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Abstract: Aircraft type recognition plays an important role in remote sensing image interpretation.
Traditional methods suffer from bad generalization performance, while deep learning methods
require large amounts of data with type labels, which are quite expensive and time-consuming
to obtain. To overcome the aforementioned problems, in this paper, we propose an aircraft
type recognition framework based on conditional generative adversarial networks (GANs).
First, we design a new method to precisely detect aircrafts’ keypoints, which are used to generate
aircraft masks and locate the positions of the aircrafts. Second, a conditional GAN with a region of
interest (ROI)-weighted loss function is trained on unlabeled aircraft images and their corresponding
masks. Third, an ROI feature extraction method is carefully designed to extract multi-scale features
from the GAN in the regions of aircrafts. After that, a linear support vector machine (SVM) classifier is
adopted to classify each sample using their features. Benefiting from the GAN, we can learn features
which are strong enough to represent aircrafts based on a large unlabeled dataset. Additionally,
the ROI-weighted loss function and the ROI feature extraction method make the features more related
to the aircrafts rather than the background, which improves the quality of features and increases the
recognition accuracy significantly. Thorough experiments were conducted on a challenging dataset,
and the results prove the effectiveness of the proposed aircraft type recognition framework.

Keywords: aircraft type recognition; generative adversarial networks; convolutional neural networks

1. Introduction

With the rapid development of remote sensing technology, the quality and quantity of remote
sensing images have improved significantly, which greatly promotes the progress of remote sensing
image interpretation. Aircraft type recognition is one of the important issues in this field, and it has
been widely used in both civil and military applications. However, due to the complex backgrounds,
shadows, illumination changes, and other factors in remote sensing images, this task still has
many challenges.

In recent years, many effective methods have been proposed to tackle the aircraft type recognition
task. Some methods are designed based on handcrafted features. For example, Hsieh et al. [1] proposed
a hierarchical classification algorithm based on four different features: wavelet transform, Zernike
moment, distance transform, and bitmap. In Reference [2], a coarse-to-fine method is built to integrate

Remote Sens. 2018, 10, 1123; doi:10.3390/rs10071123 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5382-6496
https://orcid.org/0000-0001-7466-3016
http://dx.doi.org/10.3390/rs10071123
http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com/2072-4292/10/7/1123?type=check_update&version=2


Remote Sens. 2018, 10, 1123 2 of 19

the high-level information for aircraft type recognition. A method using artificial bee colony algorithm
with an edge potential function is proposed in Reference [3] to deal with this problem. Although these
methods achieve good results, they rely heavily on handcrafted features, and thus lack generalization
and representation ability, which confines the effectiveness of these algorithms.

Deep learning methods have also been introduced to aircraft type recognition in recent studies.
Wang et al. [4] proposed a self-organizing neural network cooperating with a support vector machine
(SVM) to recognize aircrafts. Fang et al. [5] adopted a back propagation neural network and a series
of preprocessing methods to deal with this problem. Additionally, multi-layer perception [6] and the
deep belief net (DBN) [7] have been applied to recognition tasks. However, the networks used in the
aforementioned methods are not deep enough to learn robust features for recognizing various aircrafts
in complex backgrounds. Meanwhile, many deep convolutional neural networks (CNNs) [8–11] have
achieved outstanding performance on image classification tasks, but these models must be trained on
large-scale datasets [12,13] with category labels. It is quite expensive and time-consuming to acquire
such large-scale datasets, since it requires a great deal of expertise to label aircrafts of different types.

There are also many template matching methods designed to tackle the recognition problem,
since each type of aircraft has a fixed and unique shape in remote sensing images. Wu et al. [14]
proposed a jigsaw reconstruction method to extract aircrafts’ shapes, and then match them with
standard templates. Zhao et al. [15] designed a keypoint detection model based on CNNs,
and a keypoint matching method to recognize aircrafts. Furthermore, Zuo et al. [16] built a template
matching method using both aircrafts’ keypoints and segmentation results, which provided more
detailed information to improve recognition accuracy. Although these methods have achieved
good performance on certain datasets, they cannot effectively tackle images without resolution,
which severely limits their practicality.

Currently, many aircraft images have been accumulated in remote sensing, but only a small
portion of them are labeled with type information. Although template matching methods can work
without type labels, they lack practicality in actual applications. The end-to-end deep models achieve
good performance in natural image classification, however, they always require a large amount of data
labeled with types. Given the current situation of remote sensing data, they cannot perform at their
full potential. Therefore, it is necessary to build a model to learn robust representative features from
unlabeled data for aircraft recognition. A generative adversarial network (GAN) is a potential option.

GANs, first proposed in Reference [17], train both a generator and a discriminator together,
adversarially. To make GANs more suitable for image processing, Radford et al. [18] designed a deep
convolutional generative adversarial network (DCGAN), and they applied it to image classification
tasks. Driven by the effectiveness of GANs, several methods [19,20] based on conditional GANs
have been proposed to tackle image-to-image tasks. These methods usually take pixel-wise semantic
labels of images as the GANs’ conditional input. Benefiting from semantic labels, the conditional
GANs can obtain more information about targets than ones which only take random noise as input.
Thus, conditional GANs can generate images with higher quality and learn more robust and distinctive
features to represent targets, which are potentially useful in classification tasks. However, there are
still some obstacles to applying conditional GANs to aircraft type recognition tasks. First, pixel-wise
semantic labels are too expensive to be acquired. Additionally, the learned features need to be further
refined to distinguish similar aircrafts.

In this paper, we propose an aircraft type recognition framework based on a conditional GAN and
SVM [21]. The proposed framework can learn representative features from images without type labels,
allowing it to generate features more related to aircrafts. This significantly improves the recognition
accuracy. Experiments show that our method outperforms state-of-the-art methods on a challenging
dataset without using image resolution. The main contributions of this paper are as follows:
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1. We propose a framework to deal with the aircraft type recognition problem, which can
learn distinctive features for aircraft recognition from abundant data without type labels.
Only a modest number of labeled samples are required to build the recognition model with
strong generalization ability.

2. We build a model to detect aircraft keypoints in 256 × 256 images by generating heat maps.
This improves the keypoints’ precision significantly by integrating both local and global features.
Meanwhile, we design a strategy to correct the incorrect detections between symmetric keypoints
(e.g., left and right wingtips), which further refines the model’s performance.

3. We build a conditional GAN model based on Reference [20] to learn aircraft features.
First, we replace the pixel-wise semantic labels with the masks generated by keypoints as the
conditional input, which avoids the heavy labeling work. Then, to learn more representative
features, an region of interest (ROI)-weighted loss function is designed to make the model focus
on the regions of aircrafts instead of the background.

4. To promote the quality of features, we design a method named ROI feature extraction to extract
multi-scale features in the exact regions of the targets, which can eliminate the effects of complex
backgrounds and deal with aircrafts of different scales and resolutions.

The rest of this paper is organized as follows: the framework and important parts of our method
are detailed in Section 2. Section 3 outlines the experimental test of our approach and related analyses.
Section 4 discusses some noteworthy issues of our work, based on the experimental results. Finally,
the paper concludes in Section 5.

2. Proposed Method

The framework of our method is presented in Figure 1. First, we build a keypoint detection
model based on an hourglass network [22] to detect an aircraft’s eight keypoints, consisting of the nose,
tail, left wingtip (LW), right wingtip (RW), and the four joints of the wings and fuselage, as shown in
Figure 2. The keypoint detection results play an important role in both GAN feature learning and the
feature extraction stage.

Then, as shown in Figure 1a, a conditional GAN based on Reference [20] is trained to learn relevant
aircraft features. The GAN’s generator takes aircraft masks generated by the keypoints as input
and produces generated samples, while the GAN’s discriminators learn features by distinguishing
generated samples from real images. To deal with aircrafts of different scales and resolutions,
three different discriminators are established to learn multi-scale features. The generator and
discriminators are trained jointly by minimizing the ROI-weighted loss function, which is designed
based on the ROI bounding boxes generated by the keypoints, and enhances the correlation between
the features and the aircrafts.

Finally, as shown in Figure 1b, we extract features from the GAN’s discriminators and build an
SVM classifier to identify aircraft types. Specifically, the input images are rescaled and conveyed to
the three trained discriminators to get the feature maps. Then, based on the ROI bounding boxes,
the ROI feature extraction method processes the feature maps and produces representative features.
Then, we adopt principal component analysis (PCA) to reduce the features’ dimensions and train
an SVM classifier with the reduced features for aircraft recognition. The important parts of the
framework are detailed in the following sub-sections.
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Figure 1. The framework of our proposed model training and recognition procedures. The boxes
with solid lines are algorithm modules, while the boxes with dotted lines are the modules’ outputs.
(a) Training of the generative adversarial network (GAN) model. The generator takes aircraft masks as
input, which are generated based on keypoints, and the discriminators learn features by distinguishing
generated samples from real images. Type labels are not used in the training procedure. (b) Outline
of the recognition procedure. Abbreviations: ROI, region of interest; SVM, support vector machine;
PCA, principal component analysis.

Type A Type B Type C Type D Type E Type F Type G Type H

Figure 2. Examples of the typical images in the dataset. (Top) Eight types of aircrafts labeled with
keypoints (red points)—nose, tail, two wingtips, and the four joints of the wings and the fuselage.
(Bottom) Polygon masks of the same aircrafts generated based on the keypoints. Different types of
aircrafts are indicated with letters from A to H.
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2.1. Aircraft Keypoint Detection

Aircraft keypoint detection methods are proposed in Reference [15,16]. Specifically, they first
resize images to 40 × 40, and then regress the keypoint coordinates directly using CNN models.
Then, the keypoints are transformed back to the original images and used to recognize aircraft types.
However, the methods in References [15,16] use pooling layers to process the whole feature maps from
the previous layers. This operation ignores the local features learned by low layers, which are important
to keypoint detection tasks. Although the method in Reference [16] adopts shortcut connections, it can
only deliver local features to nearby higher layers. Thus, many of the local features from the low layers
are still lost in the final layer, which affects the precision of the keypoints. Additionally, the resizing
and transformation steps lead to inevitable errors.

As mentioned above, we make extensive use of aircraft keypoints in our GAN feature learning
and feature extraction, so accuracy in locating the keypoints is crucial to our work. To avoid resizing
and transformation errors, we detect aircraft keypoints directly in 256× 256 images instead of the
40× 40 images used in the previous methods. Since regression networks neglect the local features of
low layers, we adopt the hourglass model of Reference [22] as the basic keypoint detection network.
It uses a number of convolutional layers and residual blocks to build an encoder-decoder network.
Then, it makes use of skip layers to combine the features of the low and high layers. Because the
network preserves the spatial information on different scales, it provides more detailed features to
locate keypoints precisely. For more details about the structure of the hourglass model, we refer the
reader to Reference [22].

(a) (b) (c) (d) (e) (f) 

Figure 3. An example of the keypoint heat map ground truths of our method. (a) Image; (b) Nose heat
map; (c) Tail heat map; (d) Wingtips heat map; (e) Top Joints heat map; (f) Bottom Joints heat map.

Instead of regression, the hourglass network first generates one heat map for each keypoint,
and then finds the location of the maximum value in each heat map as the keypoint’s coordinates.
For aircrafts in remote sensing images (which are highly symmetric), the model sometimes makes
incorrect detections between symmetric points. Taking wingtips as an example, when we detect the
left wingtip, the heat map may predict the maximum value at the position of the right wingtip, because
they are very similar. To deal with this problem, we detect the pair of symmetric keypoints in a single
heat map. An example of the ground truths of the keypoint heat maps are shown in Figure 3. The nose
and tail are predicted in different heat maps separately, while the wingtips and symmetric joints are
predicted together in the same heat maps. The values of a ground truth map are generated by:

Si,j = exp

−∥∥p− xi,j
∥∥2

2
σ2

 , (1)

where ‖.‖ represents 2-norm, p presents the position of the keypoints, xi,j is the coordinate of a pixel
in the heat map, Si,j is the value of that pixel, and we use σ to control the activating area of a keypoint
in the heat map (the white area in Figure 3). For the symmetric keypoints, the values are the sum of the
Si,j calculated for the two keypoints separately. To avoid the overlap between symmetric keypoints’
activating areas, we calculate the minimum distance between two symmetric joints of all samples in
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the training dataset, and we set σ to about half of this minimum distance, which in our case leads to
σ = 5 pixels.

Next, we get the keypoint positions from the heat maps following Algorithm 1. For a single
keypoint, the maximum activating location of the heat map is predicted as the keypoint’s position.
For symmetric keypoints, we first find the max activating location as the first keypoint. Then, we set
the values of the heat map near this first keypoint to 0, where the neighborhood of the keypoint is
taken to be a circle centered on the found keypoint with a radius of r = 5 pixels, in accordance with
the σ value. After that, we find the other maximum activating location, which is taken as the location
of the second keypoint.

Since we predict symmetric keypoints together, we must distinguish which is the right or left
keypoint relative to the fuselage. We make use of the vector cross-product to distinguish them.
Specifically, we calculate the vector cross-product between the vector from tail to nose and the vector
from a keypoint to its symmetric keypoint. If the result is positive, the second vector is from the right
to the left, and if the result is negative, the direction of the second vector is reversed.

Experiments show that the accuracy of keypoints improves greatly compared with previous
methods, which builds a solid foundation for the GAN feature learning and feature extraction methods.

Algorithm 1 The procedure of obtaining keypoints from heat maps.

Input: Five heat maps
Output: The eight aircraft keypoint coordinates

1: Nose heat map: Find the position of the maximum value as the nose’s coordinate (pn
x , pn

y).
2: Tail heat map: Find the position of the maximum value as the tail’s coordinate (pt

x, pt
y).

3: Calculate the standard direction vector ~d0= (pn
x − pt

x, pn
y − pt

y)
4: for each heat map of symmetric keypoints do

5: Find the position of the maximum value as the left coordinate (pl
x, pl

y).
6: Set the value to 0 in a circle whose center is (pl

x, pl
y) and radius is 5 pixels.

7: Find the position of the maximum value as the right coordinate (pr
x, pr

y).
8: Calculate the direction vector ~di= (pl

x − pr
x, pl

y − pr
y).

9: if ~d0 × ~di < 0 then

10: Swap the left and right coordinates.
11: end if
12: end for

2.2. Conditional GAN with ROI-Weighted Loss Function

GANs were previously proposed in Reference [17]. In contrast to other deep learning methods,
GANs train two networks, called the discriminator D and the generator G, at the same time and
adversarially. The generator is used to capture the data distribution, and the discriminator aims to
estimate the probability that a sample comes from the data rather than G.

To learn a generator distribution pg over data x, the generator builds a mapping function G(z, θg)

from a prior noise distribution pz(z) to the data space. The discriminator D(x̂, θd) takes either raw
data x or the generated samples G(z, θg) as the input x̂, and outputs the probability that x̂ comes from
training data rather than from pg. During training, the parameters of D and G are updated separately.
Specifically, we adjust the parameters of D to assign correct labels to both the training data and samples
from G and we adjust the parameters of G to minimize log(1− D(G(z))). The training procedure is
formulated as:

min
G

max
D

V (G, D) = Ex∼pdata(x) [log D (x)] + Ez∼pz(z) [log (1− D (G (z)))] . (2)

where V(G, D) is the loss function of the GAN, and E(.) is the expectation.
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Based on this basic idea, many improved GANs have been proposed to deal with different
problems, such as the conditional GAN [23], improved GAN [24], DCGAN [18], and WGAN [25].
In image-to-image tasks [19,20], an image-conditional GAN is the most popular choice. This method
aims to translate an input image from one domain into another domain given input–output image
pairs as the training dataset.

In this paper, in contrast to previous methods, we pay more attention to learning robust features
of aircrafts using discriminators rather than generating samples. Thus, we build an image-conditional
GAN based on that of Reference [20]. The proposed GAN consists of a generator and three
discriminators. The generator takes aircrafts’ masks as input, and generates high-quality aircraft
samples. The discriminators take both images and masks as input, and learn representative features by
distinguishing samples generated by the generator from the real images. Note that the discriminators
do not need to identify each aircraft’s type, so type labels are not used in the GAN training procedure.

In image-to-image tasks, pixel-wise semantic labels are often taken as input. The pixel-wise
semantic labels are acquired by precisely assigning a class label for every pixel in the training images.
This kind of label can represent the refined shapes and outlines of objects, but they are quite expensive
and time-consuming to obtain. In this paper, we replace the pixel-wise semantic labels with coarse
labels generated by the aircrafts’ keypoints. Figure 2 shows some examples of the coarse labels.
To obtain them automatically, a polygon is generated based on the keypoints, on an empty image
with the same size as the corresponding aircraft image. The values inside the polygon are set to 1,
while the values outside are set to 0. Since the coarse labels we use are quite different from the widely
used pixel-wise semantic labels, we name the coarse labels as masks to avoid ambiguity. Although the
binary masks are coarse, they still provide a great deal of important information about the aircrafts,
such as basic shapes, berthing locations, and directions, which are all helpful for the generator to
control generative sample patterns and improve their quality.

The architecture of the generator is shown in Figure 4. The generator consists of two components,
marked as G1 and G2. G1 is responsible for learning global features, while G2 focuses more on local
features. G1 takes a downsampled mask of size 128× 128 as input, and produces 128× 128 feature
maps. G2 is decomposed into two sub-networks: GF

2 and GB
2 . GF

2 takes the original masks of size
256× 256 as input and produces feature maps of size 128× 128. Then, we add the 128× 128 feature
maps from G1 and GF

2 together, and convey the sum to GB
2 to produce the final generated samples.

Such a multi-resolution pipeline has been widely used in GAN architectures [20,26–29]. In our work,
we also use this strategy to improve the performance of the generator. Benefiting from the cooperation
of G1 and G2, which concentrate on features of different resolution, the generator can produce samples
with higher quality.

…… ……

G2
F G2

B

G1

8 residual blocks
3 residual blocks+

keypoints
downsample

2
5
6

1
2
8

1
2
8

2
5
61

2
8

generated sample

Figure 4. Architecture of the generator used in this paper. The generator contains two networks:
G1 and G2. G2 is decomposed into two sub-networks: GF

2 and GB
2 .

To deal with aircrafts of different scales and resolutions, the proposed GAN contains multiple
discriminators, which have an identical network architecture as shown in Figure 5. Each discriminator
contains five convolutional layers with a kernel size of 4 × 4 and a padding size of 2. The first
three layers have strides of 2 and others have strides of 1. All of the layers are equipped with batch
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normalization and a rectified linear unit (ReLU) except for the last layer. The discriminators take
images of different sizes and their corresponding masks as input. To increase the distinctiveness of
features, we set the input images’ sizes as different integer powers of 2. To avoid heavily mixing the
aircraft and background information in the feature maps of the discriminators, we only downsample
the input twice. Therefore, we build three different discriminators and set the input image sizes to
256× 256, 128× 128, and 64× 64. The discriminator with the larger input will focus more on the local
features, while the discriminator with smaller input is inclined to learn global features. Benefiting
from the cooperation of the three discriminators, the learned features are strong enough to represent
aircrafts of different scales and resolutions.

Figure 5. ROI weighted loss function. The ROI is the minimum outer rectangle, encompassing the
keypoints. The light blue grid values of the ROI weight map are set to 1, while the deep blue grid
values are set to λ. Additionally, the parameters of the discriminator are annotated, where s represents
the size of stride and p represents the size of padding. MSE represents the mean square error.

As shown in Figure 2, some aircrafts only occupy small regions in the images. They can be easily
ignored by the discriminator networks. Therefore, we input the images along with the masks to
make the networks concentrate on the aircrafts rather than the background. To further deal with this
problem, an ROI-weighted loss function is carefully designed based on the loss function proposed
in LSGAN [30]. Specifically, as shown in Figure 5, for an input image, we first create a matrix with
the same size as the outputs of the discriminators which is initialized to the value 1 at all locations.
Then, we set the values of the ROI in the matrix to λ, where the ROI is obtained by finding the
minimum outer rectangle of the detected keypoints and adjusting according to the appropriate scaling
ratio. The result of this process is the ROI weight map in Figure 5, where the ROI is annotated with
the deep blue color. Finally, we multiply the matrix with the calculated loss map element-by-element,
and calculate the average. The loss function is formulated as:

L =
1

MN

M

∑
i=1

N

∑
j=1

wij
(

pij − p̂ij
)2, (3)

where M and N are the width and height of the matrix, pij represents the value of the predicted value
map, p̂ij represents the values of the ground truth, and wij represents the values of the ROI weight
map matrix, all at the point i, j. Finally, wij takes a value of either 1 or λ.

In particular, we adopt rectangular regions rather than polygon masks in the weight computation.
Since the values of feature maps are calculated by convolution, many feature values around the
position of an aircraft are also related with the aircraft. Besides, rectangular regions match with the
ROI feature extraction method, which is detailed in Section 2.3.
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We train the model end-to-end by minimizing the ROI weighted loss function following the
procedure of Reference [20]. Experiments demonstrate that our model is able to extract representative
features to distinguish different aircrafts.

2.3. Multi-Scale ROI Feature Extraction

Considering that the trained discriminators can distinguish real images from generated samples,
the features learned by the discriminators can represent various aircrafts. However, the dimension
of features is too large to be manipulated. Additionally, the features not only contain information
about the aircrafts, but also contain redundant information related to the background. Therefore,
it is necessary to refine the features before they are applied to aircraft type recognition.

In this section, we propose a method named ROI feature extraction to build a multi-scale feature
vector of a modest size for aircraft type recognition. The method can extract representative information
to distinguish aircrafts of different scales. In addition, it eliminates the effects of the background
by using the ROIs generated by keypoints and makes the features more relevant to the aircrafts,
which significantly improves the recognition accuracy.

First, to avoid explosive feature dimensions and large amounts of useless information, we must
carefully select which feature maps (i.e., outputs of the convolutional layers) to extract features from.
The low layers of CNNs learn the targets’ local features. On the contrary, the high layers focus more
on global semantic features, which are more effective in recognition tasks. Thus, we choose to extract
features from the last feature maps of the discriminators.

Second, we use max pooling to reduce the feature dimension and refine the features further,
since it can keep the most distinctive values. However, if we directly pool all of the feature maps,
the features we obtain contain not only the aircraft information, but also the background information.
Since the background information is not related to aircrafts, it is redundant to aircraft recognition and
decreases the distinctiveness of the features. Therefore, we design an ROI feature extraction method
based on keypoints to obtain aircraft features and eliminate background information. Specifically,
as shown in Figure 6, we first calculate the minimum outer rectangle containing the keypoints of an
aircraft, and map it to the last feature map of the discriminator according to the appropriate scaling
ratio. Then, we divide an ROI into h× w grids and each grid contains H

/
h×W/w pixels, where H

and W are the height and width of the ROI. In each grid, the maximum value is extracted and all of
the maxima are combined into a vector. The values outside the ROI are abandoned. Then, we obtain
a feature vector of size h× w, which focuses on the aircrafts themselves rather than the background.
Hence, they are much more distinctive for aircraft type recognition.

discriminator network mask and image

max pooling flatten

ROI feature extraction

h
 g

rid
s

H
 p

ix
e

ls

keypoints

Figure 6. ROI feature extraction method. The ROIs are located by keypoints and mapped to the last
feature map according the scale ratio. After that, the features are extracted from the ROIs by the method
we designed.

Third, to deal with various aircrafts of different scales, multi-scale information is necessary.
In Section 2.2, we trained a GAN with three discriminators which take images of different scales
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as input. Different discriminators pay attention to features of different scales. The discriminator
with small-scale input is inclined to learn global features, while local features are more noticeable
for the discriminator with large-scale input. Hence, we extract features separately from the three
discriminators using this ROI feature extraction method. Then, we concatenate the three vectors into
one feature vector. Since the feature contains multi-scale aircraft information, it outperforms the feature
extracted from a single discriminator in aircraft type recognition, which is proved by the experiments
in Section 3.4.

2.4. Aircraft Type Recognition

Finally, we use the outputs of the previous methods to build a method for aircraft type recognition.
For the purpose of avoiding unnecessary cost of time and overfitting, we adopt PCA to process the
obtained features and further reduce their dimensions. Then, we train a linear SVM classifier to
identify each aircraft’s type with the processed features. Benefiting from the modules that we designed
to learn and refine features, a simple classifier can achieve good performance on a challenging dataset.
We verify the effectiveness of our methods, through the experiments outlined in the following section.

3. Experiments and Results

3.1. Dataset

Our dataset was collected publicly from Google Earth. It contains 562 large-scale optical remote
sensing images with size 16,393× 16,393× 3 at different airports around the world. We annotated each
aircraft’s eight keypoints manually in large images. Then, we obtained the aircraft crops following the
procedure in Algorithm 2.

Algorithm 2 The procedure of obtaining aircraft crops from large images.

Input: Large images with keypoint annotations
Output: Aircraft crops with keypoint annotations

1: for each aircraft in large images do

2: Calculate the minimum outer rectangle based on the keypoint annotation, whose size is (w0, h0)
3: Calculate the minimum outer rectangle’s start point (x0, y0)
4: Randomly select a scale ratio s in the range [1.0, 2.0]
5: Set the crop size (w, h) tol(max(w0, h0)× s, max(w0, h0)× s)
6: Randomly select crop start point x in range [x0 − (w− w0), x0], y in range [y0 − (h− h0), y0]
7: Crop the image with start point (x, y) and size (w, h)
8: for each keypoint (px, py) do

9: px = px − x
10: py = py − y
11: end for
12: end for

From this, we obtained 40,000 optical satellite remote sensing image crops. Each crop contained
one and only one complete aircraft. All crops were resized to 256× 256 to fit the keypoint detection
network and GAN models. As shown in Figure 2, there were various kinds of aircrafts, berthing
in random positions with different directions in the dataset. It is worth noting that there were
16,000 crops of eight types in the training dataset labeled with type information (2000 crops for each
type), which were used to train the SVM classifier.

For the keypoint detection network, the dataset was divided into two sub-datasets for training
and validation. The training dataset contained 30,000 crops and the validation dataset contained
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10,000 crops. To increase the abundance of data, we augmented the training dataset by rotating 0◦,±90◦,
and 180◦, and also flipping horizontally and vertically. In total there were 18,000 crops for training.

For the GAN, the mask of each crop was generated based on the labeled keypoints. We randomly
selected 35,000 image pairs to train the GAN. The other 5000 images were used to monitor the quality
of the generated samples and evaluate the training of the network.

To evaluate the performance of our method, we built another testing dataset. The testing dataset
contained eight types of aircrafts, and each type had 1000 crops. All crops were labeled with keypionts
and type information. All of the experimental results were produced on this testing dataset in this
paper. Note that none of the crops in this dataset participated in the training of the keypoint detection
network, GAN model, or SVM classifier, and the aircraft crops in the testing dataset and training
dataset are from different airports.

3.2. Implementation Details

For the aircraft keypoint detection model, we trained the network from scratch using Adam [31]
with a mini-batch of 16. The learning rate started from 0.001, and was divided by 10 when the loss
plateaued. The network was trained for up to 30 epochs in total. In the testing stage, we ran the original
input image as well as flipped (horizontally and vertically) and rotated (0◦,±90◦, 180◦) versions of the
image through the network, then averaged the heat maps together to further improve the precision.

For the GAN model, we trained the network from scratch using Adam with a mini-batch of
16. The learning rate was set to 0.0002 and the network was trained for up to 50 epochs on the
training dataset.

Both the keypoint detection network and the GAN were built on PyTorch. We trained and tested
the networks on a NVIDIA K80 GPU with 24 GB of memory.

For the SVM classifier, we first used PCA to process the features extracted from GAN.
Then, a linear SVM with L2 regularization was adopted for classification. Both the PCA and SVM were
built on scikit-learn [32], and we trained and tested the models on an Intel Xeon CPU@2.40 GHz.

3.3. Aircraft Keypoint Accuracy Evaluation

We evaluated the performance of the keypoint detection network using the mean error [16].
Mean error is defined as the Euclidean distance between the predicted keypoints and the ground truths
normalized by the length of the aircraft’s fuselage. We compared our methods with other methods,
and the results are shown in Tables 1 and 2.

Table 1. Mean errors (%) of different keypoint detection methods. LW: left wingtip; RW: right wingtip.

Method Nose Joint-1 LW Joint-2 Tail Joint-3 RW Joint-4 Mean

Method in Reference [16] 5.47 4.52 5.75 4.28 5.93 4.30 5.63 4.34 5.03
ResNet-18 Regression 4.43 3.77 4.64 3.85 4.97 3.59 4.33 3.58 4.13

Original Hourglass [22] 4.54 3.34 4.39 3.12 5.20 3.17 4.58 3.20 3.94
Proposed Method 3.85 3.25 3.95 3.14 4.67 3.13 3.87 3.17 3.63

Table 2. Euclidean distance (pixels) of different keypoint detection methods.

Method Nose Joint-1 LW Joint-2 Tail Joint-3 RW Joint-4 Mean

Method in Reference [16] 8.84 7.35 9.15 6.93 9.89 6.96 8.93 7.09 8.10
ResNet-18 Regression 7.20 6.23 7.61 6.37 8.30 5.90 7.08 5.95 6.83

Original Hourglass [22] 7.57 5.46 7.18 5.02 8.80 5.16 7.42 5.26 6.48
Proposed Method 6.54 5.39 6.52 5.08 7.74 5.04 6.32 5.24 5.98

First, we compared our method with the original hourglass method [22]. The results in Table 1
show that our method outperforms the original hourglass method. The improvement on locating
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the wingtips is most significant, since our method is able to correct the incorrect detections between
symmetric keypoints. Although the incorrect predictions between joints are also corrected by our
method, as shown in Figure 7, the mean errors of these keypoints do not apparently decrease.
The reason is that the distances between symmetric joints are very short, and a small amount of
wrong detections do not have an obvious statistical impact on the entire dataset. More testing
samples are shown in Figure 7, indicating that our method can distinguish right from left keypoints
effectively, despite the similarity between symmetric keypoints. Additionally, since our method
reduces the concussion of the loss caused by incorrectly detected symmetric keypoints during the
training, the precision of the nose and tail also improved greatly compared with the original hourglass
method.

Then, we compared our method with the state-of-the-art aircraft keypoint detection method [16],
which builds a CNN model to regress keypoint positions directly. Following the procedure in
Reference [16], the input images were first resized to 40× 40, then conveyed to the regression network
to get the predictions. We transformed the predictions back to 256× 256, and compared them with the
results of our method as shown in Table 1. Limited by the capability of the regression network and the
inevitable errors caused by the resizing and transformation operations, the performance of the method
in Reference [16] was worse than our method on all eight keypoints. To enhance the network and avoid
the resizing and transformation errors, we built another regression model based on ResNet-18 [11] and
compared its performance with that of our method. We trained the ResNet-18 regression model from
scratch by minimizing the mean square error normalized by aircraft length as in Reference [16], and
the results are shown in Table 1. Although the ResNet-18 regresses keypoints directly in 256× 256
images, its performance was still worse than ours since the regression network neglects crucial local
features which are used to precisely locate keypoint positions.

We report the Euclidean distance errors of different methods in Table 2. It can be found that
our method produced more accurate results than other methods. Compared with the state-of-the-art
method [16], our method decreased the Euclidean distance error by more than 2 pixels on average.

Figure 7. Examples of aircraft keypoint detection results on a testing dataset: (top) the results of our
method; and (bottom) the results of the original hourglass model [22]. The noses are annotated with
yellow dots and the tails are annotated with green dots. All of the left keypoints are annotated with
blue dots, while all of the right keypoints are annotated with red dots.

3.4. Aircraft Type Recognition Accuracy Evaluation

We conducted thorough experiments to evaluate our method’s performance in aircraft type
recognition. In the experiments, the λ of the ROI-weighted loss function was set to 8. We extracted
features from the three discriminators, which take images of size 256× 256, 128× 128, and 64× 64 as
input, using the ROI feature extraction method. We set the ROI grid sizes of the three discriminators to
5× 5, 3× 3, and 2× 2, respectively. Since the obtained feature contained 19,456 components (which is
quite large for SVM), we adopted PCA to process the feature. Through experiments, we found that
the first 4096 components contained almost all of the useful information, and its performance was
comparable with the entire feature. In the interest of speed and accuracy, we retained 4096 components
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after the PCA transformation and we trained a linear SVM with L2 regularization based on these
features, to identify each aircraft’s type.

3.4.1. Evaluation of the ROI-Weighted Loss Function

To evaluate the effectiveness of the ROI-weighted loss function, we trained GAN models with
the same structure by minimizing different loss functions. One of the GANs was trained with the
LSGAN loss function [30], while the other GANs were trained with the ROI-weighted loss function
using different weight values λ. We extracted features from those GANs using the same ROI
feature extraction method with default parameters, and trained two linear SVM classifiers using
the features processed by PCA. Table 3 shows the results of the GAN models. Benefiting from the
recognition framework we designed, our method can achieve 91.41% recognition accuracy on the
challenging dataset with only the LSGAN loss function. After adopting the ROI-weighted loss function,
the recognition accuracy of our method is further improved. The reason is that the ROI-weighted
loss function causes the model to focus on the aircrafts rather than the background, and the features
learned by the GAN model are thus more relevant to the aircrafts. Through experiments, we found
that, when we set λ = 2, the recognition accuracy is slightly better than the model without using the
ROI-weighted loss function. By increasing the value of λ, the recognition rate increases gradually.
However, when the λ > 8, the recognition rate cannot be improved further. If we set λ to a larger
value, we would need to use a smaller learning rate in the training stage to ensure training stability,
which slows down the speed of convergence. Given that, we set λ = 8 in our experiments.

Table 3. Recognition rates (%) of GANs with different loss functions. RWL: ROI-weighted loss function.

Method Type A Type B Type C Type D Type E Type F Type G Type H Mean

LSGAN Loss 95.40 98.10 98.20 83.70 85.70 95.10 83.80 91.50 91.41

RWL λ = 2 93.90 97.60 99.30 88.30 82.60 94.20 83.40 97.40 91.46
RWL λ = 4 93.50 98.10 99.30 84.50 84.20 94.50 83.30 97.60 91.88
RWL λ = 8 93.80 97.80 99.30 88.00 89.90 96.70 83.40 92.90 92.73

RWL λ = 10 93.20 99.30 99.30 82.20 90.80 96.80 81.90 96.40 92.49
RWL λ = 16 93.60 98.70 99.30 88.70 85.60 96.80 81.10 98.10 92.73

3.4.2. Evaluation of the ROI Feature Extraction Method

To prove the effectiveness of extracting features in the ROI rather than the entire feature map,
we conducted experiments with two different feature extraction methods: (1) extracting features using
the proposed extraction method on only the ROI; and (2) extracting overall features from the entire
feature map with the same operations as Technique (1). In both methods, we extracted features from
the three discriminators with grids sizes of 5× 5, 3× 3, and 2× 2 separately. Then, the features were
flattened and concatenated to train the linear SVM classifier.

The results are shown in Table 4. It can be seen that the recognition framework with the overall
features achieves 88.09% accuracy on the testing dataset. Although the overall features can distinguish
aircrafts of different types, the mixture of background and aircraft information still has a serious
influence on the recognition accuracy. On the contrary, the ROI feature extraction method uses the
keypoint detection results to locate ROIs and ignore background regions. Therefore, the ROI features
abandon redundant information and preserve the most distinctive components. Compared with
overall features, ROI features bring about a 4.64% accuracy gain. It is worth noting that the recognition
accuracy of each aircraft type is improved by using the ROI features.
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Table 4. Recognition rate (%) of different feature extraction methods.

Method Type A Type B Type C Type D Type E Type F Type G Type H Mean

Overall Features 91.80 94.90 96.60 83.10 88.00 94.10 66.60 89.60 88.09
ROI Features 93.80 97.80 99.30 88.00 89.90 96.70 83.40 92.90 92.73

3.4.3. Evaluation of the Multi-Scale ROI Features

We compared the three level multi-scale features with other features extracted from different
discriminators, including single-scale features and features obtained by combing two different scales.
As the results in Table 5 show, thanks to the recognition framework we designed, the features of
single scales can achieve good recognition performance. With the single-scale feature F256 or F128,
the recognition framework achieves more than 87% accuracy. After combining a single scale feature
with another scale feature, the recognition accuracy improves significantly, since features from different
discriminators contain information of different resolution and they complement each other to achieve
better results. It is worth noting that the recognition accuracy decreases substantially with an input
size of 64× 64, since the aircraft and background information is heavily mixed in the final feature maps
of the discriminator. Therefore, we did not downsample the input further. Although the accuracy of
F64 is less than 80%, when combining F64 with F256 or F128, it increases the accuracy by 1.89% and 1.58%,
respectively. Compared with the features of two scales, the feature formed by combing three scales
make further progress in the recognition accuracy of all aircraft types. The results show that every
single scale feature contains unique information which cannot be replaced by others scale. Multi-scale
features can make full use of the information, and thus they have the ability to accurately identify
aircrafts of different sizes and resolutions.

Table 5. Recognition rates (%) of different scale features. Fn represents the features extracted from the
discriminator which has input image of size n× n, and & represents concatenating features.

Features Type A Type B Type C Type D Type E Type F Type G Type H Mean

F256 87.40 93.10 98.30 85.10 81.40 94.20 77.60 92.00 88.64
F128 87.30 94.10 95.50 83.30 82.00 96.20 71.30 91.60 87.66
F64 74.90 90.00 91.10 64.10 76.30 94.10 53.90 64.10 79.20

F256 & F128 92.90 96.70 99.00 87.20 88.30 95.00 81.60 91.40 91.51
F256 & F64 93.00 96.20 98.80 83.00 86.70 95.90 78.40 92.90 90.53
F128 & F64 87.40 96.70 97.40 82.90 86.70 92.20 74.20 92.20 89.24

F256 & F128 & F64 93.80 97.80 99.30 88.00 89.90 96.70 83.40 92.90 92.73

3.4.4. Comparison with Other Methods

We conducted experiments to compare our method with other aircraft type recognition methods.
First, we compared our method with several end-to-end methods. In Reference [7], a DBN

model was designed for aircraft recognition. We trained and tested the DBN model on our training
dataset following the procedure in Reference [7], and the results are shown in Table 6. Limited by
the shallow network structure of the DBN, the features learned by the model lack robustness and
representation ability. Therefore, the accuracy of the DBN method is lower than our method by more
than 7%. Additionally, we trained some typical CNN models, including AlexNet [8], VGG-16 [9],
and ResNet-18 [11], and compared their performance with our method. As the results in Table 6 show,
although these methods can achieve good results on large classification dataset such as ImageNet [12]
and MSCOCO [13], their performance is worse than our method on the aircraft recognition dataset. On
the one hand, the performance of these methods relies on the quantity of labeled data. Limited by the
amount of labeled aircraft samples in remote sensing images, these methods suffer from overfitting.
On the other hand, these CNN models tend to learn global semantic features to classify different
objects. However, since some aircrafts only occupy small regions of images, aircraft information is
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submerged in background information and ignored by these CNN models. Different from CNN
models, our method adopts GAN to learn features from large amounts of data without type labels,
which complements the shortage of labeled data. Besides, since our method extracts features from
ROIs directly, the redundant background information is effectively eliminated. Therefore, our method
outperforms the end-to-end models by more than 5%.

Table 6. Recognition rates (%) of different aircraft type recognition methods. +R represents cases
where we make use of the remote sensing image’s resolution to transform the predictions and standard
templates to the same scale. DBN, deep belief net.

Method Type A Type B Type C Type D Type E Type F Type G Type H Mean

AlexNet [8] 75.60 97.80 95.90 70.40 69.80 98.00 64.30 91.00 82.85
VGG-16 [9] 82.30 98.40 89.80 87.30 67.50 96.90 74.60 90.20 85.88

ResNet-18 [11] 86.10 99.30 96.60 82.60 69.80 99.70 79.20 84.60 87.24
DBN [7] 83.40 93.60 92.60 80.40 68.80 93.60 78.50 85.64 84.56

Method in [16] 91.70 80.70 91.10 79.50 17.40 47.80 30.10 72.60 63.86
Method in [16] +R 99.70 88.00 96.10 99.60 99.90 88.60 99.90 75.70 93.44

Our Keypoints 92.60 98.00 87.50 97.50 34.10 97.10 43.00 71.10 77.61
Our Keypoints +R 99.70 99.50 92.00 99.10 99.40 99.80 99.60 76.20 95.66

Proposed Method 93.80 97.80 99.30 88.00 89.90 96.70 83.40 92.90 92.73

We also compared our method with the state-of-the-art template matching method in
Reference [16]. Following the procedure described there, we trained the segmentation network
and keypoint detection network on our training dataset, and then matched their predictions with the
standard templates. Because the method requires resolution information to make the predictions and
standard templates under the same scale condition, we made use of remote sensing image resolution to
conduct the template matching experiments, as in Reference [16], on our testing dataset. The results are
shown in Table 6, marked as Method in [16] +R. Since this method makes use of both scale and shape
characteristics to distinguish aircrafts of different types, it can achieve 93.44% accuracy on the testing
dataset. To evaluate this method’s performance without resolution, we resized all of their predictions
and standard templates to 256× 256 and adopted the template matching method for recognition.
The results are shown in Table 6, marked as Method in [16]. Without using resolution information,
this method only achieves 63.86% accuracy.

In this paper, we propose a new method for aircraft keypoint detection which obtains more precise
keypoints than the method in Reference [16]. Therefore, we also conducted experiments using the same
procedure as in Reference [16], but replacing the keypoint detection module with ours. The results
in Table 6, marked as Our keypoints +R, show that benefiting from the improvement of keypoints’
precision, the recognition rates are advanced substantially. However, without using resolution,
the accuracy of this method is still less than 80%, marked as Our keypoints. These experiments prove
that the performance of the template matching method in Reference [16] relies heavily on resolution
information, which confines its practicability in actual applications. Without resolution information,
the method loses important scale characteristics and it can only use shape characteristics to distinguish
aircrafts of different types. On the contrary, the recognition framework we designed does not require
resolution information, and is able to learn representative features from a large amount of aircraft
samples. The multi-scale ROI features ensure that our method can deal with aircrafts of different
shapes and scales effectively.

As we state above, one of the advantages of our method is that it can achieve a high recognition
rate with only a small labeled training dataset. Therefore, we designed an experiment to evaluate
the dependence of our method on the quantity of training data. Specifically, we randomly took
samples from the training dataset in a certain proportion from 0.1 to 1 with a step of 0.1, and built
some sub-datasets for training. Then, we used the sub-datasets to train different SVM classifiers
and recognized aircrafts following the procedure we proposed. We built five sub-datasets for every
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proportion. Then, we calculated the mean value and the standard deviation of recognition rates.
Additionally, we repeated the procedure using ResNet-18 as the baseline method. The results are
shown in Figure 8a. The mean values of the proportions are drawn as lines, and values of error bars
are calculated by:

value of error bar = mean value± standard deviation. (4)

It is obvious that our method achieves a high recognition rate with small standard deviations
using only a small training dataset. On the other hand, with the decrease of sampling proportion,
the performance of ResNet-18 was greatly reduced and the standard deviations were much larger than
our method’s. This indicates that our method is less dependent on the quantity of training samples
compared with convolutional neural networks. Therefore, our method is more suitable for dealing
with aircraft type recognition on the condition that there are large amounts of data but only a few
samples are labeled with type information.

Finally, we report the confusion matrix of our method in Figure 8b , which shows our method’s
performance on each type directly. The proposed method can effectively distinguish different types
of aircrafts.
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Figure 8. (a) The recognition rates of models trained on different proportions of the dataset with error
bars. The solid blue line is the result of our aircraft type recognition method, while the dash orange
line is the result of ResNet-18 model. (b) The confusion matrix of our method. The closer the color is
to the red, the higher is the recognition rate, while the closer the color is to the blue, the lower is the
recognition rate.

4. Discussion

In remote sensing image interpretation, there is a large amount of data available, but only some
of the data are labeled with type information. Although some template matching methods can handle
this situation, strict prerequisites make it difficult for them to be widely applied in practice. End-to-end
methods can usually achieve good recognition rates, but they demand a large amount of labeled
samples. However, limited by the quantity of labeled data in remote sensing images, they suffer from
bad generation performance. It is obvious that the amount of labeled data has become an important
factor blocking end-to-end classification method development in remote sensing image interpretation.
Considering that, we designed a new framework to make full use of large amounts of unlabeled data.
One of the important parts of this framework is the GAN model, which is used to learn features from
images without supervision. Some examples of generated samples are shown in Figure 9. It can be
seen that the generated samples have high quality and diversity, which provide abundant data for
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discriminators to learn strong features. The high performance of the GAN builds a solid foundation
for our entire method.

Figure 9. Examples of generated samples on the testing dataset: (top) masks of aircrafts; (middle) real
images; and (bottom) generated samples.

Additionally, all of the previous methods process entire images directly regardless of the scales
of the targets in the images. Large amounts of background features mislead the model and cause it
to make incorrect classifications. Given that, we designed the ROI-weighted loss function and ROI
feature extraction method to learn features from exactly where the targets are. A great deal of useless
information is removed and the features are further refined. The experiments we conducted revealed
the effectiveness of our method.

In our aircraft type recognition framework, we use keypoints to generate aircraft masks and
obtain ROIs for the ROI-weighted loss function and the ROI feature extraction methods. Therefore,
the performance of the keypoint detection network has a strong influence on our framework’s
recognition accuracy. To evaluate our keypoints detection network’s impact on the recognition task,
we conducted experiments with our method’s keypoint predictions and keypoint ground truths,
respectively. As the results in Table 7 show, although our keypoint detection method outperforms
the state-of-the-art method [16], it still decreases the recognition rate by almost 1% compared with
the keypoint ground truths. Thus, the recognition rate of our framework can be further increased by
using more accurate keypoint detection results. In the future, we will continue studying the keypoint
detection model to improve its performance.

Table 7. Recognition rates (%) with or without keypoint ground truths.

Method Type A Type B Type C Type D Type E Type F Type G Type H Mean

Ground Truth 93.60 98.50 99.40 89.40 91.00 96.60 84.30 96.50 93.65
Predicted Result 93.80 97.80 99.30 88.00 89.90 96.70 83.40 92.90 92.73

5. Conclusions

In this paper, we present an aircraft type recognition framework based on a conditional GAN.
First, a new aircraft keypoint detection method was carefully designed to predict the eight keypoint
positions precisely. The keypoint detection results provided an accurate mask and ROI information for
the GAN and feature extraction methods. Then, a conditional GAN with an ROI-weighted loss function
was proposed to learn features from a large dataset without type labels. Finally, we designed an ROI
feature extraction method to extract multi-scale features in the regions of targets and eliminate the
effects of complex background information. Experiments demonstrated that the proposed framework
could effectively extract robust and distinctive features. Based on the features, our method was able
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to identify aircrafts of different types and scales, and it achieved good recognition performance on
a challenging dataset.

Although our method is effective in aircraft recognition, it can still be improved further. In the
future, we will explore how to build an unsupervised classification method to remove the need for
data labeled with type information.
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