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Abstract: The monitoring and quantification of soil carbon provide a better understanding of soil
and atmosphere dynamics. Visible-near-infrared-short-wave infrared (VIS-NIR-SWIR) reflectance
spectroscopy can quantitatively estimate soil carbon content more rapidly and cost-effectively compared to
traditional laboratory analysis. However, effective estimation of soil carbon using reflectance spectroscopy
to a great extent depends on the selection of a suitable preprocessing sequence and data-mining algorithm.
Many efforts have been dedicated to the comparison of conventional chemometric techniques and their
optimization for soil properties prediction. Instead, the current study focuses on the potential of the new
data-mining engine PARACUDA-II®, recently developed at Tel-Aviv University (TAU), by comparing
its performance in predicting soil oxidizable carbon (Cox) against common data-mining algorithms
including partial least squares regression (PLSR), random forests (RF), boosted regression trees (BRT),
support vector machine regression (SVMR), and memory based learning (MBL). To this end, 103 soil
samples from the Pokrok dumpsite in the Czech Republic were scanned with an ASD FieldSpec III Pro
FR spectroradiometer in the laboratory under a strict protocol. Spectra preprocessing for conventional
data-mining techniques was conducted using Savitzky-Golay smoothing and the first derivative method.
PARACUDA-II®, on the other hand, operates based on the all possibilities approach (APA) concept, a
conditional Latin hypercube sampling (cLHs) algorithm and parallel programming, to evaluate all of the
potential combinations of eight different spectral preprocessing techniques against the original reflectance
and chemical data prior to the model development. The comparison of results was made in terms of the
coefficient of determination (R2) and root-mean-square error of prediction (RMSEp). Results showed that
the PARACUDA-II® engine performed better than the other selected regular schemes with R2 value of
0.80 and RMSEp of 0.12; the PLSR was less predictive compared to other techniques with R2 = 0.63 and
RMSEp = 0.29. This can be attributed to its capability to assess all the available options in an automatic
way, which enables the hidden models to rise up and yield the best available model.
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1. Introduction

Soil carbon content is a valuable indicator of soil fertility and is a critical parameter in directing
the soil and atmosphere dynamics of different agrotechnical processes. Concerns about the influence
of soil-carbon-decline influences on soil quality have encouraged research on the expansion of accurate
and effective methods of evaluating soil carbon [1]. Therefore, the development of more rapid, accurate,
and cost-effective methodologies for soil analysis, and more specifically for carbon content estimation,
is a major desire.

There is a widespread interest in using visible-near-infrared-short-wave infrared (VIS-NIR-SWIR)
reflectance spectroscopy for carbon analysis due to its spectrally active nature [2]. The technique has
become a well-recognized, rapid, non-destructive, and low-cost [3] method with minimal sample
preparation requirements that can be applied in both the laboratory and the field using point and
imaging spectral measurements [4–6]. Moreover, the method does not use any chemicals, and it has
capability to measure several soil properties using a single scan and a large number of samples in a
very short time [7].

In order to get the full advantages of VIS-NIR-SWIR reflectance spectroscopy and to reduce the
negative effects and errors that arise during measurement, Ben-Dor et al. [8] suggested the development
of standards and protocols using assurance processes. However, another effective solution is removing
the information from the spectra mathematically so that they may be correlated with soil parameters
using effective chemometric and multivariate calibration techniques [9,10]. Gholizadeh et al. [11] also
stated that one way of minimizing the undesirable impacts is by adopting advanced preprocessing
methods as well as the appropriate selection of multivariate statistical analysis algorithms. These
approaches can significantly decrease the differences between spectral measurements of samples
assessed by different operators and systems under different conditions [12] and improve the obtained
prediction accuracy [13].

The mathematical reduction of spectra noise and extraction of suitable information from a great
number of highly correlated spectral bands, as well as the selection of the appropriate technique, are
effective tasks. For instance, Gholizadeh et al. [11] indicated that the first derivative preprocessing
method gave the best result for removing spectra noise in the Czech Republic mining areas soils in
comparison to second derivative, multiplicative scatter correction (MSC), standard normal variate
(SNV), and continuum removal (CR). Regarding multivariate calibration techniques, partial least
squares regression (PLSR) is the most commonly used multivariate calibration technique for soil
spectral analysis [14,15]. Other approaches have also been used, for instance, stepwise multiple linear
regression (SMLR) [16,17], principal components regression (PCR) [18], and multivariate adaptive
regression splines (MARS) [19,20]. Likewise, some other data-mining techniques, such as artificial
neural networks (ANN) [21,22], boosted regression trees (BRT) [13,23], random forests (RF) [10,24],
support vector machine regression (SVMR) [25,26], and memory based learning (MBL) [13,27,28], have
been reported to improve the accuracy of the calibration models.

Due to the fact that the target function’s nature strongly affects the performance of the different
prediction approaches, different studies provide different results. Moreover, preprocessing and
calibration procedures represent a significant portion of the work and expenses for spectroscopy
technique application. Therefore, introducing more efficient approaches is greatly needed. Accordingly,
the new data-mining engine PARACUDA-II®, recently developed at Tel-Aviv University (TAU) [29],
has been designed to utilize parallel and automatic processing to build and process hundreds of diverse
models in order to prevent errors or biases caused by a human operator in the loop when taking the
model setting decision. The engine also enables one to check all possible preprocessing combinations
along with different statistical methods automatically, which, in reality, is time demanding and difficult
for a single operator to perform. Therefore, the current study aims to examine the PARACUDA-II®

concept and performance against selected traditional manual techniques (PLSR, RF, BRT, SVMR, and
MBL) to predict soil oxidizable carbon (Cox) content. This study was performed over bare soil sites
within the Pokrok dumpsite in the Czech Republic.
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2. Materials and Methods

2.1. Experimental Site, Soil Sampling and Analysis

The Pokrok dumpsite (50◦60′N; 13◦71′E) in the northeastern part of the Czech Republic was
selected as the test site, where the soil samples for this study were collected (Figure 1).
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Figure 1. Location of Pokrok dumpsite in the northeastern part of the Czech Republic.

The dumpsite is formed by clay. One year before sampling, a cover of natural topsoil (≤25 cm) in
an amount of 2500–3000 tons per ha was spread over a part of the area. Topsoil material originated
from humic horizons of natural soils of the region, mainly Vertisols and partly Chernozems (clayic
and haplic). Topsoil was not mixed with the dumpsite material. Some characteristics of the soils,
including pH, soil organic matter, and texture were measured using bulk control subsamples due to
their importance as environmental indicators. The soil pH range for the area was 5.3–8.5. The soil
organic matter content range was 0.6–3.8%. Texture analysis, which was performed by the hydrometer
method, showed that soil of the area had 37.30% clay, 33.10% sand and 29.60% silt. Disturbed and
undisturbed soil samples were randomly collected at the dumpsite randomly. One-hundred and three
(103) soil samples were collected and a GeoXM (Trimble Inc., Sunnyvale, California, USA) receiver
recorded each sampling point’s position with an accuracy of 1 m. Sampling was performed on a
range of depths from 0 to 25 cm, which corresponds to the common depth of a ploughing soil layer,
as these soils will be used as arable lands in the future. The soil samples were air-dried, ground, and
sieved (≤2 mm) and were thoroughly mixed prior to the analysis and stored in plastic containers. The
dichromate redox titration method was used to measure the soil Cox in three replications [30].

2.2. Soil Spectra Measurement

An ASD FieldSpec III Pro FR spectroradiometer (ASD Inc., Denver, CO, USA) with a high intensity
contact probe was used to measure the spectral reflectance across the optical range (350–2500 nm).
The spectral resolution of the spectroradiometer was 2 nm for 350–1050 nm regions and 10 nm for
1050–2500 nm regions. Furthermore, the radiometer’s full width at half maximum (FWHM) from
350–1000 nm was 1.4 nm, whereas it was 2 nm from 1000–2500 nm. The measurement protocol started
with 30 min of the instrument and light warming up. Air-dried, crushed, sieved and thoroughly mixed
soil samples with 2 cm depth were placed in 9 cm diameter petri dishes to avoid beam reflectance from
the bottom of the dish [31]. Samples were leveled off with a stainless-steel blade to make a flat surface
flush with the top of the petri dish, as a smooth soil surface guarantees maximum light reflection and a
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high signal-to-noise ratio (SNR) [32]. All spectral readings were measured in three replications in the
center of the samples. Before the first scan and after every six measurements, a white SpectralonTM

(Lab-sphere, North Sutton, NH, USA) was used to optimize the spectroradiometer [33]. For SNR
improvement, 30 spectra were averaged for each soil measurement. It needs to be mentioned that
in order to avoid each instrument’s on/off problems (instability and uncertainty), all sample spectra
measurements were done in a single day [8].

2.3. Spectra Preprocessing for Selected Data-Mining Techniques

After collecting the spectral measurements, first, the noisy portions between 350 and 399 nm and
2451 and 2500 nm were removed, followed by smoothing of the spectra using Savitzky-Golay with a
second-order polynomial fit and 11 smoothing points [34,35] to eliminate the artificial noise caused by
various conditions. Data from the laboratory were then preprocessed before the chemometric analysis
with the selected data-mining techniques (PLSR, RF, BRT, SVMR, and MBL) as follows. The outliers of
the spectra were left out using the principle of Mahalanobis distance (H) [36–38], which was applied
on principle component analysis (PCA)-reduced data. In the present study, the number of removed
outliers was four. Then, the first derivative calculation was used as a spectra preprocessing technique,
the transformation of which is very effective for removing baseline offset [11,39].

2.4. Development of Calibration Models for Selected Data-Mining Techniques

Soil Cox was modelled using various data-mining algorithms to compare the prediction capability
of the PLSR, RF, BRT, SVMR, and MBL to PARACUDA-II®, an all possibilities approach (APA)
data-mining and machine-learning engine. It should be mentioned that the samples were divided
into calibration-validation 75–25% groups. To maintain the independence of validation samples from
calibration samples and cover variations in soil properties, the validation dataset was selected using
random stratified selection.

2.4.1. Partial Least Square Regression (PLSR)

PLSR has been a popular technique in chemometric analysis and is used for reflectance
spectra quantitative analysis. It reduces the data, calculation time, and noise with minimum
loss of the information enclosed in the original variables [40,41]. It is closely related to principal
component regression (PCR); however, the PLSR method links the compression and regression steps
and chooses consecutive orthogonal factors that maximize the predictor and response variables’
covariance [7,30,42–44]. By fitting a PLSR model, a few PLSR factors are determined that explain
most of the variations in both predictors and responses [9]. Viscarra Rossel and Behrens [10] and
Gholizadeh et al. [45] stated that PLSR decomposes X and Y variables and finds latent variables, which
are both orthogonal and weighted linear combinations of X variables. These new X variables are then
employed for prediction of Y variables, as follows:

X = Tp’ + E, (1)

Y = Tq + F, (2)

where X is soil reflectance, Y is measured soil property, T is factor scores, p’ and q are factor loadings
and E and F are residuals.

The residual factors simulate noise and can be ignored. The resulting matrices and vectors usually
have a significantly lower dimension than X and Y. Given a new reflectance X, the soil parameter Y can
be predicted as a (bi) linear combination of the factor scores and factor loadings of X [10]. In PLSR, a
crucial step is choosing the optimal number of latent variables in the calibration model, which will
help to avoid underfitting and overfitting of data that generate poor prediction models [20,46]. The R
package Caret was used for the PLSR model [47].
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2.4.2. Random Forest (RF)

The RF is a collaborative data-mining technique developed by Breiman [48] for data classification
and regression. It works by growing a group of regression trees based on binary recursive partitioning.
The algorithm starts with a number of bootstrap samples (ntree) from the original data [49]. Then, with
a modifying operation, in which some of the predictors (mtry) are randomly sampled, each ntree grows
a regression tree and the algorithm selects the best split among the sampled variables rather than all
variables [50]. According to Abdel Rahman et al. [51], the square root of the total number of variables
is considered to be the default mtry value. Generally, the RF prediction for regression problems can
then be written [52] as:

1
M

M

∑
m=1

f̂ ∗m(x0), (3)

where M is the mth bootstrap resample tree (m = 1, . . . , M), x0 is the covariate, and f̂ ∗m(x0) explains the
prediction of an independent test case by the mth tree.

For predicting an independent test case C0 with the covariate x0, the predicted value by the
whole RF is gained by combining the results given by individual trees. RF hardly overfits when using
more trees [48], although it does yield a limited generalization error [53,54]. This method does not
require complex data pretreatment and is very fast compared to some data-mining algorithms such as
ANN [55]. The R package Random Forest was used for prediction modelling [56].

2.4.3. Boosted Regression Trees (BRT)

The BRT method has been suggested by Brown [57] as a reliable data-mining technique for
VIS-NIR-SWIR spectroscopy of soil attributes. Analysis of BRT principally carries out a binary recursive
partitioning of the dataset [58,59]. A predicted value is obtained as the average of all the measurements
at each grouped terminal node. Multiple predictions are generated based on resampling and weighting,
which belong to the group of collective methods [60]. Boosted models can be created in the following
general form:

F(x; {βm, am}M
0 = ∑M

m=0 βmh(x; am), (4)

where h (x; a) is simple classification function or base learner with parameters “a” and input variables
“x”, m is the model step, and βm is the weighting coefficient.

The main benefits of BRT are the potential to include a large number of weak relationships in a
predictive model, insensitivity to outliers in the calibration dataset, relative immunity to overfitting,
and no requirement for uniform data transformations [61–63]. The R package GBM was used for the
BRT modelling [64].

2.4.4. Support Vector Machine Regression (SVMR)

The SVMR technique is a supervised, nonparametric, statistical learning, and kernel-based
approach [65]. It provides balance between the accuracy obtained from a given limited amount of
training patterns and the simplification ability to manage unseen data. The technique is nonlinear and
is applied in classification and multivariate calibration [66]. Model complication in SVMR is limited by
the learning algorithm itself, which prevents overfitting. The ε-SVMR uses training data to create a
model that maps independent data with maximum ε deviation from dependent training dataset [30].
Error within the prearranged distance ε from the true value is avoided and error greater than ε is
disciplined by the soil attribute. The model decreases the training data complication to a subset that is
called support vectors. Vapnik [67] has described the subsequent equation for prediction as below:

y(x) = ∑N
k=1 αkK(x, xk) + b, (5)
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where b is the scalar threshold, K(x, xk) is the kernel function, α is the Lagrange multiplier, N is the
number of data, xk is the input data, and y is the output data.

For this study, SVM with radial basis function as one of the most popular kernels was applied. A
radial basis function can be calculated using the below equation:

ψ(x, xk) = exp

−
∣∣∣∣∣∣(x− xk)

2
∣∣∣∣∣∣

2σ2

, k = 1, . . . , N, (6)

where σ is the width of the radial basis function, which here was determined by a grid search method
using repeated cross validation approach. Additionally, the grid search method was used for choosing
the best parameters for the model. The R package Caret was used for the SVMR model [47].

2.4.5. Memory Based Learning (MBL)

The MBL is a data-driven technique that recalls former situations, adapts them for solving the
remaining issues, studies the option to solve the problem with the new explanation, and memorizes the
skill for knowledge development [27,68]. The algorithm can be obtained more reliable by analogical
analysis compared to the use of abstract mental and rule-based processing [69]. Daelemans and Van
den Bosch [70] stated that MBL is a kind of lazy-learning approach that compares new problems with
cases realized in training and stored in memory. In order to solve a new problem, the experience
is retrieved from memory in the form of a set of analogous related samples which are merged and
the solution to the new problem is built [71]. In fact, for each new problem, a new target function is
established. In MBL, two sets of data are required—a set of n reference samples (e.g., spectral library)
and a set of m samples as the prediction set. It should be noted that it is essential to find out the
k-nearest neighbors of each data in the prediction set before modelling [13,27].

Correlation dissimilarity was applied in the current study for nearest-neighbor selection, which
defines each sample’s most comparable sample in terms of its VIS-NIR-SWIR principal components.
Afterwards, the local models are close fitted using weighted average PLS of all the predicted values
generated by the multiple PLS models between a maximum and minimum number of PLS components.
The weight of each component is calculated as follows:

wj =
1

s1:j × gj
(7)

where s1:j is the root-mean-square of the spectral residuals of the unknown sample when a total of jth
PLS components is applied and gj is the root-mean-square of the regression coefficient corresponding
to the jth PLS components. The R package resemble was used for the MBL modelling [72].

2.4.6. PARACUDA-II®

PARACUDA-II® is a new machine-learning and data-mining engine developed at the remote
sensing laboratory of TAU by Carmon and Ben-Dor [29]. It is a program based on the APA concept, a
conditioned Latin hypercube sampling (cLHS) and parallel programming technique, which offers the
automatic assessment of all possible combinations of manipulations (preprocessing) to the original
reflectance and chemical data before the modelling procedure. PARACUDA-II® has four key steps that
each carries a particular purpose during the modelling process: (i) outlier detection and elimination;
(ii) preprocessing and transformations; (iii) model development and validation; and (iv) (iv) population
analysis and selection of the best model (Figure 2).
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Figure 2. PARACUDA-II® processing framework.

The first step in the PARACUDA-II® arrangement is an outlier detection and removing module for
the spectral and the chemical datasets. The z-score outlier test is used in which samples with chemical
values above or below ±2 are eliminated from the population. For spectral outlier detection, a PCA
calculation is applied in order to extract the first two factors. Samples beyond a 95% confidence ellipse
are identified and removed. Next, the samples are divided into calibration-validation 75–25% sets using a
cLHs technique in which the grouping with the most co-variability is found based on the chemical values,
which confirms the relatively similar value distribution between the two calibration and validation sets.
On the calibration set samples, preprocessing techniques are performed both for the chemical and spectral
values. The next step is preprocessing and transformations. During this step, the chemical values are
transformed using a Box-Cox algorithm to obtain a more normal distribution [73,74]. The spectral data
are preprocessed using eight different spectral preprocessing algorithms, namely, moving average, the
first and the second derivatives, absorbance transformation, CR, SNV, MSC, and final smoothing, in all
possible combinations (up to 120 preprocessing sequences). The correlation between each wavelength
in each preprocessing combination and the chemical values is assessed. For each wavelength then,
the preprocessing combination with the highest correlation to the chemical values is selected and all
manipulations for the spectral dataset are extracted. A new dataset comprising the values of various and
optimal preprocessing methods for every wavelength separately is yielded as the final product of this
step. The best combination preprocessing of spectral data is then modeled with the Box-Cox transformed
chemical data using a PLSR sequence limited to 15 factors. The number of factors is selected by finding
the minimum root mean square error (RMSE) for each factor using cross-validation PLSR models. Then, a
PLSR model is created in step three with the corresponding number of factors on the calibration group
samples. A PLSR model is developed on transformed and preprocessed data without overfitting during
the third step. The sequence begins with the sampling routine and ends when the prediction model
evaluation is repeated 512 times. The validation set samples are preprocessed with the same process
as the calibration samples to examine the developed model. The model is then applied on the samples
and the predicted values are transformed back from Box-Cox values to original chemical values. For
evaluating the model’s performance at the fourth step, the coefficient of determination (R2) between the
measured and the predicted chemical values is calculated and saved. The sequence here begins with the
sampling routine and ends when the prediction model assessment is repeated 512 iterations. The model
resulting in the highest R2 and lowest RMSE, among all created models, is chosen as the best available
model. For providing spectral assignments, two calculations are performed: (1) a R2 per wavelength for
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the preprocessed data and (2) the weighted average beta coefficients of the best model. These spectra are
beneficial for understanding the significant spectral ranges of specific chemical parameters and preparing
further consideration of the results. Outputs of PARACUDA-II® consist of two files. One summarizes
the report of the calibration group, validation group, cross-validation, and the two spectral assignment
spectra in Excel format, which provides measured and predicted values for each parameter. The other file
is an applicable model for applying to new spectral data in MATLAB format, which is helpful for further
validation or practical purposes and is practical on either point spectral data or hyperspectral images
directly from the PARACUDA-II® interface.

2.5. Performance of Models

In order to evaluate the model performance for the prediction of Cox, the statistical parameters
of R2 and RMSEp were used. R2 is a measure of how well the variation of one variable explains the
variation of the other and shows the percentage of the variation explained by a best-fit regression line,
which is calculated for the data, and RMSEp indicates the prediction error. Generally, the largest R2

and the smallest RMSEp give the best prediction model [75].

3. Results

3.1. Soil Cox Statistics

The descriptive statistics of the Cox, determined by the conventional wet chemistry analysis, are
shown in Figure 3 and Table 1. It can be observed that Cox concentration was relatively low with
mean and maximum values of 1.62% and 3.80%, respectively. It is also obvious that there was a large
variation in soil carbon (ranging from 0.40to 3.80%), underlining the varied and diverse origin of the
samples. Coefficients of variation (CV) highlighted that the Cox had relatively high CV (29%), which
shows that it varied rather highly and its distribution was heterogeneous. The rather wide range
of variability indicates that this site is a reasonably optimal case study as according to Kuang and
Mouazen [76], as less promising results of prediction capability of soil calibration models are expected
in cases of low soil variability. The Cox was left-skewed, with a higher mean than median (1.62%
versus 1.57%, respectively).
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Table 1. Descriptive statistics of Cox.

Characteristic Cox (%)

Mean 1.62
Median 1.57

Min. 0.40
Max. 3.80

Std. Dev. 0.47
CV 29

3.2. Soil Spectral Response

Spectral curves of analyzed soils are presented in Figure 4. An average raw spectra form is typical
for soil reflectance, with a gradual increase through VIS wave range (400–700 nm), almost flat segment
in NIR (700–1000 nm), and somewhat lower reflectance values in SWIR-II (1900–2500 nm) [77]. Few
observed absorption features can be attributed to the presence of water (at 1400 nm and 1900 nm)
and clay minerals (at −2200 nm) [2,57,78]. The spectra shape was a key for differentiation of average
spectra after the first derivative preprocessing through visual inspection (Figure 4b). These spectra
were quite different from the raw spectra. There were more features of high variability around 460–550
nm, 1400 nm, 1900–2000 nm, and 2200 nm, which is typical for the noise-removed and preprocessed
spectra of the first derivative technique [11,26].
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preprocessing technique.

Within the PARACUDA-II® procedure, different cumulative preprocessing sequences for each
band in the data were applied. In fact, each band was preprocessed with a different preprocessing
sequence, resulting in a nonlinear spectral dataset. Therefore, displaying an average spectrum of the
data after this routine was not adequate. Consequently, to visualize the implication of the applied
preprocessing approaches, correlograms for raw spectra, first derivative, and PARACUDA-II® were
built (Figure 5).
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Figure 5. The correlogram of the spectra at (A) raw spectra, (B) after the 1st derivative, and (C) after
the PARACUDA-II® preprocessing stage.

Figure 5 highlights that, for obtaining a more superior correlogram, the learning ability of the raw
or preprocessed spectra was noticeably sensitive to the selection of a proper preprocessing technique.
This means that the differences in correlation between each wavelength (in raw data as well as in each
preprocessing approach) and the chemical values (Figure 5) contributed to the successful role of the
PARACUDA-II®.
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3.3. Calibration Model Performance

Scatterplots in Figure 6 show the results of predicted versus measured Cox using six applied
data-mining techniques on validation datasets. The difference in predicting carbon among PLSR, RF,
and BRT was not that obvious according to the scatterplots. Visually, a rather nonsignificant different
pattern can also be seen in Cox prediction using SVMR and MBL based on Figure 6. All techniques for
Cox showed overall acceptable patterns. However, a difference is noticeable between PARACUDA-II®

and other algorithms, especially with PLSR, RF, and BRT. There were significantly less scatters in
prediction of Cox when the PARACUDA-II® engine was used.
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Soil Cox was predicted with R2 values between 0.63–0.80 (Table 2), which are classified as fair
to good models [18]. The statistical accuracy obtained using PLSR, RF, and BRT indicated that for
the Cox content, the methods of prediction could give a reasonable indicator based on spectra from
soil samples. While predictions by them were close, BRT outperformed RF, followed by PLSR, which
performed the least well. While SVMR and MBL yielded almost similar results, they were more highly
predictive than the PLSR, RF, and BRT approaches. However, according to the criteria of maximal R2

and minimal RMSEp, PARACUDA-II®, with R2 = 0.80 and RMSEp = 0.12, was considered to be the
best technique among the others.

Table 2. Performance of Cox prediction on validation dataset using different data-mining techniques.

Data-Mining Technique Cox (%)

R2 RMSEp Bias

PLSR 0.63 0.29 −0.021
RF 0.65 0.23 −0.020

BRT 0.68 0.25 −0.017
SVMR 0.71 0.20 −0.014
MBL 0.73 0.20 −0.013

PARACUDA-II® 0.80 0.12 0.003

4. Discussion

Considering the correlograms and preprocessing performance of PARACUDA-II® (the highest
correlation −0.32 compared to the first derivative and raw spectra, 0.28 and 0.124, respectively) in
Figure 5, PARACUDA-II® appeared as a robust engine for spectral denoising and preprocessing
purposes. This is because of its capability to check all possible preprocessing combinations along with
different statistical methods automatically using eight different spectral preprocessing algorithms in
all possible combinations (totally 120 sequences).

Regarding the assessment of soil carbon using various data-mining algorithms, Viscarra Rossel
and Behrens [10] showed that for the prediction of soil carbon, the RF and BT models produced
the largest RMSEp values and were thus the least accurate. They mentioned that, generally, tree
ensemble approaches (RF and BT) perform weakly. However, Brown [42], Brown et al. [57], and
Gholizadeh et al. [79] proved the advantage of BRT over PLSR for analyzing soil characteristics with
VIS-NIR-SWIR reflectance data. More accurate outputs of BRT in comparison to PLSR are due to
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some of its superiorities, including insensitivity to outliers in the calibration dataset as well as the
capability to utilize a large number of weak classifiers and thereby make maximum use of the entire
spectrum [57,61,63,80]. Conversely, in an experiment by Vasques et al. [40] to predict soil carbon, the
BRT model provided the worst results among many multivariate techniques, including PLSR. Based
on their results, one explanation could be the fact that BRT produces discrete outputs predicting a
single value at each terminal node [40]. This alteration in spectral predictive mechanisms may be
originated by the carbon situation in soil, the nature of available compounds, and the effect of other
relevant factors, such as soil moisture, texture, or iron oxides [2,5,10,30]. Moreover, depending on the
geographic region and its condition, one method may outperform several others [41].

By comparing the results of the SVMR and other techniques, it can be seen that the SVMR
model produced the highest R2 and the smallest RMSEp for Cox prediction rather than PLSR, RF,
and BRT. These results are supported by the results obtained by Viscarra Rossel and Behrens [10],
Gholizadeh et al. [13], Araujo et al. [23], Sorensen et al. [24], and Morellos et al. [25]. The more
exceptional performance of SVMR in comparison to PLSR, RF, and BRT can be explained by its high
ability to deal with the nonlinear patterns as well as its ability to approximate nonlinear functions
between multidimensional spaces [20,81,82]. Viscarra Rossel and Behrens [10] stated that SVMR is
a nonlinear and flexible method, capable of modelling complex, nonlinear, and linear relationships
between variables. It can develop a linear hyperplane as a decision function for non-linear issues,
which reduces problems with heterogeneity and nonlinearity and can be considered as an additional
reason for the method’s merit [23,83]. Nevertheless, SVMR was less accurate when compared to MBL,
which is in agreement with Gholizadeh et al. [13] on soil texture prediction. The better outputs of MBL
can be related to the potential of the technique for choosing a more proper neighbor to calibrate local
models and for being involved in each local model as a source of further predictor variables [27,28,84].

The results gained in our study proved the superior potential of the PARACUDA-II® for soil Cox
estimation in the considered region. In fact, among all examined techniques, it is interesting to note that
the PARACUDA-II® provided the best calibration results. Table 2 shows that the spectroscopic model
developed from the PARACUDA-II® had a R2 value of 0.80 for an RMSEp of 0.12, and both were more
improved than models using other algorithms. These findings confirmed the results of another study by
Gholizadeh et al. [12] that demonstrated the capability of the PARACUDA-II® to perform as an effective
machine for providing the most appropriate model within a given population. They conducted an
experiment in which PARACUDA-II® and PLSR were used to analyze two spectral datasets, acquired
from different protocols at different laboratories, for estimation of some soil attributes namely Cox,
pH-H2O, pH-KCl, and selected forms of Fe and Mn in agricultural soils. Their results indicated that
under both measurement protocols, PARACUDA-II® performed noticeably more effectively compared
to regular PLSR. This superiority can be attributed to the capability of the PARACUDA-II® to apply
preprocessing algorithms on the spectral data using an APA automatic approach. It has the efficiency
to explore in parallel several data manipulations and to generate many calibration-validation groups’
partitions [85]. In addition, this system also applies a dual outlier detection module to recognize
problematic samples both in the spectral and chemical/physical domains. Accordingly, as it is capable
of checking all the existing options, it can generate hidden models that are not accessible by running
regular schemes such as PLSR, RF, BRT, SVMR, and MBL.

The current study strengthened the superiority of the PARACUDA-II® engine performance. It
concluded that the best model could not be found by a random selection of a given chemometric
method or a given preprocessing technique, although the APA should also be taken into account. As
APA requires a skilled person and considerable time, it cannot be achieved if no automatic approach
such as PARACUDA-II® is used.

5. Summary and Conclusions

In this study, the performance of five data-mining techniques (PLSR, RF, BRT, SVMR, and MBL)
was compared against the PARACUDA-II® engine in order to predict Cox in the Pokrok dumpsite
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located in the northeastern part of the Czech Republic. PARACUDA-II® is an engine recently developed
at TAU which has been designed based on APA and cLHs techniques as well as parallel programming
to assess all possible combinations of manipulations (preprocessing) of the original reflectance and
chemical data before a modelling procedure. The results of correlograms derived from raw spectra, the
first derivative, and PARACUDA-II® showed that the learning capability of the raw or preprocessed
spectra were apparently sensitive to the selection of an appropriate preprocessing method. Therefore,
regarding the potential of PARACUDA-II® in all possible combinations of eight different spectral
preprocessing techniques (120 sequences in total), it appeared as a robust engine for spectral denoising
and preprocessing purposes. The results of the calibration models in comparison indicated that all
algorithms outperformed the PLSR, the most commonly used multivariate technique for soil spectral
analysis, in modelling. However, PLSR still provided acceptable accuracy for the prediction of Cox.
The most considerable finding was that the PARACUDA-II® engine, with highest prediction results,
was the best option for soil carbon prediction compared to the selected regular schemes (PLSR, RF,
BRT, SVMR, and MBL). This is essentially because of its potential to assess all the available options
and extract the hidden models. It also surpasses other methods in the automatic procedure it offers,
which permits searching for the best available model. Moreover, the automatic process option of the
PARACUDA-II® promises to be an effective way of reducing the need for both analytical time and a
skilled person. It can be concluded that the PARACUDA-II® data-mining approach is a powerful tool
for obtaining more significant outputs that cannot be achieved using other techniques. In addition,
taking into account that PARACUDA-II® can be run automatically with no man in the loop and with
promising efficiency, it can pave the road for many more applications and analysis that could not be
executed before. It should be mentioned that PARCUDA-II® now has the IP of the TAU and is under
pending patent process. It is currently used for scientific collaboration with institutions that are part of
joint projects with Remote Sensing Laboratory of TAU (TAU-RSL); however, the idea is to make this
engine commercially available to scientists in the near future.

Author Contributions: A.G. and M.S. conceived and designed the experiment; N.C. and M.S. performed and
analyzed the data; E.B.-D. and A.G. interpreted the results; A.G. wrote the paper; and A.G., E.B.-D., and L.B.
reviewed the paper.

Funding: This research was funded by the Czech Science Foundation (project No. 18-28126Y) and partially
funded by the Ministry of Education, Youth and Sport of the Czech Republic projects CENAKVA (project No.
CZ.1.05/2.1.00/01.0024) and CENAKVA II (project No. LO1205 under the NPU I program).

Acknowledgments: Authors wish to thank Vit Penizek and Karel Nemecek for their help and support.

Conflicts of Interest: The authors declare no conflict of interest. Furthermore, the funding sponsors had no role
in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
and in the decision to publish the results.

References

1. Smith, P. Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use
Manag. 2004, 20, 264–270. [CrossRef]

2. Ben-Dor, E.; Banin, A. Near-Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil
Properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [CrossRef]

3. Reeves, J.B., III. Near-versus Mid-Infrared diffuse reflectance spectroscopy for soil analysis emphasizing
carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma 2010,
158, 3–14. [CrossRef]

4. Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915
hyperspectral scanner data—A case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062.
[CrossRef]

5. Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil
properties using a VIS-NIR sensor. Soil Till. Res. 2007, 93, 13–27. [CrossRef]

6. Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral
composition and clay content by vis-NIR spectroscopy. Geoderma 2009, 150, 253–266. [CrossRef]

http://dx.doi.org/10.1079/SUM2004239
http://dx.doi.org/10.2136/sssaj1995.03615995005900020014x
http://dx.doi.org/10.1016/j.geoderma.2009.04.005
http://dx.doi.org/10.1080/01431160010006962
http://dx.doi.org/10.1016/j.still.2006.03.009
http://dx.doi.org/10.1016/j.geoderma.2009.01.025


Remote Sens. 2018, 10, 1172 15 of 18

7. Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near-infrared,
mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil
properties. Geoderma 2006, 131, 59–75. [CrossRef]

8. Ben-Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols.
Geoderma 2015, 245–246, 112–124. [CrossRef]

9. Martens, H.; Naes, T. Multivariate Calibration; John Wiley and Sons: Chichester, UK, 1989; p. 419.
10. Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra.

Geoderma 2010, 158, 46–54. [CrossRef]
11. Gholizadeh, A.; Boruvka, L.; Vasat, R.; Saberioon, M.M. Comparing different data preprocessing methods

for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 2015, 10, 218–227. [CrossRef]
12. Gholizadeh, A.; Carmon, N.; Ben-Dor, E.; Boruvka, L. Agricultural soil spectral response and properties

assessment: Effects of measurement protocol and data mining technique. Remote Sens. 2017, 9, 1078.
[CrossRef]

13. Gholizadeh, A.; Saberioon, M.M.; Boruvka, L.; Vasat, R. A memory-based learning approach as compared to
other data mining algorithms for the prediction of soil texture using diffuse reflectance spectra. Remote Sens.
2016, 8, 341. [CrossRef]

14. Wold, S.; Martens, H.; Wold, H. The multivariate calibration method in chemistry solved by the PLS method.
In Matrix Pencils, Lecture Notes in Mathematics; Ruhe, A., Kagstrom, B., Eds.; Springer: Heidelberg, Germany,
1983; Volume 973, pp. 286–293.

15. Conforti, M.; Castrignanò, A.; Robustelli, G.; Scarciglia, F.; Stelluti, M.; Buttafuoco, G. Laboratory-based
Vis-NIR spectroscopy and partial least square regression with spatially correlated errors for predicting
spatial variation of soil organic matter content. Catena 2015, 124, 60–67. [CrossRef]

16. Shibusawa, S.; Imade Anom, S.W.; Sato, S.; Sasao, A.; Hirako, S. Soil mapping using the real-time
soil spectrophotometer. In Proceedings of the 3rd European Conference on Precision Agriculture,
Agro Montpellier, France, 18–20 June 2001; pp. 497–508.

17. Gholizadeh, A.; Amin, M.S.M.; Saberioon, M.M.; Boruvka, L. Visible and near infrared reflectance
spectroscopy to determine chemical properties of paddy soils. J. Food Agric. Environ. 2013, 11, 859–866.

18. Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-infrared reflectance spectroscopy–principal
components regression analysis of soil properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [CrossRef]

19. Shepherd, K.D.; Walsh, M.G. Development of reflectance spectral libraries for characterization of soil
properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [CrossRef]

20. Bilgili, A.V.; Van Es, H.M.; Akbas, F.; Durak, A.; Hively, W.D. Visible-near infrared reflectance spectroscopy
for assessment of soil properties in a semi-arid area of Turkey. J. Arid Environ. 2010, 74, 229–238. [CrossRef]

21. Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component,
partial least squares and back propagation neural network analyses for accuracy of measurement of selected
soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [CrossRef]

22. Kuang, B.; Tekin, Y.; Mouazen, A.M. Comparison between artificial neural network and partial least squares
for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content.
Soil Till. Res. 2015, 146, 243–252. [CrossRef]

23. Araujo, S.R.; Wetterlind, J.; Dematte, J.A.M.; Stenberg, B. Improving the prediction performance of a large
tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining
calibration techniques. Eur. J. Soil Sci. 2014, 65, 718–729. [CrossRef]

24. Sorenson, P.T.; Small, C.; Tappert, M.C.; Quideau, S.A.; Drozdowski, B.; Underwood, A.; Janz, A. Monitoring
organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy. Can. J. Soil Sci.
2017, 97, 241–248. [CrossRef]

25. Morellos, A.; Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.;
Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture
content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [CrossRef]

26. Nawar, S.; Mouazen, A.M. Predictive performance of mobile vis-near infrared spectroscopy for key soil
properties at different geographical scales by using spiking and data mining techniques. Catena 2017, 151,
118–129. [CrossRef]

http://dx.doi.org/10.1016/j.geoderma.2005.03.007
http://dx.doi.org/10.1016/j.geoderma.2015.01.002
http://dx.doi.org/10.1016/j.geoderma.2009.12.025
http://dx.doi.org/10.17221/113/2015-SWR
http://dx.doi.org/10.3390/rs9101078
http://dx.doi.org/10.3390/rs8040341
http://dx.doi.org/10.1016/j.catena.2014.09.004
http://dx.doi.org/10.2136/sssaj2001.652480x
http://dx.doi.org/10.2136/sssaj2002.9880
http://dx.doi.org/10.1016/j.jaridenv.2009.08.011
http://dx.doi.org/10.1016/j.geoderma.2010.03.001
http://dx.doi.org/10.1016/j.still.2014.11.002
http://dx.doi.org/10.1111/ejss.12165
http://dx.doi.org/10.1139/cjss-2016-0116
http://dx.doi.org/10.1016/j.biosystemseng.2016.04.018
http://dx.doi.org/10.1016/j.catena.2016.12.014


Remote Sens. 2018, 10, 1172 16 of 18

27. Ramirez-Lopez, L.; Behrens, T.; Schmidt, K.; Stevens, A.; Dematte, J.A.M.; Scholten, T. The spectrum-based
learner: A new local approach for modeling soil vis-NIR spectra of complex datasets. Geoderma 2013, 195–196,
268–279. [CrossRef]

28. Clairotte, M.; Grinand, C.; Kouakoua, E.; Thebault, A.; Saby, N.P.A.; Bernoux, M.; Barthes, B.G. National
calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma
2016, 276, 41–52. [CrossRef]

29. Carmon, N.; Ben-Dor, E. An advanced analytical approach for spectral-based modelling of soil properties.
Int. J. Emerg. Technol. Adv. Eng. 2017, 7, 90–97.

30. Vohland, M.; Besold, J.; Hill, J.; Frund, H.C. Comparing different multivariate calibration methods for the
determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 2011, 166,
198–205. [CrossRef]

31. Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective; Prentice Hall: Upper Saddle
River, NJ, USA, 2007; p. 525.

32. Mouazen, A.M.; De Baerdemaeker, J.; Ramon, H. Towards development of on-line soil moisture content
sensor using a fibre-type NIR spectrophotometer. Soil Till. Res. 2005, 80, 171–183. [CrossRef]

33. Shi, T.; Wang, J.; Chen, W.; Wu, G. Improving the prediction of arsenic contents in agricultural soils by
combining the reflectance spectroscopy of soils and rice plants. Intl. J. Appl. Earth Obs. Geoinf. 2016, 52,
95–103. [CrossRef]

34. Ren, H.Y.; Zhuang, D.F.; Singh, A.N.; Pan, J.J.; Qid, D.S.; Shi, R.H. Estimation of As and Cu contamination
in agricultural soils around a mining area by reflectance spectroscopy: A case study. Pedosphere 2009, 19,
719–726. [CrossRef]

35. Song, Y.; Li, F.; Yang, Z.; Ayoko, G.A.; Frost, R.L.; Ji, J. Diffuse reflectance spectroscopy for monitoring
potentially toxic elements in the agricultural soils of Changjiang river delta, China. Appl. Clay Sci. 2012, 64,
75–83. [CrossRef]

36. Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their
spatial structures from hyperspectral Vis-NIR data. Geoderma 2012, 189–190, 176–185. [CrossRef]

37. Mark, H.L.; Tunnell, D. Qualitative near-infrared reflectance analysis using Mahalanobis distances. Anal.
Chem. 1985, 57, 1449–1456. [CrossRef]

38. Shenk, J.S.; Westerhaus, M.O. Population definition, sample selection, and calibration procedure for near
infrared reflectance spectroscopy. Crop Sci. 1991, 31, 469–474. [CrossRef]

39. Duckworth, J. Mathematical data preprocessing. In Near-Infrared Spectroscopy in Agriculture; Roberts, C.A.,
Workman, J., Jr., Reeves, J.B., III, Eds.; ASA-CSSA-SSSA: Madison, WI, USA, 2004; pp. 115–132.

40. Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential modeling of
soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [CrossRef]

41. Yu, X.; Liu, Q.; Wang, Y.; Liu, X.; Liu, X. Evaluation of MLSR and PLSR for estimating soil element contents
using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. Catena 2016, 137,
340–349. [CrossRef]

42. Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Mays, M.D.; Reinsch, T.G. Global soil characterization with VNIR
diffuse reflectance spectroscopy. Geoderma 2006, 132, 273–290. [CrossRef]

43. Wold, S.; Sjostrom, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst.
2001, 58, 109–130. [CrossRef]

44. Maleki, M.R.; Mouazen, A.M.; De Keterlaere, B.; Ramon, H.; De Baerdemaeker, J. On-the-go variable-rate
phosphorus fertilisation based on a visible and near infrared soil sensor. Biosyst. Eng. 2008, 99, 35–46.
[CrossRef]

45. Gholizadeh, A.; Boruvka, L.; Saberioon, M.M.; Vasat, R. Visible, near-infrared, and mid-infrared spectroscopy
applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art
and key issues. Appl. Spectrosc. 2013, 67, 1349–1362. [CrossRef] [PubMed]

46. Xie, X.; Pan, X.Z.; Sun, B. Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil
properties near a Copper smelter. Pedosphere 2012, 22, 351–366. [CrossRef]

47. Kuhn, M. Building predictive models in R using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
48. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
49. Cutler, A.; Cutler, D.R.; Stevens, J.R. Random Forests; Springer: Boston, MA, USA, 2012; pp. 157–175.

http://dx.doi.org/10.1016/j.geoderma.2012.12.014
http://dx.doi.org/10.1016/j.geoderma.2016.04.021
http://dx.doi.org/10.1016/j.geoderma.2011.08.001
http://dx.doi.org/10.1016/j.still.2004.03.022
http://dx.doi.org/10.1016/j.jag.2016.06.002
http://dx.doi.org/10.1016/S1002-0160(09)60167-3
http://dx.doi.org/10.1016/j.clay.2011.09.010
http://dx.doi.org/10.1016/j.geoderma.2012.05.023
http://dx.doi.org/10.1021/ac00284a061
http://dx.doi.org/10.2135/cropsci1991.0011183X003100020049x
http://dx.doi.org/10.1016/j.geoderma.2008.04.007
http://dx.doi.org/10.1016/j.catena.2015.09.024
http://dx.doi.org/10.1016/j.geoderma.2005.04.025
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.biosystemseng.2007.09.007
http://dx.doi.org/10.1366/13-07288
http://www.ncbi.nlm.nih.gov/pubmed/24359647
http://dx.doi.org/10.1016/S1002-0160(12)60022-8
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1023/A:1010933404324


Remote Sens. 2018, 10, 1172 17 of 18

50. Nawar, S.; Mouazen, A.M. Comparison between Random Forests, Artificial Neural Networks and Gradient
Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total
Carbon. Sensors 2017, 17, 2428. [CrossRef] [PubMed]

51. Abdel Rahman, A.M.; Pawling, J.; Ryczko, M.; Caudy, A.A.; Dennis, J.W. Targeted metabolomics in cultured
cells and tissues by mass spectrometry: Method development and validation. Anal. Chim. Acta 2014, 845,
53–61. [CrossRef] [PubMed]

52. Segal, M.; Xiao, Y. Multivariate random forests. WIREs Data Min. Knowl. Discov. 2011, 1, 80–87. [CrossRef]
53. Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer classification and regression tree techniques: Bagging and

random forests for ecological prediction. Ecosystems 2006, 9, 181–199. [CrossRef]
54. Peters, J.; De Baets, B.; Verhoest, N.E.C.; Samson, R.; Degroeve, S.; De Becker, P.; Huybrechts, W. Random

forests as a tool for ecohydrological distribution modelling. Ecol. Modell. 2007, 207, 304–318. [CrossRef]
55. Caruana, R.; Niculescu-Mizil, A. An Empirical Comparison of Supervised Learning Algorithms.

In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, USA, 25–29
June 2006; pp. 161–168.

56. Liaw, A.; Wiener, M. Classification and Regression by Random Forest. R News 2002, 2, 18–22.
57. Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling

in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [CrossRef]
58. Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth International

Group: Belmont, CA, USA, 1984; p. 358.
59. Steinberg, D.; Colla, P. CART: Tree-Structured Non-Parametric Data Analysis; Salford Systems: San Diego, CA,

USA, 1997.
60. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232.

[CrossRef]
61. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to

boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [CrossRef]
62. Friedman, J.H.; Meulman, J.J. Multiple additive regression trees with application in epidemiology. Stat. Med.

2003, 22, 1365–1381. [CrossRef] [PubMed]
63. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting. Ann. Stat.

2000, 28, 337–374. [CrossRef]
64. Ridgeway, G. Gbm: Generalized Boosted Regression Models. Available online: https://CRAN.R-project.

org/package=gbm (accessed on 12 May 2018).
65. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
66. Kovacevic, M.; Bajat, B.; Trivic, B.; Pavlovic, R. Geological units classification of multispectral images by

using support vector machines. In Proceedings of the International Conference on Intelligent Networking
and Collaborative Systems, New York, NY, USA, 4–6 November 2009; pp. 267–272.

67. Vapnik, V. Statistical Learning Theory; Wiley-Interscience: New York, NY, USA, 1998.
68. An, A. Classification methods. In Encyclopedia of Data Warehousing and Mining; Wang, J., Ed.; Idea Group Inc.:

New York, NY, USA, 2005; pp. 144–149.
69. Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997; pp. 24–51.
70. Daelemans, W.; Van den Bosch, A. Memory-Based Language Processing; Cambridge University Press:

Cambridge, UK, 2005; p. 189.
71. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Prentice Hall, Pearson Education Inc.: Upper

Saddle River, NJ, USA, 2003; p. 733.
72. Ramirez-Lopez, L.; Stevens, A. Resemble: Regression and Similarity Evaluation for Memory-Based Learning

in Spectral Chemometrics R Package Version 1.2.2. 2016. Available online: https://cran.r-project.org/web/
packages/resemble/resemble.pdf (accessed on 1 June 2018).

73. Box, G.E.P.; Cox, D.R. An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 1964, 1964, 211–252.
74. Sarathjith, M.C.; Das, B.S.; Wani, S.P.; Sahrawat, K.L. Dependency measures for assessing the covariation of

spectrally active and inactive soil properties in diffuse reflectance spectroscopy. Soil Sci. Soc. Am. J. 2014, 78,
1522–1530. [CrossRef]

75. Kusumo, B.H.; Hedley, M.J.; Hedley, C.B.; Tuohy, M.P.; Arnold, C.G. The use of diffuse reflectance
spectroscopy for in situ carbon and nitrogen analysis of pastoral soils. Aust. J. Soil Res. 2008, 46, 623–635.
[CrossRef]

http://dx.doi.org/10.3390/s17102428
http://www.ncbi.nlm.nih.gov/pubmed/29064411
http://dx.doi.org/10.1016/j.aca.2014.06.012
http://www.ncbi.nlm.nih.gov/pubmed/25201272
http://dx.doi.org/10.1002/widm.12
http://dx.doi.org/10.1007/s10021-005-0054-1
http://dx.doi.org/10.1016/j.ecolmodel.2007.05.011
http://dx.doi.org/10.1016/j.geoderma.2007.04.021
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1002/sim.1501
http://www.ncbi.nlm.nih.gov/pubmed/12704603
http://dx.doi.org/10.1214/aos/1016218223
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=gbm
https://cran.r-project.org/web/packages/resemble/resemble.pdf
https://cran.r-project.org/web/packages/resemble/resemble.pdf
http://dx.doi.org/10.2136/sssaj2014.04.0173
http://dx.doi.org/10.1071/SR08118


Remote Sens. 2018, 10, 1172 18 of 18

76. Kuang, B.; Mouazen, A.M. Calibration of visible and near infrared spectroscopy for soil analysis at the field
scale on three European farms. Eur. J. Soil Sci. 2011, 62, 629–636. [CrossRef]

77. Ben-Dor, E.; Irons, J.R.; Epema, G.F. Soil reflectance. In Manual of Remote Sensing, Remote Sensing for the Earth
Sciences; Rencz, A.N., Ed.; John Wiley & Sons: New York, NY, USA, 1999; pp. 111–188.

78. Brunet, D.; Barthes, B.G.; Chotte, J.L.; Feller, C. Determination of carbon and nitrogen contents in Alfisols,
Oxisols and Ultisols from Africa and Brazil using NIRS analysis: Effects of sample grinding and set
heterogeneity. Geoderma 2007, 139, 106–117. [CrossRef]

79. Gholizadeh, A.; Boruvka, L.; Vasat, R.; Saberioon, M.M.; Klement, A.; Kratina, J.; Tejnecky, V.; Drabek, O.
Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining
dumpsite by reflectance spectroscopy: A case study. PLoS ONE 2015. [CrossRef] [PubMed]

80. Jalabert, S.S.M.; Martin, M.P.; Renaud, J.P.; Boulonne, L.; Jolivet, C.; Montanarella, L. Estimating forest soil
bulk density using boosted regression modeling. Soil Use Manag. 2010, 26, 516–528. [CrossRef]

81. Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Van Wesemeal, B. Measuring soil organic carbon
in croplands at regional scale using airborne imaging spectroscopy. Geoderma 2010, 158, 32–45. [CrossRef]

82. Zornoza, R.; Guerrero, C.; Mataix-Solera, J.; Scow, K.M.; Arcenegui, V.; Mataix-Beneyto, J. Near infrared
spectroscopy for determination of various physical, chemical and biochemical properties in Mediterranean
soils. Soil Biol. Biochem. 2008, 40, 1923–1930. [CrossRef] [PubMed]

83. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In 5th Annual
ACM Workshop on COLT; Haussler, D., Ed.; ACM Press: Pittsburgh, PA, USA, 1992; pp. 144–152.

84. Gupta, A.; Vasava, H.B.; Das, B.S. Choubey, K. Local modeling approaches for estimating soil properties in
selected Indian soils using diffuse reflectance data over visible to near-infrared region. Geoderma 2018, 325,
59–71. [CrossRef]

85. Carmon, N.; Ben-Dor, E. Mapping Asphaltic Roads’ Skid Resistance Using Imaging Spectroscopy.
Remote Sens. 2018, 10, 430. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1365-2389.2011.01358.x
http://dx.doi.org/10.1016/j.geoderma.2007.01.007
http://dx.doi.org/10.1371/journal.pone.0117457
http://www.ncbi.nlm.nih.gov/pubmed/25692671
http://dx.doi.org/10.1111/j.1475-2743.2010.00305.x
http://dx.doi.org/10.1016/j.geoderma.2009.11.032
http://dx.doi.org/10.1016/j.soilbio.2008.04.003
http://www.ncbi.nlm.nih.gov/pubmed/23226882
http://dx.doi.org/10.1016/j.geoderma.2018.03.025
http://dx.doi.org/10.3390/rs10030430
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Site, Soil Sampling and Analysis 
	Soil Spectra Measurement 
	Spectra Preprocessing for Selected Data-Mining Techniques 
	Development of Calibration Models for Selected Data-Mining Techniques 
	Partial Least Square Regression (PLSR) 
	Random Forest (RF) 
	Boosted Regression Trees (BRT) 
	Support Vector Machine Regression (SVMR) 
	Memory Based Learning (MBL) 
	PARACUDA-II® 

	Performance of Models 

	Results 
	Soil Cox Statistics 
	Soil Spectral Response 
	Calibration Model Performance 

	Discussion 
	Summary and Conclusions 
	References

