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Abstract: While considerable research has focused on using either L-band or P-band SAR (Synthetic
Aperture Radar) on their own for forest biomass retrieval, the use of the two bands simultaneously to
improve forest biomass retrieval remains less explored. In this paper, we make use of L- and P-band
airborne SAR and in situ data measured in the field together with laser scanning data acquired
over one hemi-boreal (Remningstorp) and one boreal (Krycklan) forest study area in Sweden. We fit
statistical models to different combinations of topographic-corrected SAR backscatter and forest
heights estimated from PolInSAR for the biomass estimation, and evaluate retrieval performance in
terms of R2 and using 10-fold cross-validation. The study shows that specific combinations of radar
observables from L- and P-band lead to biomass predictions that are more accurate in comparison
with single-band retrievals. The correlations and accuracies between the combinations of SAR
features and aboveground biomass are consistent across the two study areas, whereas the retrieval
performance varied for individual bands. P-band-based retrievals were more accurate than L-band
for the hemi-boreal Remningstorp site and less accurate than L-band for the boreal Krycklan site.
The aboveground biomass levels as well as the ground topography differ between the two sites.
The results suggest that P-band is more sensitive to higher biomass and L-band to lower biomass
forests. The forest height from PolInSAR improved the results at L-band in the higher biomass
substantially, whereas no improvement was observed at P-band in both study areas. These results
are relevant in the context of combining information over boreal forests from future low-frequency
SAR missions such as the European Space Agency (ESA) BIOMASS mission, which will operate at
P-band, and future L-band missions planned by several space agencies.

Keywords: P-band synthetic aperture radar (SAR); L-band SAR; aboveground biomass estimation;
boreal forest; forestry

1. Introduction

Forests are relevant as natural carbon storage in the global carbon cycle and thus, play
an important role for climate change mitigation [1–3]. Information on forest biomass including
its spatial distribution and change over time is essential in this respect as carbon content is related
to forest biomass [4]. In 2013, the European Space Agency (ESA) selected a new satellite mission
called BIOMASS who’s main objective is to provide systematic and spatially-explicit estimates of forest
height, biomass, and biomass change at global scale. The estimates are expected to help improve our
understanding and quantification of forest carbon emissions and sinks, while reducing uncertainties
in the global carbon cycle [5,6]. After launch, expected around 2021, the BIOMASS mission will use
for the first time a space borne P-band synthetic aperture radar (SAR) to retrieve forest height and
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biomass estimates with global coverage of tropical and partial coverage of boreal forests. This band
was selected specifically because of the good sensitivity of P-band backscatter to forest biomass in
different biomes and high temporal coherence which supports complementary forest height retrieval
using PolInSAR techniques [6–14].

In parallel there has been continuous work on forest bio-physical parameter retrieval using
L-, C- and X-band SAR wavelengths [15–20]. In general this research has shown that—based on
current algorithms and measurement systems—long wavelengths like L- and P-band are more
sensitive to forest biomass than X- and C-band systems especially when considering radar backscatter
signals [7,14–18,21]. This is attributed to the higher penetration capabilities of longer wavelengths
which result in better sensitivity of the backscattering coefficient to forest biomass. The good sensitivity
of the backscattered signal at L-band to aboveground biomass levels up to 100 t ha−1 and 150 t ha−1

is well documented [15,16,22–24], whereas for C-band backscatter appears to saturate at lower levels
between 20 t ha−1 and 50 t ha−1 [7,16,21,25]. It is worth noting that newly developed algorithms to
retrieve forest biomass using C-band at scales of a few kilometers can extend this range [26].

In addition to the ESA BIOMASS mission, future L-band SAR missions are being prepared by
several agencies. These include NISAR (NASA and ISRO), SAOCOM (CONAE) and other missions
currently in feasibility studies such as Tandem-L (DLR) and the next generation of ALOS for an L-band
SAR mission (JAXA). Several of these missions also have as an objective to map forest aboveground
biomass and forest heights [27,28] and overlap in time with BIOMASS. This opens up the possibility of
combining spatially coincident measurements over forested areas from BIOMASS with corresponding
measurements from L-band satellite missions to possibly enhance forest biomass retrievals and extend
these in space and time. The potential of combining different radar bands for forest biomass estimation
has been recognized in the past and motivated several studies [12,16,18,19,29]. Other studies suggested
also an improvement of the biomass estimation by combining L-band with optical data and machine
learning algorithms [30–32]. However, for some biomes such as boreal forests and Savannah woodlands
only marginal improvements were observed combining L-band SAR with other frequencies [18,29,33].
This was attributed to the fact that the saturation limit for L-band SAR was not exceeded for the
investigated study areas [18,29].

In addition to measuring the intensity of the radar backscatter, several of the new low-frequency
SAR satellite missions are designed to support polarimetric SAR interferometry using repeat-pass
(BIOMASS, NISAR, SAOCOM) or single-pass (Tandem-L) acquisitions [5,28]. This enables the retrieval
of vegetation height using PolInSAR techniques [5,6,28,34,35] and this additional information can be
used to support biomass estimation [36].

In this study we focus for the first time on combining both radar backscatter and vegetation
height information estimated from PolInSAR at L- and P-band for boreal forests. The data analyzed
in our study was used in the past, where limitations were observed in the individual utilization of
L- and P-band for biomass estimation like limited sensibility of the signal to biomass (e.g., due to
signal saturation), different soil moisture levels and topography [9,10,37]. The combination of different
frequencies (like optical and SAR data) was used in different studies in order to overcome saturation
limits [31,32,38,39]. However, it can be argued that optical data is not optimal for biomass estimation,
whereas L- and P-band are assumed to have highest potential for biomass estimation [7,14–18,21].
Therefore, we assess in our study the potential to overcome limitations in both bands used in isolation
by combining the information from P- and L-band in the same study areas. The aim of the study is to
evaluate and quantify improvements in forest biomass retrieval using both frequencies and compare
these with what can be achieved using only one of the frequencies in isolation (corresponding to
a particular P- or L-band SAR mission). To our best knowledge, it is the first time that this was assessed
in boreal forests and it can be argued that this information is of significance for future SAR missions
using L- and P-band. The total forest biomass range addressed is 0 t ha−1 to 300 t ha−1 which is
representative of full biomass range encountered in hemi-boreal and boreal forests.
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2. Material

2.1. SAR Data

This study makes use of airborne SAR data together with coincident ground measurements
collected during the ESA BioSAR-1 and -2 campaigns (see final reports of the campaign for full
details [40,41]). The campaigns were conducted in March to May 2007 and October 2008 respectively
over two different study areas located in Sweden: Remningstorp and Krycklan (Figure 1).

Figure 1. Location of the Remningstorp and Krycklan study areas in Sweden.

The E-SAR airborne system from the German Aerospace Center (DLR) was used to collect P- and
L-band fully-polarimetric SAR imagery over both sites [40,41]. For P-band the center frequency fc was
350 MHz (λ = 85.7 cm) and 1300 MHz (λ = 20 cm) for L-band. The airborne acquisitions covered about
20 km2 in Remningstorp and 30 km2 in Krycklan. Acquisitions which were suitable for PolInSAR
height retrieval were used in this study. Across-track baselines of 8 m, 16 m, 24 m, 32 m and 40 m
for P-band and 6 m, 12 m, 18 m, 24 m and 30 m for L-band were used in the BioSAR-2 campaign.
In addition, PolInSAR data were acquired with two different flight heading angles with respect to
north in Krycklan (Table 1) [41]. The soil moisture content was substantially higher on 9 March 2007
compared to the other acquisition dates in Remningstorp [10].
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Table 1. Overview of used SAR acquisitions (after [40,41]; θi means incidence angle).

Campaign Site Dates Band θi(
◦) Heading (◦)

Resolution
in Range/

Azimuth (m)

Across-Track
Baseline (m)

BioSAR-2 Krycklan 14 October 2008 P-band 25–55 313 2.1/1.6 8–40
BioSAR-2 Krycklan 14 October 2008 P-band 25–55 133 2.1/1.6 8–40
BioSAR-2 Krycklan 15 October 2008 L-band 25–55 313 2.1/1.2 6–30
BioSAR-2 Krycklan 15 October 2008 L-band 25–55 133 2.1/1.2 6–30

BioSAR-1 Remningstorp 9 March 2007 P-band 25–55 200 2.1/1.6 10 & 80
BioSAR-1 Remningstorp 2 April 2007 P-band 25–55 200 2.1/1.6 30, 40, 50
BioSAR-1 Remningstorp 2 May 2007 P-band 25–55 200 2.1/1.6 20, 60, 70
BioSAR-1 Remningstorp 9 March 2007 L-band 25–55 200 2.1/1.2 8
BioSAR-1 Remningstorp 2 April 2007 L-band 25–55 200 2.1/1.2 8
BioSAR-1 Remningstorp 2 May 2007 L-band 25–55 200 2.1/1.2 8

2.2. Other Data Sets

The Remningstorp study area is a hemi-boreal forest with Norway spruce, Scots pine and birch as
dominating tree species [10], whereas the Krycklan site further north is a boreal forest with dominant
species limited to Norway spruce and Scots pine only [9]. For both sites airborne LiDAR data were
acquired with the helicopter TopEye system covering the whole study areas [40,41]. The average
measurement density was 30 pulses per m2 in Remningstorp and 5 pulses per m2 for Krycklan.
Digital elevation (DEM) and canopy height models (CHM), which were extracted as maximum height
in a grid cell of 0.5 m, were provided. The Remningstorp area is generally flat with elevations ranging
from 120 m to 145 m above sea level [10]. The Krycklan area has a more pronounced topography with
height variations of 100 m to 400 m above sea level [37].

Reference forest biomass data were derived based on field measurements in both sites. In total,
849 circular plots with a radius of 10 m were distributed systematically with a spacing of 40 m.
For each plot the diameters at breast height (dbh) for trees with a dbh larger than 5 cm were measured,
the tree species recorded and tree height measured for a subsample of the trees [10]. Stem volume
was estimated with a stratum specific regression of multiple LiDAR metrics and tree measurements,
which was further applied to all LiDAR raster cells [10]. These estimations were used to sample
58 homogeneous stands in Remningstorp with stand sizes between 0.5 ha and 9.4 ha and an average
size of 2 ha [10,40]. Aerial photography supported the stratification and the definition of the stands
[10]. The stem volume was converted to aboveground biomass by applying a biomass expansion
factor, which was estimated on data collected in 10 independent 80 m by 80 m and 7 independent 50 m
by 20 m sample plots [10,40]. Stands with dominating young forests were considered separately [10].
The 58 stands in Remningstorp had an average aboveground biomass of 129 t ha−1 with a range from
11 t ha−1 to 287 t ha−1 (Table 2). The average error in biomass is estimated to be 25 t ha−1 based on the
independent sample plots [9,10].

Table 2. Summary of aboveground biomass values (in t ha−1) of the forest stands.

Site Mean Standard Deviation Minimum Maximum n

Krycklan 99.1 38.6 27.5 182.5 27
Remningstorp 129.0 54.0 10.5 287.3 58

For the Krycklan site a protocol was used with systematically distributed field plots. They were
distributed in order to sample ten plots per forest stand and dbh measurements starting at trees with
4 cm dbh. Again, tree height was measured for a sample of trees and the height of trees without height
measurements was determined by dbh to tree height relationships and the biomass estimated with species
specific allometric relations [37]. In contrast to Remningstorp where biomass estimation was supported by
LiDAR and aerial photography, the biomass was estimated solely with in situ data. Out of the 31 stands
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sampled, 27 of them were fully covered by the radar acquisitions and used for this study. The stand
biomass values ranged from 28 t ha−1 to 183 t ha−1 with a mean of 99 t ha−1 (Table 2) [37,41].

3. Methods

3.1. SAR Backscatter Processing

The backscatter coefficient γ0 was calculated for both campaigns and radiometrically calibrated
from the complex SAR datasets in two steps, where first γ0 was calculated at flat terrain (γ0

f =
σ0

cos(θi)
,

where σ0 is the normalized radar cross section, θi is the incidence angle which is the angle between the
line of sight and the vertical, and γ0

f represented the backscatter on flat terrain) and second corrected
for topographic slopes. Topography generally alters the backscatter for similar land cover types
and biomass levels and topographic correction is an active area of research [8,42–45]. A first step in
topographic slope correction was to calculate topographic slope αs and the aspect angle φs with respect
to true north using the available LiDAR digital terrain models for each site and Horn’s method [46].
The backscatter on (real) tilted terrain (γ0) was then computed by following the approach of [47],
where it is suggested that the terrain can be described as an opaque volume and the scatterer density
per volume unit is constant. Following this method the terrain corrected backscatter coefficient γ0 was
given by

γ0 = γ0
f
tan(90◦ − θi + αrg)

tan(90◦ − θi)
(1)

where the correction factor represents the ratio of the observed volume on a tilted terrain with respect
to the volume which would have been illuminated in case of a flat terrain [42,47]. The tilt of the terrain
was expressed by the slope steepness angle in range αrg. This was calculated by first estimating the
slope direction with respect to the range direction angle φrg through

φrg = φi − φs (2)

where φs is the topographic aspect angle with respect to true north and φi is the angle between the
line of sight of the radar acquisition and true north in a horizontal plane [42]. Second, the slope
steepness in range αrg was calculated using the slope direction with respect to range direction φrg and
the topographic slope angle of the terrain αs [42]

αrg = arctan(tan(αs) cos(φrg)) (3)

We evaluated the quality of the topographic correction by following procedures suggested
by [42,48], which involved the comparison of backscatter values from different acquisition headings.
For Krycklan anti-parallel headings were used (313◦ and 133◦), providing an ideal setting to test
the performance of the corrections and both covering the full study area with the full range of
topography in the study area. The corrected γ0 values from (1) of both bands within the forest
stands of Krycklan were extracted and the values from the acquisitions with different heading
directions were compared. The values of the respective band and polarization resulted in high
coefficients of determination (R2 = 0.6 to 0.8) and small root mean squared differences (γ0

Di f f =−0.6 dB
to −0.25 dB). These results indicated that the topographic correction used was sufficient in the forest
areas of Krycklan [42,48]. As mentioned above, the Remningstorp area is relatively flat and thus,
we assumed that the topographic correction was also sufficient for this area. It is worth noting that
remaining differences can be attributed to speckle noise, geometrical and registration errors as well as
topographical effects [48].

Look-up tables were provided in addition to the SAR acquisitions in order to determine each
range and azimuth position to a geographic coordinate. These look-up tables were used to geocode
the SAR backscatter images at L- and P-band in HH, HV, VH and VV polarization.
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3.2. PolInSAR Processing

Forest heights have been estimated frequently with PolInSAR from L- and P-band SAR in different
biomes [6,34,35,37,49–51]. The Random Volume over Ground (RVoG) model was used to retrieve the
forest height from the L- and P-band full-polarimetric acquisitions in this study. This frequently
used model is a two-layer-model consisting of a volume layer with randomly oriented scatterers over
an impenetrable ground layer [34,49,50]. An exponential distribution is widely assumed to describe
backscattering distribution of the volume layer [34,51–53]. The L- and P-band data were used separately
to estimate the complex coherences as the cross correlation of two interferometric acquisitions and
to retrieve forest height. The forest height was derived for each acquisition date separately. It can be
assumed that the heights from different acquisition dates were highly correlated [40]. The combination
of different dates was not possible in Krycklan. Therefore, the different dates were not combined in
Remningstorp in order to avoid mixing baseline and temporal information as well as to sustain higher
comparability with the results in Krycklan.

This RVoG model inversion was used to estimate vegetation height from the two bands with
different baselines. Areas with a low coherence (|γ| < 0.3) were masked out in order to avoid erroneous
vegetation height retrieval. The different vegetation height results based on various baselines were
combined for the bands separately. The masked areas were filled with additional vegetation height
estimates from acquisitions with a baseline where the coherence was higher then the coherence
threshold. In areas where multiple valid vegetation height estimates were obtained, the vegetation
height value was selected on basis of interferometric height accuracy as a function of standard deviation
of the phase and the vertical wavenumber in order to achieve best possible inversion results [51,54].
Look-up tables were used again to geocode the vegetation height retrieval information, following
a similar approach to backscatter data preprocessing.

3.3. Statistical Models for Forest Aboveground Biomass Estimation

As mentioned above, the data we used were content of a few previous studies. Therefore,
the aboveground biomass estimation models based on SAR features were built on the findings of
these studies. First, it was found that HV backscatter at L- and P-band had highest sensitivity
compared to other polarizations over the full aboveground biomass range in Remningstorp (11 t ha−1

to 287 t ha−1) [9,10]. In contrast, poor correlations between any single polarization at P-band and
biomass were found in Krycklan with a smaller biomass range (28 t ha−1 to 183 t ha−1) [37].
This was based on the low sensitivity of P-band to low biomass values, but also the topography
in Krycklan [9,37]. However, the difference (or ratio) of HH and VV backscatter was suggested to
overcome these limitations due to fact that this is sensitive to double bounce, which is based on ground
and stem interactions related to stem biomass [29,37]. Further, it can be argued that topographic
effects are similar in HH and VV polarization and thus, the ratio would reduce topographic effects [9].
In addition, forest height estimated via PolInSAR techniques resulted also in high correlations with
biomass [37]. Consequently, we used models based on these previous findings and combined the two
bands in the aboveground biomass estimation models as described in more detail below.

The mean backscatter of the topographic corrected γ0 for the individual forest stands was extracted
for every polarization and band in both study areas. In total, we defined 10 different statistical models
which were used to link forest biomass to radar observables at L- and P-band. The first regression
model B1 was defined by

log10 AGBB1 = a + b · γ0
HV[dB] (4)

where AGB is the aboveground biomass expressed in tons per hectare (t ha−1), a and b are the model
parameters and Bi indicates the model index. It makes use of the log-relationship model between
HV-polarized backscatter coefficient γ0

HV in dB and aboveground biomass that has been extensively
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studied using L- and P-band SAR data over boreal and temperate forests [6,9,10,22,55,56]. The second
model expanded the log-relationship model to include the ratio of HH and VV backscatter

log10 AGBB2 = a + b · γ0
HV[dB] + c · (γ0

HH[dB]− γ0
VV[dB]) (5)

with γ0
HH and γ0

VV representing the backscatter at HH and VV polarization respectively and c
representing a model parameter. The co-polarized ratio had been used by [9] for forest biomass retrieval
as a complement to HV backscatter information as it reduces effects from the ground (e.g., moisture
and topographic effects) as well for its sensitivity to stem biomass via double bounce scattering from
ground and stem interaction.

The third model combined HV polarized backscatter at L- and P-band in a log-relationship model
using multiple linear regression

log10 AGBB3 = a + b · γ0
HV[L-band;dB] + c · γ0

HV[P-band;dB] (6)

In a similar fashion as B2, we used for the fourth model a linear combination of radar observables
from both frequencies with the HV backscatter at L-band and the ratio of HH/VV backscatter at
P-band yielding

log10 AGBB4 = a + b · γ0
HV[L-band;dB] + c · (γ0

HH[P-band;dB]− γ0
VV[P-band;dB]) (7)

The ratio was used because of the reduction of ground effects and the sensitivity to the stem
biomass via double bounce scattering from ground/stem interactions [9,37]. Reference [57] found that
the P-band penetrated deeper into the forest and was more affected by ground contributions than
the L-band backscatter. Thus, it was assumed that the P-band backscatter HH/VV ratio had more
potential to reduce the nuisance effects from the ground and to include sensitivity to stem biomass via
double bounce effects compared to L-band. We calculated and extracted also the co-polarized phase
difference φHHVV for the forest stands in order to verify the relevance of double bounce scattering at L-
and P-band [58,59].

Having defined models based on intensity information only, we defined statistical regression
models that include forest height information derived from PolInSAR as one of the observables.
Linear models have been studied and shown to be useful to estimate aboveground biomass with
heights from interferometric radar [60–62] and thus, we first defined a simple linear function of the
height such that

AGBB5 = a + b · hV (8)

where hV represents the PolInSAR vegetation height. An additional model used in the literature was
based on a power law for the height [60,61,63] yielding the next model as

AGBB6 = a · hb
V (9)

Combining vegetation height estimated from PolInSAR with backscatter information, we
expanded the log-relationship model for HV backscatter γ0

HV adding vegetation height hV as an
additional variable yielding

log10 AGBB7 = a + b · γ0
HV[dB] + c · log10 hV (10)

As an extension we combined HV backscatter and HH/VV ratio in combination with PolInSAR
vegetation height hV such that

log10 AGBB8 = a + b · γ0
HV[dB] + c · (γ0

HH[dB]− γ0
VV[dB]) + d · log10 hV (11)
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Reference [37] suggested substantially higher correlations of aboveground biomass and vegetation
height estimated from L-band PolInSAR compared to P-band. This was mainly based on the fact that
the ground contribution was much larger than the forest canopy contribution at P-band compared
to L-band [37]. Consequently, only the L-band height was used in our study in the combined
biomass estimation. The co-polarized ratio was considered significant in the aboveground biomass
estimation [9] and as mentioned above was assumed to have more potential for the biomass estimation
at P-band than at L-band. Thus, this ratio was also used in the combined models. A saturation of
backscatter at L-band for aboveground biomass levels around 100 t ha−1 to 150 t ha−1 was suggested
in the past [15,16,23,24]. The aboveground biomass of forest stands in Remningstorp exceeded this
biomass and thus, the P-band HV backscatter was used to estimate the aboveground biomass

log10 AGBB9 = a + b · γ0
HV[P-band;dB] + c · (γ0

HH[P-band;dB]− γ0
VV[P-band;dB])

+d · log10 hV[L-band]
(12)

In addition, an aboveground biomass estimation model was also used with L-band HV backscatter
and P-band HH/VV ratio similar to B4 with the extension of L-band PolInSAR vegetation height

log10 AGBB10 = a + b · γ0
HV[L-band;dB] + c · (γ0

HH[P-band;dB]− γ0
VV[P-band;dB])

+d · log10 hV[L-band]
(13)

All model parameters were estimated with least square regression for all models [64,65].
The individual models were applied to the whole coverage of L- and P-band radar acquisitions
in order to create biomass maps for illustrative purposes. The acquisition dates were considered
separately. A forest/non-forest classification, which was described in [66], was used to mask out
non-forest areas for visual purposes. The biomass in logarithmic scale was transformed to linear scale.
The transformation of logarithmic data produces a bias. Assuming that the residuals of the regression
were normally distributed, this bias could be accounted for by a correction factor calculated as 10MSE/2,
where MSE is the mean square error [67]. The correction factor for the logarithmic transformation was
on average 1.01 with 0.01 standard deviation over all models. Therefore, the logarithmic transformation
error was assumed to be negligible in this case.

3.4. Validation of Aboveground Biomass Estimation

The coefficient of determination R2 of each biomass estimation model was calculated with

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (14)

where yi means actual value of i, ŷi means modeled value of i and ȳ is the mean of the actual values.
The different coefficients of determination for the various biomass estimation models were compared.
The t-statistics and corresponding p-values for each coefficient (feature) in the linear models were
calculated in addition to the performance metrics of the different regression models. The p-value
provided information about the significance of a coefficient, where a p-value below the significance
level α of 0.05 resulted in a rejected null hypothesis meaning that the coefficient was considered
significant [64,65]. All available samples in the respective study area were used for these metrics.

An explicit validation data set was not available and thus, a k-fold cross-validation was applied
in order to estimate the goodness of the models [68,69]. The subsamples were selected randomly
and k was set to 10 for all biomass estimation models. The root mean square error (RMSE) was then
calculated for each biomass model in all folds of the 10-fold cross-validation
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RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 & RMSE (in %) =
RMSE

ȳ
× 100 (15)

The RMSE values of the subsamples were finally averaged and their standard deviation was
calculated to assess overall variability in the model fitting. A t-test with the error values of the different
models was performed and corresponding p-values were calculated in order to test if the RMSE
difference of individual models was significant. In addition, the corrected Akaike information criterion
(AICc) was calculated for all models. This metric provides a further quality measure of the models and
is used in model selection processes [70]. Therefore, the combination of R2, RMSE and AICc could be
used to select the best model for the biomass estimation in the hemi-boreal and boreal forest.

4. Results

4.1. Aboveground Biomass Estimation with SAR Backscatter

4.1.1. Remningstorp

The results for the regression models applied to each test site are summarised in Table 3. P-band
backscatter showed a higher correlation with aboveground biomass compared to L-band in the
forests of Remningstorp (Figure 2). The coefficient of determination of the log-relationship model
B1 between HV backscatter and biomass was 0.68 for L-band and 0.73 for P-band on 2 May 2007
(Table 3). The addition of the ratio between HH and VV (B2) increased the R2 value negligible for
L-band, whereas for P-band, an increase to 0.83 was achieved. The lower AICc value for B2 compared
to B1 at P-band confirmed the improvement. A p-value of <0.001 for the HV backscatter at L-band
as well as for the HV backscatter and co-polarized ratio at P-band suggested significance, which was
calculated with the t-test. The R2 values were almost similar at P-band for the different dates (with
different soil moisture) of acquisition with 0.74 for B1 (B2 = 0.83) on 09 March, 2007 and 0.72 for B1

(B2 = 0.83) on 2 April 2007. In contrast, the coefficients of determination at L-band differed on the
different acquisition dates with 0.41 for B1 (B2 = 0.5) on 09 March, 2007 and 0.63 for B1 (B2 = 0.65)
on 31 March 2007. However, main objective of this study was to assess the potential of the L- and
P-band combination for aboveground biomass retrieval and thus, the best case scenario based on the
acquisitions on 02 May, 2007 is further presented.

The aboveground biomass estimation with P-band HV backscatter alone (B1) achieved an RMSE
of 37.4 t ha−1 (25.9%; Table 3), whereas the combination of HV backscatter and ratio of HH and VV (B2)
achieved an RMSE of 31.8 t ha−1 (22%). For L-band, the RMSE of aboveground biomass estimation
was 43.6 t ha−1 (30.2%) using the HV backscatter and HH/VV ratio (B2). It is worth noting that the
combination of HV backscatter and HH/VV backscatter ratio did not only improve the RMSE, but
also the standard deviation of the RMSE was decreased (Table 3).

The combination of L- and P-band HV backscatter in the B3 model improved the R2 to
0.78 compared to the HV backscatter from the bands individually. The L- and P-band HV
backscatter resulted in a p-value of <0.001 in this linear regression model and thus were considered
significant (Table 4). The RMSE of this multiple linear relationship was 36.5 t ha−1 (25.3%; Table 3).
The combination of L-band HV backscatter and P-band HH/VV ratio (B4) improved the R2 to 0.86
and achieved the highest coefficient of determination of all analyzed regressions based on backscatter
information. The AICc value of −95.3 was also lowest in using the intensities only. The aboveground
biomass estimation model B4 resulted in a cross-validated RMSE of 32.9 t ha−1 (22.8%). This was
significantly different compared to the L-band model, but not to the corresponding P-band model B2.
In addition, the standard deviation of RMSE was smallest in the combined aboveground biomass
estimations (B3 and B4) compared to the bands in isolation (B1 and B2). L-band HV backscatter
and P-band HH/VV ratio achieved a p-value of <0.001 and thus, both predictors were considered
significant (Table 4).
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Table 3. Coefficient of determination R2, RMSE and AICc for different aboveground biomass estimation
models (see Section 3.3 for the used predictors in each model). Each row corresponds to the same model
applied to each frequency separately (first 7 columns) and then to both frequencies (last 4 columns).
The standard deviation of the 10-fold cross-validated RMSE is provided (±) and n.a. means not
applicable e.g., no corresponding dual-frequency version of the model. Significance of difference
between single-band RMSE and corresponding combined RMSE (indicated in the same row of the
table) is presented as * for a p-value < 0.05, ** <0.01 and *** <0.001; n.s. means not significant
with significance level α of 0.05. Remningstorp results are based on acquisitions on 2 May 2007 and
Kryckland results are based on 313◦ heading.

Model
L-Band P-Band

Model
L- and P-Band

R2 RMSE (%) AICc R2 RMSE (%) AICc R2 RMSE (%) AICc

R
em

ni
ng

st
or

p B1 0.68 30.2 ± 10.5 * −51.9 0.73 25.9 ± 8.3 n.s. −55.0 B3 0.78 25.3 ± 7.1 −77.7
B2 0.69 29.5 ± 8.5 ** −48.5 0.83 22.0 ± 7.3 n.s. −67.2 B4 0.86 22.8 ± 5.5 −95.3
B5 0.66 24.5 ± 9.4 −34.5 0.34 33.6 ± 8.8 −14.6 n.a. n.a. n.a. n.a.
B6 0.67 24.2 ± 9.3 −30.9 0.36 32.7 ± 8.0 −9.3 n.a. n.a. n.a. n.a.
B7 0.80 23.4 ± 9.0 n.s. −68.0 0.76 24.6 ± 7.5 * −56.0 B9 0.84 21.4 ± 7.4 −92.6
B8 0.80 24.2 ± 7.8 * −65.6 0.83 21.8 ± 6.5 n.s. −73.1 B10 0.86 20.8 ± 8.2 −108.6

K
ry

ck
la

n

B1 0.83 17.4 ± 6.2 n.s. −50.7 0.25 29.5 ± 10.6 * −13.0 B3 0.83 18.6 ± 7.0 −47.9
B2 0.83 18.8 ± 8.4 n.s. −49.8 0.60 24.3 ± 9.3 * −25.1 B4 0.84 18.8 ± 7.2 −49.1
B5 0.61 24.3 ± 8.5 −32.5 0.30 31.7 ± 8.6 −13.3 n.a. n.a. n.a. n.a.
B6 0.65 23.4 ± 8.1 −34.0 0.33 31.0 ± 8.5 −14.4 n.a. n.a. n.a. n.a.
B7 0.84 17.7 ± 7.2 n.s. −48.9 0.55 21.5 ± 11.7 n.s. −25.7 B9 0.75 20.6 ± 9.1 −34.2
B8 0.84 19.7 ± 10.5 n.s. −45.8 0.66 22.7 ± 13.0 * −27.4 B10 0.84 18.9 ± 7.1 −46.5

Figure 2. Log relationship between HV backscatter (γ0 [dB]) and aboveground biomass of forest
stands for P- (left) and L-band (right) in Remningstorp (dashed line is for the uncertainty of the
intercept; 2 May 2007).

Table 4. Significance of coefficients (predictors) in the different aboveground biomass estimation
models in Remningstorp/Krycklan (B1 to B10, see also Section 3.3 for a detailed description of the
models and their coefficients, models with LP include both P- and L-band and * is for a p-value <0.05,
** <0.01 and *** <0.001; n.s. means not significant with significance level α of 0.05; n.a. means not
applicable and this predictor was not used in the respective model; Remningstorp results are based on
acquisitions on 2 May 2007 and Krycklan results are based on 313◦ heading).

Model
L-Band P-Band

γ0 γ0
HH[dB]− γ0

VV[dB] hV γ0 γ0
HH[dB]− γ0

VV[dB] hV

B1 ***/*** n.a. n.a. ***/** n.a. n.a.
B2 ***/*** n.s./n.s. n.a. ***/n.s. ***/*** n.a.
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Table 4. Cont.

Model
L-Band P-Band

γ0 γ0
HH[dB]− γ0

VV[dB] hV γ0 γ0
HH[dB]− γ0

VV[dB] hV

BLP
3 ***/*** n.a. n.a. ***/n.s. n.a. n.a.

BLP
4 ***/*** n.a. n.a. n.a. ***/n.s. n.a.

B5 n.a. n.a. ***/*** n.a. n.a. ***/**
B7 ***/*** n.a. ***/n.s. ***/*** n.a. **/***
B8 ***/*** n.s./n.s. ***/n.s. ***/* ***/* n.s./*

BLP
9 n.a. n.a. */*** ***/n.s. ***/n.s. n.a.

BLP
10 ***/*** n.a. */n.s. n.a. ***/n.s. n.a.

The comparison of co-polarized phase differences φHHVV revealed a higher phase difference for
P-band ranging from −2 to −0.5 with an average of −1.32 compared to L-band with a range of −0.9 to
−0.3 and an average of −0.52 (Figure 3). This confirmed that the penetration depth and double bounce
contribution was higher at P-band compared to L-band resulting also in a higher difference of HH and
VV backscattering.

Figure 3. Comparison of co-polarized phase difference of P- and L-band in the forest stands in
Remningstorp ((a) 2 May 2007) and Krycklan ((b) 313◦).

4.1.2. Krycklan

The log-relationship model B1 with P-band resulted in an R2 of 0.25 in Krycklan (Figure 4).
The utilization of the co-polarized backscatter ratio in biomass modeling (B2) achieved a substantially
higher R2 value of 0.6 and a lower RMSE of 24.1 t ha−1 (24.3%) compared to backscatter only with an
RMSE of 29.2 t ha−1 (29.5%; Table 3). The ratio resulted in a p-value of <0.001 and the HV backscatter
achieved a p-value of 0.068 (Table 4).

In contrast to Remningstorp, L-band backscatter resulted in higher R2 with aboveground biomass
of 0.83 compared to P-band (B1, Figure 4). Similar to Remningstorp, the co-polarized ratio at L-band
was considered insignificant in the B2 model (p-value of 0.826). Further, the AICc value was almost
similar in the combination of HV backscatter and HH/VV ratio (B2) at L-band compared to HV
backscatter alone (B1). The resulting models achieved RMSE values for the log-relationship model B1

of 17.3 t ha−1 (17.4%) and 18.7 t ha−1 (18.8%) for B2 (Table 3).
The L- and P-band combination resulted in an R2 value of 0.84 (B3), which was similar to the

individual L-band results with 0.83 (Table 3). Consequently, no improvement in AICc was observed in
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the combination of P- and L-band HV backscatter (B3). The L-band HV backscatter achieved a p-value
of <0.001 in the biomass regression model B4, whereas the P-band HH/VV ratio resulted in a p-value
of 0.294. Therefore, the ratio could be considered insignificant assuming a significance level at 0.05.
The combination of bands achieved similar accuracies and AICc values compared to the individual
L-band retrieval, whereas the standard deviation of the RMSE was decreased in the combined B4

model (Table 3).

Figure 4. Log relationship between HV backscatter (γ0 [dB]) and aboveground biomass of forest stands for
P- (left) and L-band (right) in Krycklan (dashed line is for the uncertainty of the intercept; 313◦ heading).

The co-polarized phase difference φHHVV was similar to Remningstorp higher at P-band compared
to L-band. The phase difference at P-band ranged from−1.1 to−0.4 with an average of−0.78, whereas
it ranged from −0.7 to −0.14 with an average of −0.38 at L-band (Figure 3). This confirmed again that
double bounce scattering was larger at P-band than at L-band.

4.2. Aboveground Biomass Estimation with PolInSAR Height and Combination with SAR Backscatter

4.2.1. Remningstorp

All PolInSAR heights based on the acquisitions from different dates were highly correlated
(R2 ≥ 0.9) and differed by a root mean squared difference of≤ 2m. Therefore, the correlations between
the vegetation heights at different dates and aboveground biomass were similar, which confirms
equivalent observations in [40]. Consequently, we focus in the following on the vegetation height
results from 2 May 2007 corresponding to the backscatter analysis in Remningstorp.

The vegetation height estimated from P-band PolInSAR approach (B5 and B6) resulted in lower
coefficients of determination compared to the aboveground biomass estimation with P-band backscatter.
A coefficient of determination of 0.36 was achieved with the power model B6 in the correlation of
PolInSAR height and biomass. The linear model B5 resulted in an R2 of 0.34 (Figure 5). In contrast,
the L-band PolInSAR height achieved higher R2 values of 0.67 for the power B6 and 0.66 for the linear
model B5 (Figure 5). The cross-validated RMSE at L-band was 35.4 t ha−1 (24.5%), whereas the RMSE
of the aboveground biomass estimation with P-band PolInSAR height was 48.5 t ha−1 (33.6%; Table 3).

The aforementioned results showed the potential of aboveground biomass retrieval based on
backscatter and PolInSAR vegetation height individually. However, both quantities were also
combined (in models B7 to B10). The utilization of PolInSAR height and backscatter information
at P-band resulted in no or small improvement of R2 compared to backscatter information alone.
The combination of backscatter and PolInSAR height information at P-band achieved an R2 of 0.83 for
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B8 and 0.76 for B7, whereas the R2 for backscatter information alone was 0.83 (B2) and 0.72 (B1, Table 3).
Consequently, the improvement of AICc was small. The PolInSAR height information was considered
insignificant with a p-value of 0.515. In contrast, HV backscatter and ratio of HH and VV backscatter
achieved a p-value of <0.001 and thus were considered significant. The L-band PolInSAR height as well
as HV backscatter were considered significant in the biomass estimation (B7, Table 4). An improvement
of R2 (0.8) and RMSE (23.4%) was achieved utilizing the PolInSAR height in combination with the
backscatter in the model B7 compared to utilizing the various information alone in the model B1

(R2 = 0.68; RMSE = 30.2%). The AICc value improved from −51.9 (B1) to −68.0 (B7).

Figure 5. PolInSAR height and aboveground biomass regression based on P- (left) and L-band (right)
in Remningstorp (Data acquired on 2 May 2007).

The L-band PolInSAR height and the backscatter at P-band were considered significant in biomass
estimation with the individual bands. The combination of these features was also used to estimate the
aboveground biomass in the hemi-boreal forest study area. The combination of P-band HV backscatter,
P-band HH/VV ratio and L-band PolInSAR vegetation height (B9) resulted in an R2 of 0.84 and
an RMSE of 31 t ha−1 (21.4%). All coefficients were considered significant with p-values of <0.001
for HV backscatter and HH/VV ratio and 0.019 for PolInSAR height. Similarly, all coefficients were
considered significant when combining the L-band HV backscatter (<0.001), P-band HH/VV ratio
(<0.001) and L-band PolInSAR height (0.047) in the B10 model. The B10 model resulted in an R2 of
0.86, an RMSE of 30.1 t ha−1 (20.8%) and the lowest AICc value of −108.6 (Table 3). The average RMSE
of the k-fold cross-validation was generally decreased in the combinations of the two bands resulting
in significantly different RMSE compared to L-band B8 model, whereas the standard deviation was
similar or higher in the combination compared to the individual bands.

Aboveground biomass values from 0 to >300 t ha−1 were estimated in the hemi-boreal study
area of Remningstorp. Large agricultural fields were identified in the south and north-west, whereas
highest biomass values occurred in the center of the study area (Figure 6a). In general, the aboveground
biomass estimation with L-band resulted in higher biomass values especially in the west and
north of the study area compared to the estimation with P-band. The combined aboveground
biomass estimation had a similar appearance like the aboveground biomass estimated with P-band
alone (Figure 6a). Deviations from the 1:1 line in the comparison of estimated and actual biomass were
smallest in the combination of backscatter and PolInSAR height compared to the backscatter-based
retrievals of the individual bands (Figure 7).
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Figure 6. Spatial representation of L-band backscatter coefficient γ0 with location of forest stands,
aboveground biomass estimated with backscatter and PolInSAR height at P- and L-band (center)
and biomass model combining the two bands (right) in Remningstorp (a) and Krycklan (b). Please
note that the aboveground biomass of the stands ranged to 183 t ha−1 in Krycklan and 287 t ha−1 in
Remningstorp and thus, estimations above these values may not be reliable.

Figure 7. Estimated aboveground biomass using biomass models B1 with P-band (left), B1 with L-band
(center) and B10 (right) compared to actual aboveground biomass in Remningstorp (a) and Krycklan
(b; line corresponds to a 1:1 relationship).
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4.2.2. Krycklan

The results of PolInSAR vegetation height for aboveground biomass estimation differed
substantially between the bands in their coefficients of determination and accuracies similar to
the backscatter results in Krycklan. The linear regression of aboveground biomass and L-band
PolInSAR height (B5) resulted in an R2 of 0.61 and the power model (B6) achieved an R2 of 0.65
(Figure 8). The coefficient of determination in the linear regression of aboveground biomass and
P-band PolInSAR height was 0.3 (B5, Figure 8). In general, the coefficients of determination in the
regression of aboveground biomass and PolInSAR heights were similar in both study areas. It is worth
noting that the R2 for the exponential models was calculated with (14). This may be inadequate for
non-linear models and only appropriate for linear models [71]. However, the used power models were
close to a linear model in both study areas. Thus, the calculated R2 could be assumed appropriate
also for these non-linear models. The aboveground biomass retrieval with L-band PolInSAR height
achieved an RMSE of 24.1 t ha−1 (24.3%) and the P-band height achieved an RMSE of 31.4 t ha−1

(31.7%) with the linear B5 model.

Figure 8. PolInSAR height and aboveground biomass regression based on P- (left) and L-band (right)
in Krycklan.

As expected based on the results of backscatter information alone in Krycklan, the L-band
achieved highest accuracies also in the combination of backscatter and PolInSAR height information
(B7) with an R2 of 0.84 and an RMSE of 17.5 t ha−1 (17.7%) compared to P-band with an R2 of 0.55
and an RMSE of 21.3 t ha−1 (21.5%; Table 3 and Figure 7 bottom). The ratio of HH and VV as well as
the PolInSAR height did not contribute significantly to the aboveground biomass retrieval in L-band
with p-values of 0.69 and 0.583, whereas the HV backscatter achieved a significant p-value of <0.001
(B8, Table 4). In contrast, the HV backscatter, the ratio of HH and VV as well as the P-band vegetation
height contributed significantly to the regression with aboveground biomass with p-values of 0.01,
0.033 and 0.029 at P-band (B8).

Furthermore, the backscatter and PolInSAR height at P- and L-band were also combined for
aboveground biomass estimation in the Krycklan study area (B9 and B10). The L-band backscatter
was the only significant predictor in the aboveground biomass retrieval with a p-value of <0.001.
The HH/VV backscatter ratio at P-band and L-band PolInSAR height achieved p-values of 0.44 and 0.47
(B10, Table 4). The L-band backscatter in combination with P-band ratio and L-band PolInSAR height
(B10) resulted in a similar R2 of 0.84 compared to L-band individually and an RMSE of 18.8 t ha−1

(18.9%). The lowest AICc value in Krycklan was achieved using the L-band HV backscatter alone
(B1), whereas the combination of L- and P-band did not decrease the AICc. The similar performance
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of biomass estimations with L-band alone or combined with other predictors was also visible in
the deviations of the 1:1 line in the comparison of actual and estimated biomass since they did not
differ substantially (Figure 7). The P-band backscatter, P-band ratio and L-band PolInSAR height (B9)
achieved a coefficient of determination of 0.75 with an RMSE of 20.4 t ha−1 (20.6%; Table 3), where the
PolInSAR height was the only significant predictor (p-value of 0.001).

As expected, the estimated aboveground biomass values were generally lower in the boreal study
area of Krycklan compared to the hemi-boreal forests of Remningstorp. The estimated aboveground
biomass ranged from 0 t ha−1 to >250 t ha−1. Highest aboveground biomass estimates were identified
in the south-east. Lowest biomass values occurred in the south and in the north of the study area
(Figure 6b). In contrast to Remningstorp, the combined aboveground biomass estimation had a similar
appearance than the aboveground biomass estimated with L-band alone (Figure 6b).

5. Discussion

The biomass retrieval performance at L- and P-band when each band is used in isolation varied
strongly from one site to the other. This could be based on the fact that the two sites differ in
their ground topography, forest structure and biomass values, but were similar in their dominating
tree species. However, effects of ground topography were corrected to a certain extent. The cross
comparison of different heading angle flights suggested that topography was corrected sufficiently for
the purpose of the study. Thus, the results indicate a different sensitivity of the two bands to certain
biomass levels. It was observed that P-band performed better than L-band in the biomass estimation
with B1 and B2 model in the Remningstorp site with higher R2 values as well as lower RMSE and AICc.
For the Kryklan site, however, the contrary was true and it was the L-band that provided higher R2

values as well as lower RMSE and AICc. The better performance of L-band in Krycklan compared
to P-band was also observed in a previous study [37]. It is worth noting, that [37] used a different
backscatter coefficient normalization, not accounting for the local topography and thus, correlations
and accuracies between SAR backscatter and biomass were improved in our study compared to the
results from [37]. The stands of Remningstorp had a larger range of biomass of 11 t ha−1 to 287 t ha−1

compared to 28 t ha−1 to 183 t ha−1 in Krycklan. It could be argued that the saturation limit in the
relationship of the backscatter at L-band to aboveground biomass was reached with this range of
biomasses in Remningstorp. Machine learning algorithms and the combination of L-band with optical
data were frequently used to overcome the saturation limit, whereas the potential of optical data for
biomass estimation is also limited [30–32]. The P-band achieved generally higher correlations between
backscatter and biomass in the forest with a larger biomass range compared to the L-band backscatter
and thus, is assumed to have high potential to overcome the saturation limit. This is in line with
observations in boreal forests of Alaska [55], forests of Maine [22] and as expected in the same study
area using the same datasets [10], where all had a similar range of actual biomass of <100 t ha−1 to
about 300 t ha−1. The results of the different acquisition dates with different soil moisture conditions
also suggest that P-band is less sensitive to moisture effects especially after applying the HH/VV ratio,
which reduces these effects. In contrast, L-band seems more sensitive to moisture effects and thus
results in different accuracies of aboveground biomass estimation. The different temporal stability of
the two bands was previously observed using the same datasets [10].

The results of this study indicate that using combinations of radar observables from L- and P-band
lead to retrievals that are more accurate with respect to the study area. This can be seen in the results
for linear models combining γ0

HV for L-band and P-band (B3) and especially for model B4 which uses
γ0

HV at L-band and the P-Band HH/VV co-polarized ratio. These models provided the best overall
performance in the aboverground biomass estimation for both study areas and retrieval accuracy was
at least as good as the best single-band results and in general better. This was confirmed by the lowest
AICc value for biomass retrievals with backscatter only (B4) compared to B1 and B2 in Remningstorp
and similar AICc values for model B4 and B1 at L-band in Krycklan. Consequently, the combination is
complementary due to the different sensitivity to biomass of the two bands.
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The analysis of p-values confirmed that the ratio was more significant than the HV backscatter for
aboveground biomass estimation with P-band data. Reference [9] suggested similarly high importance
of the ratio due to the fact that moisture and topographic effects are similar in HH and VV polarizations
and thus, could be removed in their ratio [9]. HH and VV backscatter differ mainly at double bounce
effects like ground and stem interaction and thus, the ratio might be also sensitive to the stem
biomass and consequently to the total forest biomass [9,29,37]. However, the co-polarized ratio
should be combined with HV backscatter since this polarization has the highest sensitivity to biomass
[6,9]. This is confirmed by the significance of HV backscatter expressed by the p-value in the linear
regressions. Unlike in the case of the P-band, the co-polarized ratio were considered insignificant in
the aboveground biomass estimation with L-band backscatter. This might be due to the fact that the
L-band penetrates less into the forest having a stronger volume component from the canopy than
P-band [57]. Consequently, the double bounce effects from ground and stem interaction as well as the
removal of effects from the ground is limited in L-band, which is confirmed by the comparison of the
phase differences of HH and VV polarization.

In terms of PolInSAR height, L-band heights showed a reasonable sensitivity to forest biomass
with coefficients of determination R2 generally above 0.6 for both sites, whereas P-band PolInSAR
heights did not correlate well with biomass yielding higher errors and lower R2 around 0.3. This is
likely due to the high penetration of the P-band signal into the canopy resulting in a strong ground
contribution and small canopy contribution [37]. A fundamental assumption of the applied PolInSAR
retrieval is that there exists a polarization which contains no ground contribution. The assumption is
likely violated at P-band, which is also confirmed through tomographic SAR (TomoSAR) analysis [57].
Any residual ground contribution in the volume-only coherence results in an overestimation of
height [72]. Further, the frequently applied exponential distribution was assumed to model the vertical
distribution of scatterers, where also other models could be used to improve the PolInSAR vegetation
height retrieval with P-band [51]. In addition, Reference [37] suggested that the across-track baselines of
BioSAR-2 campaign were relatively small resulting in low height sensitivity. Furthermore, the Krycklan
study area was a hilly terrain with an elevation range of about 300 m and thus, it could be assumed
that the topography was an influential factor on the accuracy. All this could result in erroneous
vegetation heights (e.g., a vegetation height despite almost no biomass in Figure 5). This means that
the height values might be inappropriate for forest biomass estimation. The correction of topography
and a stratification of topography, biomass or land cover could increase the accuracy of aboveground
biomass estimation with PolInSAR height [37,51].

In general, it was also observed that the retrieval accuracy using height only is lower than
using intensity observables. However, it could be expected that the P-band PolInSAR height
(and also the P-band backscatter) may be more appropriate in higher biomass forests. For instance,
an improvement of aboveground biomass estimation in other studies in high biomass tropical forests
using the combination of P-band backscatter and vegetation height compared to backscatter alone
was observed [14,73]. In contrast to P-band, L-band PolInSAR heights play an important role in
Remningstorp where R2 increased from 0.68 (B1) to 0.8 (B7), RMSE decreased from 30.2 t ha−1 to
24.2 t ha−1 and AICc decreased from −51.9 to −68.0. This suggests that a larger range of biomass
could be covered in the biomass estimation with L-band SAR than the frequently found saturation
limit. Previous studies suggested to overcome the saturation limit utilizing multi-source data and
machine learning algorithms [30–32]. The overcoming of the saturation limit with a single data source
by combining backscatter and PolInSAR height information could be of significance for future L-band
missions, which enable the PolInSAR technique.

As mentioned above, the single source information (backscatter and PolInSAR height from L- and
P-band) involve uncertainties. These are for example based on topography (backscatter and height),
ground contribution, assumed vertical distribution and baselines in the PolInSAR height retrieval.
Consequently, the combination of different predictors might also add disinformation, which could
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explain the higher RMSE and AICc in Krycklan of the L-band HV backscatter and L-band PolInSAR
height (B7, 19.7%) compared to L-band HV backscatter alone (B1, 18.8%).

The gains in biomass retrieval accuracy and robustness by including PolInSAR forest heights
in the combined regression models are modest when compared to the integration of L- and P-band
intensity measurements. This is evident comparing results from model B4 (intensity only using L- and
P-band observables) and model B10 which integrates L-band PolInSAR height information. A slightly
reduced overall RMSE from 22.8 to 20.8 t ha−1 for Remningstorp and no change in the results for
Krycklan were observed. The R2 was similar for the models B4 and B10 in both study areas.

The general study results as discussed above have useful implications for the BIOMASS mission
and its objectives. The first is that combining L-band and P-band intensity radar observables can lead
to improved and consistent forest biomass information over boreal forests with respect to a single
P-band mission. It seems that both bands are complementary in the aboveground biomass estimation
of northern latitude forests. This means for instance that one band estimates the biomass more
accurate than the other and vice versa depending on the biome and the actual biomass. The ground
topography as well as forest structure and thus biomass is different between the two study areas,
whereas acquisition conditions and dominating tree species were similar. P-band seems more sensitive
to the higher biomass due to its longer wavelength than L-band, whereas L-band is more sensitive
to the lower biomass forest. Consequently, the combination complements the biomass prediction
to a larger range of biomass. The robustness of the results with respect to the different study areas
is especially attractive as the forest biomass conditions on the ground are a priori unknown (as it is
normally the case) and an ideal single band cannot be selected beforehand.

Given the availability of L-band SAR intensity data over boreal forests this is attractive and
further research should be done in order to extend the results in time and space to other study
areas and topographic conditions. For instance, the results suggest that the applied topographic
correction might be sufficient for the two study areas, which is not necessarily the case for other
study areas, where further correction might be necessary by taking for instance the slope angle in
azimuth into account. A further implication is that single frequency L-band SAR missions yield
similar performances to P-band/L-band intensity results only when combined with height estimates
obtained through PolInSAR or other more sophisticated techniques such as TomoSAR. This can be
seen for example at the results for L-band model B8 and B4 for both study areas. In practice due to the
higher temporal decorrelation this implies a single-pass system such as Tandem-L or one based on
a passive receive companion satellite flying in convoy to an active master satellite as has been studied
by various agencies. This would also provide a mean to extend BIOMASS results to areas not covered
by this mission e.g., over North America and Europe due to Space Objects Tracking Radar (SOTR)
constraints [5].

It is important to note that these conclusions are based on the available data i.e. the two study
areas in Sweden. Further, the aboveground biomass was estimated with an accuracy of less than 21%
in the forest of Remningstorp with a stand-level aboveground biomass up to 287 t ha−1. This is close
to the global target accuracy of the BIOMASS satellite, which is 20% [5]. Therefore, research should
continue to improve the accuracy by e.g., using further topographic correction in order to meet the
requested accuracy of BIOMASS. Other studies suggested improved results by combining multi-source
data (like L-band SAR and optical) via machine learning or data fusion algorithms [31], which could
be assessed in the future also for L- and P-band SAR data. Future work could also concentrate on
extending these results to other study areas to verify the generalized conclusions and linking the
results to observations through TomoSAR and modelling activities. In addition, a stratification of
aboveground biomass could be considered in the combination of the two bands in order to select the
ideal band for the actual biomass. In this case, L-band could be used for lower and P-band for higher
biomass strata, which would be further combined to a final aboveground biomass information.
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6. Conclusions

The results from this study confirm that L-band as well as P-band SAR have high potential to
individually estimate forest aboveground biomass. This was investigated in a boreal and a hemi-boreal
forest in Sweden with a stand-level aboveground biomass ranging from 28 t ha−1 to 183 t ha−1 and
11 t ha−1 to 287 t ha−1. It is worth noting at the same time that L- and P-band also showed some
limitations in terms of retrieval. The L-band to biomass relationship was weaker in higher biomass
compared to lower biomass forest, whereas for P-band the opposite was observed. It is worth noting
that the PolInSAR height improved the performance of biomass with L-band in Remningstorp, whereas
no improvement was observed at P-band in both study areas. However, the combination of both
bands resulted in similar or improved aboveground biomass estimation compared to the best results
of the individual bands. The results suggest that the combination of L- and P-band has potential to
overcome limitations of one band for aboveground biomass estimation, where one band estimates
the biomass more accurately than the other and vice versa depending on the actual biomass. This is
especially relevant as the forest aboveground biomass conditions and thus, the ideal single band are
a priori unknown.
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