derived segments.
The measurement under-segmentation is made against the average surface roughness of all of the

derived segments, defined as follows:

SR =
∑n

i=1 ni ∗ SRi

∑n
i=1 ni

(3)

where SR is the average surface roughness, ni the number of points in the i-th segment, and SRi the
surface roughness of the i-th segment.

If the surface roughness value of a derived segment is significantly higher than the average surface
roughness, it will be deemed under-segmentation. The degree of under-segmentation is calculated
as follows:

USeg =
nUseg

ns
(4)

where nUseg is the number of under-segmentation, and ns the total number of derived segments.
The OSeg and USeg, once obtained, are used to evaluate the segmentation quality under different

scales (i.e., different k values). Smaller values of these measurements demonstrate a better segmentation
quality. The optimal segmentation scale is obtained by comparing the metrics of the different
segmentation results, which is used for further processing in the later steps.

2.2. Sample Selection

Following the segmentation is the selection of samples for training and testing purposes. In the
proposed method, the automatic selection of samples is assisted by an existing 2D land cover map and
by leveraging on the graph, G, that captures the topological relationships between the segments.

2.2.1. Graph Construction

The construction of the graph, G = (V, E), where V is a set of nodes each of which represents
a segment, and E is a set of edges each of which represents the topological relationships between two
connected segments, is carried out by taking the derived segments as an input. In order to determine
the type of topological relationship between two segments, the boundaries of each segment are first
traced using the modified convex hull, suggested by Sampath and Shan [31], in order to generate
a corresponding polygon. Once completed, all of the polygons are projected on to the XY plane.
Every pair of polygons is checked if they are neighboring on an XY plane, and if they do, the proposed
method further captures their topological relationship, which can be one of the following:

1. Perpendicular relationship. If two polygons meet the two requirements, (a) the normal vectors
of two polygon surfaces are nearly perpendicular and (b) one of the normal vectors is nearly
parallel to the vertical (i.e., the angle between the two is negligible). If two nodes, vi and vj,
hold the perpendicular relationship, they are connected by a directed edge, UEi,j. The node
with the higher average height value is designated as the starting node, while the node with the
lower average height value is designated as the ending node. In practice, a roof and the walls
underneath it usually hold this relationship.

2. Projection relationship. If two polygons do not hold the perpendicular relationship but meet the
following requirement: the extent of overlap between the two polygons on the XY plane is larger
than a specified threshold Oth = 0.4. Two nodes that satisfy such a requirement are connected by
a directed edge, PEi,j. Similar to the perpendicular relationship, the node with a higher average
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height value is designated as the starting node, while the node with the lower average height
value is designated as the ending node. Each edge in this topological relation is further assigned
a weight value, which is obtained by calculating the height difference between the high and low
average height values. In practice, the tree tops and the grassland, or the tree tops and the ground
usually hold this relationship.

3. Neighboring relationship. If two polygons do not hold one of the two former relationships,
but are neighbors on the XY plane. The nodes representing the two polygons are connected by
an undirected edge.

Figure 2 shows examples of the edges and the topological relations in the graph, G, in which the
blue circles represent the derived segments, and the lines with different colors represent three types of
topological relationships.

Figure 2. An illustration of the topological relations in the constructed graph. Circles and lines in each
figure represent nodes and edges in the graph, respectively.

2.2.2. Sample Selection with 2D Land Cover Map

After constructing the graph of the point cloud segments, the existing 2D land cover map from
OpenStreetMap is employed to assist in the selection of samples, according to the following two criteria:
(1) the degree a polygon is projected from a point cloud segment overlaps with the polygons in the 2D
land cover map; and (2) the rules based on the topological relationships between different segments.

Obtaining the degrees of overlap for the first criteria is straightforward through using C++ and
ArcGIS Engine. After the overlay operation, each projected polygon is assigned membership values to
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each of the land cover classes, which, in this study, are building, tree, grass, and ground, using the
degree of overlap by Equation (5), as follows:

Prob(Vi, ct) = ∑
c(Rj)=ct

Area
(
Vi ∩ Rj

)
Area(Vi)

(5)

where Vi is the i-th segment, Rj is a polygon in the 2D land cover map, ct is one of the classes in the 2D
land cover map (c0 = building, c1 = tree, c2 = grass, c3 = ground), Area(Vi) is the projection area of
Vi on XY plane, and Area

(
Vi ∩ Rj

)
is the size of the overlapping area of Vi and Rj on the XY plane.

Once the membership of a segment to each land cover class is obtained, the class with the highest
membership value, hereafter termed the HM-class, is extracted. This step, however, does not imply that
the segment is designated the HM-class because the classes to discern from the point cloud (i.e., roof,
wall, tree, grass, and ground) and the classes in the 2D land cover map (i.e., building, tree, grass,
and ground) do not hold one-to-one relations. In addition, the different dimensions of the land cover
map and the point cloud (2D versus 3D) naturally lead to non-unique correspondences between z
values and (x, y) values. For example, a segment with the largest membership to building might belong
to roof or wall, and a segment with the largest membership to grass might belong to grass or tree.
To handle such semantic mismatches, the graph, G, that was previously constructed is used to refine
the sample selection using the following rules and the search sequence starting from the class roof,
and is followed by the class wall, tree, ground, and grass. Once a node is labeled with a meaningful
class in the point cloud, it is excluded from the list of nodes being considered in the sample selection.

(1) Roof. A node is considered to be representing a roof segment according to the following criteria.
Firstly, its HM-class must be building and the membership value is above a certain value.
Secondly, the normal vector of the segment is nearly vertical. Thirdly, the area of the projection of
the segment on the XY plane is larger than a specified threshold, Srth = 15 m2. The threshold is
selected as there is hardly a roof with an area smaller than 15 m2.

(2) Wall. Once all of the roof segments are identified, the remaining nodes in graph G are searched
for wall segments by first identifying all of the nodes that are connected to the roof nodes through
the edges of the designated perpendicular relationships. To handle potential noises, the angles
between the normal vector of the identified nodes, and the horizontal are examined. If the angles
are negligible, the segments represented by the corresponding nodes are considered to belong to
the wall.

(3) Tree. Two criteria are used to identify the tree nodes. Firstly, if the HM-class of the node in the
remaining list of nodes is tree, it is identified as a candidate node. Secondly, for each candidate
node, identify all of the connected projection edges, which can be outgoing projection edges, with
the candidate node being the starting node or the incoming projection edges with the candidate
node being the ending node, and calculate two values—the sum of the weights of all of the
incoming projection edges and the sum of the weights of all of the outgoing projection edges.
If the former is larger than the latter, the candidate node is labeled tree. The intuition behind this
rule to exclude the ground and grass segments, which might overlap with tree on the XY plane
but have relatively lower height values.

(4) Ground. Two criteria are used to identify ground nodes. Firstly, if the HM-class of a node is
ground, the node is identified as a candidate node. Secondly, similar to the second step for
identifying tree nodes, identify all of the outgoing edges and the incoming edges and obtain the
sums of the corresponding edge weights. If the sum of the weights for the incoming edges is
smaller than that of the outgoing edges, the candidate node is labeled ground. The intuition of
the two criteria is to exclude the possible tree segments above the ground.

(5) Grass. The criteria to identify grass nodes are exactly the same as the criteria to identify ground,
except that the HM-class of the candidate nodes for grass must be grass. The intuition is to
exclude the possible tree segments above the grassland.
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By using the above rules, samples of the classes in the input point cloud dataset are identified.
One should note that only a part of the segments are identified as samples, and the labels of the
remaining segments are unknown at the moment. In addition, setting the thresholds for this step of
the proposed approach is not interpreted as introducing further human intervention. Rather, it reflects
the flexibility of the proposed approach in allowing the specification of an ideal level of homogeneity
for the selected samples.

2.3. Feature Extraction and Feature Selection

The features to describe the characteristics of 3D point cloud segments are generally of the
following three types: eigen-based, spectral, and geometrical features. For the eigen-based type,
eigenvalues λ1, λ2, and λ3 (λ1 ≥ λ2 ≥ λ3) are calculated for each segment, based on the covariance
matrix. The eigenvector corresponding to the smallest eigenvalue (λ3) is known as the normal vector
of the segment surface, and is represented as (nx, ny, nz). Further measures can be calculated based
on the eigenvalues, including th esum, omnivariance, eigenentropy, anisotropy, planarity, linearity,
surface variation, and sphericity. For the spectral type, based on the red, green, and blue (RGB) values
captured using TLS, six features in two sets of three are defined for each segment. The first three
features are the mean red, mean green, and mean blue, which are defined as the mean values of all
of the points within the segment on the three bands individually. The next three features are the red
deviation, green deviation, and blue deviation, which are the standard deviation values of the three
bands. For the geometrical type, four geometrical features are defined for each segment. The first is the
number of points within a segment. The second is the projective area of the segment on its best-fitted
surface plane. The third is the local point density within the segment, which is defined as follows:

LPD =
#N
S

(6)

where #N is the number of points within the segment and S is the projective area of the segment on its
best-fitted surface plane.

The fourth geometrical feature is the average height, which is calculated as the average
z-coordinate values of the points within the segment. A complete list of the features extracted can be
found in Table 1.

Table 1. The feature set based on point cloud segments.

Eigen-Based Features

F1 Eigenvalue_1 λ1

F2 Eigenvalue_2 λ2

F3 Eigenvalue_3 λ3

F4 Normal_x nx

F5 Normal_y ny

F6 Normal_z nz

F7 Sum λ1+λ2+λ3

F8 Omnivariance 3
√

λ1 ∗ λ2 ∗ λ3

F9 Eigenentropy −∑3
i=1 λi ∗ Ln(λi)

F10 Anisotropy (λ1 − λ3)/ λ1

F11 Planarity (λ2 − λ3)/ λ1

F12 Linearity (λ1 − λ2)/ λ1

F13 Surface variation λ3/(λ1 + λ2 + λ3)

F14 Sphericity λ3/λ1
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Table 1. Cont.

Spectral Features

F15 Mean red M_R

F16 Mean green M_G

F17 Mean blue M_B

F18 Red deviation Std_R

F19 Green deviation Std_G

F20 Blue deviation Std_B

Geometrical Features

F21 Number of points #N

F22 Area S

F23
Local point

density LPD

F24 Average height H_z

To select the optimal feature set from the whole set of features, as defined, Weinmann et al. [8]
suggested three types of quantitative evaluation methods (i.e., filter-, wrapper-, and embedded-based
methods). The first type of method calculates the intrinsic properties of the training data to provide
a score for each feature, and are insensitive to the classifier used. In contrast, the other two types
of methods are classifier-dependent, and evaluate the performance of features during the process of
training. In this study, the filter-based method is employed to avoid a classifier dependency.

There are many measures to assess the importance of a single feature. Among them, the gain
ratio [32] has been proven to be a successful one. It is calculated as follows, and a higher gain ratio
value indicates a higher importance of a feature.

GainRatio(T) =
Gain(T)
Split(T)

(7)

where T is a feature, and Gain(T) and Split(T) are the gain value and split information of feature T,
which can be further referred to Quinlan [32].

Once the gain ratio values of all of the features are calculated, these features are sorted in
descending order and then subject to the evaluation of their correlations using the best-first search
(BFS) strategy and a Correlation-based Feature Selection (CFS) method [33]. The approach involves two
steps. In the first step, the features are added to a feature set one by one, according to the descending
order of their gain ratio values. In the second step, the feature set is evaluated by using the CFS metric,
as follows:

CFSs =
krc f√

k + k(k− 1)r f f

(8)

where CFSs is the score of the feature set s, k is the number of features, c is a class, f is a feature, rc f is
the average relevance between the features and classes, and r f f is the average relevance between the
features and features.

A stopping criterion of adding new features is used to prevent the BFS search from exploring all of
the possible combinations of features, and is set so that the CFS score does not increase when the feature
set is added for five consecutive times. The above procedures are implemented in a non-commercial
software Weka 3.8 (Waikato Environment for Knowledge Analysis). The optimal feature set is selected
by using the above method, and are further used for classification in the next step.

2.4. Classification of Point Cloud Segments

Once the samples and optimal feature set have been selected, using the approach described in
Sections 2.2 and 2.3, they are used to classify the point cloud segments. Firstly, following Li et al. [34],
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the selected samples are divided randomly into two equal parts, one as the training set and the other
as a test set. The training set and optimal feature set are used as inputs to train a classifier. In this study,
the random forest (RF) classifier [35] is utilized for classification, given that it has been demonstrated
effectively in 3D point cloud classification [17]. An RF classifier is an ensemble classifier based on
a classification and regression tree (CART). It is composed of a number of decision trees that are trained
independently, and the final classification results are determined by the majority vote of all of decision
trees. A decision tree is constructed as follows:

(1) Select, randomly from the training set, a sample set by bagging or bootstrap [36];
(2) Select, randomly, a feature subset from the optimal feature set. The number of selected features in

the feature subset approximates
√

N, where N is the number of features in the optimal feature set;
(3) Find the largest information gain for node splitting. A feature and its splitting threshold is

determined at each node;
(4) Iterate the splitting process until all of the samples in the same node have the same label or the

decision tree reaches a maximum depth.

Another parameter required to train a RF classifier is the number of trees, which is set to a fixed
number of 200 in order to achieve a reasonable classification accuracy within an acceptable duration.
The adopted classifier is fully automated without any human intervention. Assume that the training
sample set is ϕ and the test set is ψ. Each training and test sample encapsulate a feature vector with d
dimensions, in which d is the number of features in the optimal feature set. Each sample si belongs to
a class τi ∈ {1, 2, 3 . . . nc}, where nc is the total number of labels (nc = 5 in this study). The training
set vector in a d-dimensional feature space is first employed to train the RF classifier. Then, the trained
RF classifier is further employed to classify the test set, ψ. The classification results are quantitatively
evaluated by comparing the classified labels of the test samples with their actual labels.

3. Study Area and Datasets

The effectiveness of the proposed approach is tested using three datasets. The first two datasets,
hereafter named Dataset1 and Dataset2, were collected by the Virtual National University of Singapore
(NUS) project, while the third dataset, hereafter named Dataset3, is a publicly available and labeled 3D
point cloud dataset of Oakland, Pennsylvania, created by Munoz et al. [37]. The characteristics of the
three datasets and the purposes they serve in this study are described below.

Dataset1 covers a smaller area of the NUS campus, which includes the computer center and
a typical building of classrooms and offices on campus (Figure 3), while Dataset2 covers a larger area
of the NUS campus, which includes the entire engineering school, with 21 main buildings and 5 lecture
theaters (LTs) (Figure 4). Both areas are of similar characteristics, given that the buildings there were
developed around the same time and were located in similar terrains. The former will be used to learn
the details of the classification, while the latter will use the learned details to classify a larger study
area. They are therefore used to demonstrate the effectiveness of the proposed approach in classifying
point clouds of a typical university campus, and to demonstrate the transferability of the proposed
method from a smaller to a larger dataset.
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Figure 3. (a) Light Detection and Ranging (LiDAR) point cloud; (b) 2D land cover map, and Dataset1
consisting of the computer center and central library of the National University of Singapore (NUS).

Figure 4. Dataset2, a larger area mainly consisting of the engineering faculty of NUS.

Both Dataset1 and Dataset2 contain LiDAR point clouds acquired by a terrestrial LiDAR scanner
during the leaf-on season. Nicknamed the Garden City, Singapore is famous for greenery across the
whole country. The NUS campus is no exception. As such, the two datasets exhibit high level of
occlusions due to the presence of trees. In addition, the campus is situated on a terrain with internal
relief of more than 60 m, which results in additional challenges to classify the LiDAR point clouds.
The relief also allows placing the terrestrial LiDAR scanner on higher grounds so as to capture a more
complete view of the study area, including the roofs of buildings. Aside from the LiDAR data, Dataset1
also includes a corresponding 2D land cover map from OpenStreetMap (www.openstreetmap.org),
consisting of polygons of four land cover classes (i.e., building, tree, ground, and grass). The 2D land
cover map was registered with the 3D point clouds to be used as ancillary data to assist in point cloud
classification. Dataset1 and Dataset2 contain 1,263,253 and 14,452,784 points, respectively.

To demonstrate the feasibility and transferability of the proposed method to another area,
this study also incorporates the Oakland 3D point cloud dataset [37] as a benchmark. This dataset,
named Dataset3, includes four different scenes, one designated for training purposes (Figure 5),
while the remaining three are designated for testing purposes (Section 4.6). The point cloud was
acquired by an MLS with 44 classes, prototypical of an urban environment, such as utility pole, ground,
facade, car, and garbage. In this study, some classes were merged and reassigned to other classes
(e.g., points of ground, paved road, trail, and walkway were all labeled as ground). Some classes were

www.openstreetmap.org
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removed (e.g., car, door, and window). All of the points were filtered and remapped from 44 to 4,
with the following labels: wall, ground, tree, and grass, resulting in a total of 400,000 points.

Figure 5. Dataset3, the training set of the Oakland dataset. Points were filtered and remapped to four
primary classes (wall, grass, tree, and ground).

4. Experiments and Analysis

4.1. Segmentation Results of Multiple Scales

To find the optimal scale (the number of nearest points, k) for segmentation, a series of
segmentation tests were conducted at different scales. In this study, five k values from 30 to 70,
with an increment of 10, were used. The smoothness threshold was set as θth = 3

◦
. After the region

growing segmentation, each segmentation result was evaluated using OSeg and USeg (Figure 6).

Figure 6. Quantitative evaluations of segmentations at different scales for Dataset1.

The evaluation result suggests that the over- and under-segmentation are presented
simultaneously at all scales. As the k increases, the OSeg first drops and then picks up after k > 50.



Remote Sens. 2018, 10, 1192 13 of 23

For the under-segmentation, the lowest USeg appears at k = 40. Considering both OSeg and USeg,
the optimal scale, k, can be either 40 or 50. However, as the OSeg values are much higher than the
USeg values, the OSeg carries a heavier weight for determining the optimal segmentation scale. In this
study, the optimal scale, k, was therefore set to 50. The corresponding segmentation result of Dataset1
is shown in Figure 7. The proposed methods segmented 1,263,253 points into 1061 segments, thus
reducing the computational resources needed for classification at the later stage. Note that not all of the
points in the point cloud were included in the segment clusters, because we set a limit of the minimum
number of 50 points within each segment. The remaining points were thus called rough points.

Figure 7. Segmentation result of Dataset1. Points in the same segment were assigned the same color.

4.2. Results and Evaluations of Sample Selection

The segments derived in the previous step was then used to construct the graph, G, for sample
selection. The graph was constructed using all 1061 segments, and the relationships between the
different segments were built and stored in the graph. After completing the graph, 2D land cover
data in Dataset1 (Figure 3b) was employed to select samples from the graph. A total of 419 samples
were chosen, including 15 roof segments, 107 wall segments, 21 ground segments, 259 tree segments,
and 17 grass segments. A visual inspection found 15 incorrectly labeled samples (i.e., an overall
precision of the sample selection of 96.42%). These samples represented different categories with
various segment sizes, shapes, heights, data densities, and scanner positions. The selected samples
were further used in the subsequent steps of the feature set selection and classification.

4.3. Results of Optimal Feature Set Selection

The selected samples were employed in the optimal feature set selection. Firstly, the importance
of each single feature was evaluated using the gain ratio index. Overall, the result, which is shown
in Figure 8, suggested that the spectral features (F15–F20) were more important than the eigen-based
features (F1–F14) and geometrical features (F21–F24). A further examination of the result showed that
the top five features with the largest gain ratio scores were F17, F6, F20, F18, and F15 (i.e., mean blue,
normal_z, blue deviation, red deviation, and mean red). However, not all of the top ranked features
were selected because of the relevance between them. In this study, the CFS method and BFS strategy
were combined to select the optimal feature set, which considered the relevance between the features.
The red bars in Figure 8 represent the features selected into the optimal feature set. The selected
features of the CFS include F4, F5, F6, F10, F15, F17, F20, F22, and F23, corresponding to normal_x,
normal_y, normal_z, anisotropy, mean red, mean blue, blue deviation, local point density, and average
height. Among these nine features, four (i.e., F4, F5, F6, and F10) are eigen-based features, three (i.e., F15,
F17, and F20) are spectral features, and two (i.e., F22 and F24) are geometrical features. The results
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suggested that (1) the normal vector plays an important role in point classification, especially its
value at z direction (i.e., normal_z); (2) despite the fact that some of the spectral features (F16, F18,
and F19) have a high contribution, because of the correlation with other spectral features (the correlation
coefficients between mean green and mean red, red deviation and blue deviation, and green deviation
and blue deviation are 0.964, 0.950, and 0.965, respectively), they should be avoided; (3) although the
geometrical features do not have very high gain ratio scores, they are still selected into the optimal
feature set because of the low correlations (less than 0.1) with other two types of features.

Figure 8. Feature importance evaluation and optimal feature set selection. Red bars represent the
selected features in the optimal feature set.

4.4. Classification Result of Dataset1

After choosing the samples and features, the training sample set and optimal feature set were
used to train an RF classifier. The trained RF classifier was further used to classify the point segments
in Dataset1. Each segment in Dataset1 is typed either as a (1) training segment; (2) test segment;
or (3) unlabeled segment. All of the segments were reclassified by the trained RF classifier, in which
both the training segments and the test segments were used for accuracy assessment. The selected
samples were divided into training and test segments, following the standard approach for evaluating
the performance of a classifier. A total of three metrics were employed to evaluate the classification
performance. The first two are precision and recall [38], in which precision is also known as a producer’s
accuracy, and recall is also known as a user’s accuracy. The third metric is F-score, which integrates
precision and recall into one measure, as follows:

F =
2 ∗ precision ∗ recall

precision + recall
(9)

Figure 9 shows the classification results of the point clouds in Dataset1. The proposed approach
correctly recognized the classes for most points, with an overall accuracy of 94.07% on the test set (Table 2).
The highest F-score was obtained for the ground class (99.45%). The second highest F-score was obtained
for the wall class, with a precision and recall both above 95%. The lowest F-score obtained was the grass
class, with a precision of 62.70%. Through visual inspection, such low precision was mainly caused by
the misclassification of points belonging to grass into tree. One might argue that these two classes can be
easily distinguished using height. While generally true, this is not the case for our study site, which sits on
an internal relief of over 60 m. Overall, the classification results of Dataset1 were satisfactory.
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Figure 9. Classification results of the point cloud in Dataset1.

Table 2. Quantitative classification results of point clouds in Dataset1.

Class
Training Set (%) Test Set (%)

Precision Recall F-Score Precision Recall F-Score

Roof 100 100 100 89.93 83.94 86.83
Wall 100 100 100 97.84 96.16 96.99

Grass 100 100 100 62.70 100.0 77.07
Tree 100 100 100 100.0 84.83 91.79

Ground 100 100 100 98.91 100 99.45

Overall accuracy 100 94.07

4.5. Classification Result of Dataset2

While the proposed method performed well for a small point cloud of Dataset1, this section
illustrates that the details learned from a particular dataset by the proposed method are transferable to
a larger dataset. Being able to do so is important for a large site classification, because the resources
needed to train a smaller dataset are significantly less than that for a larger dataset. In this study, we
used the learned the parameters and the trained classifier from the first experiment to classify the point
clouds in Dataset2 (Figure 4), which shares similar characteristics with Dataset1. To do so, the point
clouds in Dataset2 were first segmented with the optimal scale learned from Dataset1 (i.e., k = 50),
and secondly, for each segment, nine features in the optimal feature set, described in Section 4.3, were
extracted. Thirdly, the trained classifier by Dataset1 was used to classify point segments of Dataset2.

Figure 10 presents the result of the classification, which again consists of five classes, roof, wall,
grass, tree, and ground. A total of 11,584 segments were obtained. In order to assess the classification
quality of Dataset2, 10% (≈1200) of the segments were randomly selected and visually inspected.
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Figure 10. Classification results of the point cloud in Dataset2.

Table 3 presents the quantitative assessment of classifying Dataset2. The highest precision is
obtained for the class wall (97.99%). The reason for such high precision is straightforward; walls are
usually vertical and thus it is highly unlikely to classify wall segments into other classes. The highest
recall (92.61%) and F-score (93.70%) were both obtained for the class ground, indicating that ground is
easily recognizable. Following the first two classes is the class roof (F-score of 89.44%). Figure 10 shows
that a small portion of roof points are misclassified as tree (in purple circles). Such misclassification
is likely to be the result of the following. Firstly, the study area is located in a heavily vegetated area
where roofs are often occluded as a result of the presence of trees. Secondly, the roof and tree are both
above the ground and have similar height attributes, thus causing confusions during classification.
The grass and tree classes have the lowest (79.06%) and second lowest (86.19%) F-score. There were
still significant confusions between these two classes, owing to their similar spectral features.

Table 3. Quantitative classification results of point clouds in Dataset2.

Class Precision (%) Recall (%) F-Score (%)

Roof 89.05 89.84 89.44
Wall 97.99 89.66 93.64

Grass 73.67 85.31 79.06
Tree 88.15 84.32 86.19

Ground 94.82 92.61 93.70

Overall accuracy = 91.13%

Compared to the quantitative classification results of Dataset1 (Table 2), the F-scores of roof and grass
in Dataset2 are higher than those in Dataset1, while the F-scores of wall, tree, and ground are slightly
lower than those in Dataset1. The overall accuracy of classification results on Dataset2 is 91.13%, which
is similar to the overall accuracy of 94.07% for Dataset1. It can be concluded that the transition of the
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learned knowledge from Dataset1 to Dataset2 was satisfactory, suggesting that the proposed method is
generalizable for larger areas with similar building and vegetation configurations and reliefs.

4.6. Classification Result of Dataset3

This section presents the result of classifying the point clouds with the different characteristics
represented by the Oakland Point Cloud Dataset. A procedure similar to that used to classify
Dataset1 was employed. The only difference is that for Dataset3, the training and test samples
have already been provided. Firstly, the neighborhood scale was learned, which turned out to also
be 50. The neighborhood scale is then used to segment Dataset3. Secondly, the full feature set in
Table 1, except the spectral features, were extracted for each segment. The optimal feature set was
selected and included six features, namely, normal_x, normal_y, normal_z, anisotropy, local point
density, and average height. Again, the random forest classifier was used for both training and testing.
The classification results of Dataset3 are shown in Figure 11. In addition, a separate experiment was
carried out with an identical setup, except that the full feature set was employed.

Figure 11. Classification results of Dataset3 (the testing set of the Oakland dataset) using the learned
optimal scale, the optimal feature set, and a random forest: (a) Oakland test set I; (b) Oakland test set II;
and (c) Oakland test set III.
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Table 4 presents the results with the optimal feature set and the full feature set. While both
sets achieved a high overall accuracy, the optimal feature set edging the full feature set by about
1.2%. The former also achieved a better performance for individual classes, as can be observed from
the evaluation metrics (precision, recall, and F-score) of the individual classes in Table 4. As to the
classification results of Dataset3 with the optimal feature set, it was observed that the recall of the wall
(85.02%) and the precision of the tree (82.15%) were not very high. This was caused by the mixture of
the tree and wall points, which can also be validated from the visual results of Figure 11. Some of the
wall points were wrongly classified as tree (Figure 11a,b). The reasons for such lower-than-expected
performance may be that (1) no color features were involved in this dataset and (2) the training
samples in Figure 5 did not capture sufficient characteristics of walls and trees. To improve the results,
more samples should be incorporated.

Table 4. Evaluations of point cloud classifications of the Oakland dataset by different methods.
All values are in percentage (– indicates the value is not provided or has no meaning). NAHO MRF
—non-associative higher-order Markov model.

Class
Accuracies of Different Methods (Precision-Recall-F-Score)

Our Method with
Optimal Feature Set

Our Method with
Full Feature Set NAHO MRF Weinmann et al.

Wall 94.74-85.02-89.62 94.13-84.27-88.93 91.0-94.0-92.0 92.73-65.80-76.98

Grass 87.12-81.67-84.31 76.24-78.18-77.20 – –

Tree 82.15-92.09-86.89 79.57-88.54-83.82 95.0-94.0-94.0 89.82-93.35-91.55

Ground 100.0-100.0-100.0 99.96-99.32-99.64 99.0-99.0-99.0 98.98-97.89-98.43

Pole – – 70.0-56.0-62.0 45.75-70.52-55.50

Wire – – 66.0-89.0-76.0 10.19-82.31-18.13

Vehicle – – 75.0-87.0-81.0 –

Overall Accuracy 97.08 95.89 – 92.27

In addition, we compared our result with the results of (1) the non-associative higher-order
Markov model (NAHO MRF) by Najafi et al. [39]; and (2) the method by Weinmann et al. [8].
Tge NAHO MRF adopted a set of non-associative context patterns to describe the higher-order
geometric relationships between the different class labels. Weinmann et al. [8] used different scales,
different feature sets, and different classifiers in order to obtain a number of classification results,
and we chose the one with the highest overall accuracy. Note that the classification accuracies of the
two methods were acquired from Najafi et al. [39] and Weinmann et al. [8], separately (Table 4).

Although all of the methods adopted the same dataset (i.e., the Oakland dataset), different classes
were chosen for the experiments. Weinmann et al. [8] did not differentiate grass and ground, but
considered them as one class (i.e., ground, but they incorporated two additional classes, that is, wire
and pole). Compared to the classes considered in this study, Najafi et al. [39] incorporated an additional
vehicle class. The comparison between the results of the three studies showed that our approach
achieved the highest precision for wall (94.74%) and the highest F-score for ground (100%), and the
overall accuracy of our approach was 4.81% higher than that of the method by Weinmann et al. [8]
(Table 4). The better performance of our approach is likely to be explained by the following reasons:
(1) the different classes adopted in different methods and (2) a segment-based approach was adopted
rather than a point-based approach in other two studies. In order to analyze the impact of the point-
and segment-based approaches to the classification results, we further compared these two methods in
the next section.
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4.7. Comparison of Segment-Based and Point-Based Classification Results

Segment- and point-based methods have both been employed in previous point cloud
classification studies [2,11]. It is well known that the segment-based methods are more efficient.
It is less certain, however, regarding how both methods perform in terms of classification accuracy.
A comparison of the performance of the classification by these two methods is therefore provided.

The experiment of the point-based classification is conducted on Dataset1. In order to ensure a fair
comparison, we adopted the same sample set for training and testing. The only difference was that
the samples used were points, thus the features were also extracted and calculated based on points.
As some features in Table 1 are selected to describe the characteristics of segments, that is, the standard
deviations of R, G, and B band (F18, F19, F20); number of points (F21); area (F22); and local point density
(F23), they were excluded for this comparison. In terms of an optimal feature set, the proposed feature
selection method was employed. The RF classifier was first trained by the training set and then further
used to classify the test set for its accuracy assessment, as well as the whole point cloud of Dataset1.

Figure 12 shows the point-based classification result. Compared with the segment-based
classification result in Figure 9, the results produced by the point-based classification are more
fragmentized, exhibiting the salt and pepper effect described by Blaschke et al. [40] in their effort to
perform per-pixel classification of 2D images. In Figure 12, some points of trees and ground (the red
circle) were misclassified into wall. One possible account for such error was that the classifier tends to
label the points with horizontal normal as wall, according to the learned details. These kind of errors
can be significantly reduced when these points are clustered into segments.

Figure 12. Results of point-based classification of Dataset1.
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Comparing the evaluation result of the point-based classification and the segment-based
classification using the test set showed that the overall accuracy of the latter (94.07%, Table 2) is higher
than that of the former (89.41%, Table 5), with an improvement of 4.66%. An improvement of around
5% can already be regarded as a significant change, according to Janecek and Gansterer [41]. More
importantly, the overall error rate (1-overall accuracy) is decreased by nearly half for the segment-based
classification. For the individual classes, segment-based classification produced a significant higher
F-score for wall, grass, tree, and ground, while the F-score of roof by the two methods were nearly
the same. Such outcomes are possibly explained by (1) the segment-based methods that were
able to generate more features, of which some were extremely useful for classification; and (2) the
segment-based method involving more local contextual information and at the same time reducing the
heterogeneity of the point features.

Table 5. Quantitative evaluation of point-based classification of Dataset1.

Class
Training Set (%) Test Set (%)

Precision Recall F-Score Precision Recall F-Score

Roof 99.71 99.84 99.77 88.67 84.72 86.65
Wall 99.63 99.62 99.63 92.13 94.59 93.34

Grass 98.78 97.85 98.31 76.9 71.2 73.94
Tree 96.76 93.02 94.85 80.3 84.91 82.54

Ground 98.14 99.46 98.80 92.18 94.67 93.41

Overall accuracy 98.76 89.41

4.8. Computational Performance

A prototype based on C++ was developed for the proposed method. The Point Cloud Library
(PCL) was used for the loading and segmentation of point clouds. The procedures of the feature
selection and random forest classification were performed by the non-commercial software of Weka.
All of the experiments were performed on a desktop computer with a CPU Intel Core i7-6700 processor,
with 3.4 GHz and 32-GB RAM. One of the main computational hurdles of the proposed method
lies in the segmentation procedure with a computational complexity of O(n ∗ log(n)). In practice,
for the point cloud of Dataset2 with 18,458,049 points, the elapsed time for one segmentation is nearly
18.5 min. Although the segmentation procedure takes some time, the number of elements (14,444) for
the segment-based classification is greatly reduced compared with that of the point-based method
(18,458,049); therefore, the computation time and load were significantly reduced.

5. Conclusions

This study presents a segment-based approach to classify the point cloud, an important step
to facilitate the construction of semantic 3D models. The approach innovates by first selecting
labelled samples through fusing TLS data and 2D land cover maps, and secondly, by automating the
learning of parameters, including the optimal scales and features. It involves four successive steps,
namely, (1) point cloud segmentation; (2) optimal sample selection; (3) optimal feature set selection;
and (4) point cloud classification. Land cover maps played an important role in the automatic selection
of a number of the representative samples, which were used in the later steps of selecting the features
and training the classifier. Three datasets were used to validate the effectiveness of the proposed
approach, in terms of its accuracy and transferability. The first dataset, termed Dataset1, covers a small
area of the NUS campus. It consists of two buildings. The second dataset, termed Dataset2, covers
a much larger area of the NUS campus. It consists of 21 main buildings and 5 lecture theatres. The third
dataset, termed Dataset3, is a labeled on the point cloud dataset of Oakland, Pennsylvania. It consists
of typical objects found in an urban environment.
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Through executing the four successive steps in the proposed approach, using the three datasets,
this study demonstrated the effectiveness of leveraging the surface roughness as a measure to
automatically determine the neighborhood scale for achieving the best segmentation performance.
The use of 2D land cover maps is proven to be advantageous in automating the selection of the samples
for training and testing purposes; the samples selected are unbiased and with an accuracy higher than
96%. The optimal feature set was selected using the best-first search, and the correlation-based feature
selection is shown to obtain a higher overall accuracy than using the full feature sets. The experiments
performed on Dataset1, Dataset2, and Dataset3 showed the transferability of the proposed approach
from a smaller to a larger dataset, and between two sites that exhibit different characteristics.
A further comparison between the segment- and point-based approaches was carried out using
Dataset1. The result suggests that the former approach is indeed more advantageous than the latter
approach. In summary, the proposed 3D TLS point cloud classification method makes the following
two contributions: (1) a method of fusing the 2D land cover maps and 3D LiDAR points is proposed for
inferring point labels and selecting samples; and (2) a formalized procedure to automate the selection
of the parameters for 3D point cloud classification is implemented with the aid of 2D land cover maps.

This research has two immediate applications. Firstly, the proposed method can be used to classify
point clouds covering a larger area by using a small area as the training set. Such a finding is important
for scaling up the point cloud operations in urbanized areas, where the urban configurations are
often similar and repetitive. Secondly, the classification results of the labeling points can be used as
a benchmark dataset for further academic research. For future work, we plan to examine the sensitivity
of different land cover maps, and thus different land cover categories, on the classification results.
We also plan to explore the automatic modeling of 3D scenes based on the labeling points, which may
involve object boundary tracking and boundary regularization, as the method presented here provides
one prerequisite to achieve the stated goal.
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