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Abstract: The U.S. Environmental Protection Agency banned the use of polychlorinated biphenyls
(PCBs) in 1979, due to the high environmental and public health risks with which they are associated.
However, PCBs continue to persist in the San Francisco Bay (SFB), often at concentrations deemed
unsafe for humans. In situ PCB monitoring within the SFB is extremely limited, due in large part to
the high monetary costs associated with sampling. Here we offer a cost effective alternative to in situ
PCB monitoring by demonstrating the feasibility of indirectly quantifying PCBs in the SFB via satellite
remote sensing using a two-step approach. First, we determined the relationship between in situ PCB
concentrations and suspended sediment concentrations (SSC) in the SFB. We then correlated in situ
SSC with spatially and temporally consistent Landsat 8 and Sentinel 2A reflectances. We demonstrate
strong relationships between SSC and PCBs in all three SFB sub-embayments (R2 > 0.28–0.80, p < 0.01),
as well as a robust relationship between SSC and satellite measurements for both Landsat 8 and
Sentinel 2A (R2 > 0.72, p < 0.01). These relationships held regardless of the atmospheric correction
regime that we applied. The end product of these relationships is an empirical two-step relationship
capable of deriving PCBs from satellite imagery. Our approach of estimating PCBs in the SFB by
remotely sensing SSC is extremely cost-effective when compared to traditional in situ techniques.
Moreover, it can also be utilized to generate PCB concentration maps for the SFB. These maps could
one day serve as an important tool for PCB remediation in the SFB, as they can provide valuable
insight into the spatial distribution of PCBs throughout the bay, as well as how this distribution
changes over time.

Keywords: polychlorinated biphenyls; PCB; PCBs; San Francisco Bay; remote sensing; suspended
sediment; SCC; Landsat 8; Sentinel 2A

1. Introduction

Regarded for their strong chemical stability, high boiling point, and insulating properties,
Polychlorinated biphenyls (PCBs) became ubiquitous in hundreds of different industrial and
commercial applications throughout much of the 20th century, from insulators in electrical equipment
to additives in oils, adhesives, and plastics [1]. During this time however, PCBs also became widely
recognized as a threat to public health and the environment. In addition to their classification
as a probable human carcinogen, PCBs are associated with a bevy of adverse health effects in
humans, which include damage to the immune, reproductive, nervous, and endocrine systems [1–5].
Widespread concern over these adverse health risks prompted the U.S. Environmental Protection
Agency (EPA) to ban the production of PCBs in 1979. However despite this nearly four decade-long

Remote Sens. 2018, 10, 1110; doi:10.3390/rs10071110 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6083-2234
http://www.mdpi.com/2072-4292/10/7/1110?type=check_update&version=1
http://dx.doi.org/10.3390/rs10071110
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1110 2 of 18

production moratorium, PCBs, due in large part to their highly stable chemical structures, continue
to persist in watersheds across the continental United States, often at concentrations considered
hazardous to human health [2,3,6–8].

The San Francisco Bay (SFB) is characterized by a legacy of PCB contamination. Many industrial
areas adjacent to the Bay exhibit high concentrations of PCBs and other contaminants that enter the
SFB via urban runoff, outflow from the San Joaquin and Sacramento River delta, and erosion [9–13].
Once they have entered the SFB, PCBs, due to their non-polar molecular properties, accumulate in
benthic sediments where they are periodically re-suspended in the water column, and transported
by local currents [9–13]. As a result, PCBs are commonly found throughout the SFB at concentrations
well above the Environmental Protection Agency’s (EPA) human health criterion (170 pg/L), and have
been measured at concentrations ten times the threshold of concern for human health in the tissues of
aquatic organisms [14]. The EPA classifies the SFB as an “impaired waterbody” under 303(d) listing
criteria, which is due in large part to the Bay’s high concentrations of PCBs [15–17].

In order to ameliorate PCB contamination, the EPA has approved an action plan for the SFB,
which includes a 10 kg/year total maximum daily load for PCBs [15–17]. However the successful
implementation of any action plan pertaining to PCB remediation will require an effective PCB
monitoring strategy. Such a strategy, according to the San Francisco Estuary Institute (SFEI) (Richmond,
CA, USA), would identify areas of high susceptibility for PCB contamination within the SFB, and then
closely monitor and track PCBs within these prioritized areas [14,18]. Nevertheless, PCB monitoring
in the SFB is extremely limited in scope, due in large part to the nature of present-day (in situ) PCB
sampling protocols, which are both expensive and laborious [14].

Remote sensing may offer a cost-effective and time saving alternative for in situ PCB monitoring in
the SFB. Although PCBs cannot be remotely sensed directly, they are closely associated with sediments
due to their affinity for non-polar substrates [9–12]. Suspended sediments in turn, can be detected
via Earth-monitoring satellites. These satellites could, therefore, offer an indirect mechanism for
estimating PCB concentration within the upper water column, providing that sediments are indeed
a viable proxy for PCBs in the SFB [19–22]. In contrast with present-day in situ PCB measurements,
which are only representative of the discrete locations and instances in time at which they are sampled,
satellites offer the potential advantage of characterizing the spatial distribution of PCBs across the SFB.
Furthermore, the availability of past satellite imagery could be leveraged to glean historical trends in
PCB concentrations within the SFB.

This study examines the potential of using high spatial resolution satellite imagery to characterize
the spatial distribution of PCBs within the SFB using a two-step empirical algorithm: step 1—derive
SSC from satellite reflectance, and step 2—estimating PCBs from satellite-derived SSC. We carried
this out by first establishing empirical relationships between PCB and SSC for the SFB, and then
by gauging the relationships between in situ SSC and reflectance data from two Earth-monitoring
satellites, the Landsat 8 Operational Land Imager (L8 OLI; 30 m resolution) and the Sentinel 2A
Multi-Spectral Imager (S2-MSI; 10–60 m resolution), to determine whether sediment concentrations
could be reliably estimated using imagery from different satellites. We also evaluated a “generic” SSC
algorithm [20] using both >10 years of MODIS Aqua data and the L8 imagery. To further determine
the robustness of the SSC-reflectance relationship in the SFB, we processed satellite imagery using
several different atmospheric correction regimes. Finally, to demonstrate how this algorithm could be
implemented to monitor PCBs throughout the SFB, we generated concentration maps of PCBs based
on this two-step algorithm.

2. Materials and Methods

2.1. Study Area

SFB covers an area of 1240 km2. It is characterized by a mild Mediterranean climate with
the majority of precipitation and riverine freshwater input occurring from late fall to early spring
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respectively [14,19,23,24]. Eighty-nine percent of variability in concentrations of suspended sediment
is explained by tidal cycles, wind forcing, and riverine input, which vary markedly geographically
across the bay, as well as seasonally [25]. For this reason the SFB is commonly divided into three
sub-embayments with characteristic physical forcing: North Bay, Central Bay, and South Bay [19,23].

Residence time of water and, therefore, suspended sediment, varies between the North Bay,
Central Bay, and South Bay, primarily as a result of differences in physical and climatological forcing.
Sediment residence times for the North Bay, which vary seasonally on the order of days (winter) to
over a month (summer), are driven primarily by seasonal fluctuations of freshwater inputs from the
Sacramento and San Joaquin Rivers [23,24]. These two riverine sources, which account for 90% of the
SFB’s freshwater inputs, transport large quantities of sediment from California’s Central Valley into the
North Bay [26]. Suspended sediment in the North Bay is also influenced by spring and summer wind
forcing, which re-suspends benthic sediments that have settled out of the water column, a process
which dominates those seasons [27]. Of the three sub-embayments, the Central Bay exhibits the lowest
concentrations of suspended sediment in the water column [27,28]. Due to its proximity to the mouth
of the SFB, tidal forcing is the dominant hydrological process in the Central Bay [27]. Consequently,
the Central Bay exhibits the lowest residence time, as a substantial portion of its water column (and its
suspended sediments) is periodically flushed into the Pacific Ocean. Additionally, because the Central
Bay is the deepest of the three sub-embayments, wind-driven re-suspension of benthic sediments is of
a lesser influence than in the North and South Bay. The South Bay exhibits the highest concentrations
of suspended sediments due to its high residence time, which can last for several months [29,30]. The
South Bay receives only 10% of the estuary’s fresh water input, and is minimally flushed by tides [26].
Wind waves associated with flood tides (most common during the summer and fall seasons), as well
as wind forcing, re-suspend benthic sediments in this sub-embayment [28].

For the purposes of these analyses, we partitioned the SFB into three sub-embayments, which
we refer to as the Northern Bay, South-Central Bay, and Southern Bay, as their boundaries do not
conform to the three established sub-embayments (referenced above). The Northern Bay comprises
part of the Delta just north of Sherman Island to the Richmond San-Raphael Bridge. We define the
South-Central Bay as spanning from the Richmond San-Raphael Bridge to the San Mateo Bridge.
The Southern Bay is south of the San Mateo Bridge (Figure 1). The rationale for delineating these
non-standard sub-embayments was two-fold: First, these regions match locations chosen by SFEI’s
Regional Monitoring Program, which measured PCBs within these regions at discrete time intervals
(Northern Bay—1998–2006, South-Central Bay—2002–2006, and Southern Bay—1998–2001). Second,
suspended sediments and PCB concentrations exhibit significant statistical relationships within each
of our three sub-embayments that are statistically distinct (p < 0.01), suggesting varying sources and
fates of PCBs and sediments in these regions.
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Figure 1. San Francisco Bay sampling locations; 1998–2006 PCB/SSC, 2016 SSC/reflectance. Boxes
indicate the following sub-embayments: A. Northern Bay (San Pablo and Suisun Bays); B. South-Central
Bay; and C. Southern Bay. Orange circles indicate USGS sampling locations (SSC, 2016, locations
matched with reflectance obtained from satellite imagery), black triangles indicate SFEI Regional
Monitoring Program sampling locations (PCBs and SSC, 1998–2006, in situ sampling).

2.2. Data Collection

2.2.1. In Situ PCBs and Suspended Sediment

In situ measurements of total PCB concentration (PCBs) and suspended sediment concentration
(SSC) were acquired from the SFEI’s Regional Monitoring Program [31]. A subset of these data, totaling
164 in situ water samples typically collected from February–August 1998 to 2006, was chosen for
analysis. This subset represents available data points for which PCBs and SSC were measured at the
same time and geographic location (Figure 1). All samples were collected at depths less than or equal
to one meter. We also present more recent data but note that there are no recent contemporaneous PCB
and sediment measurements.

PCBs (pg/L) were tabulated as the sum of 40 PCB target analyte concentrations analyzed in
the water column. Prior to 2001, PCB analytes (pg/L) and SSC (mg/L) were analyzed using a gas
chromatography/electron capture detector and SM-2540D, respectively. Beginning in 2001 these assays
were performed using high resolution gas chromatography/mass spectrometry and ASTM D3977
respectively [32]. PCB analyses were changed to abide by EPA Method 1668A. For SSC, The primary
difference between the methods is that SM-2540D is an analysis of an aliquot of the original water
sample, while ASTM D3977 assays the entire sediment mass of the sample [33,34]. For subsequent
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analyses we make the assumption that these assays are directly comparable to each other, and therefore
no correction was applied to the data.

2.2.2. Suspended Sediment Concentration and Satellite Imagery

To determine the feasibility of estimating SSC from satellite imagery, we used three satellite
images collected on 27 June 2016, 13 July 2016, and 14 July 2016 for the SFB region. Satellite imagery
from 27 June 2016 and 13 July 2016 was obtained from Landsat-8 (L8 OLI) [35]. Jointly operated by
NASA and USGS, L8 is a low-orbiting satellite equipped with the Operational Land Imager, a push
broom sensor that collects spectral bands at 30 m pixel resolution. L8 OLI imagery was atmospherically
corrected using a standard terrestrial-based algorithm as well as the marine atmospheric correction
software ACOLITE v. 20170718 (Royal Belgian Institute of Natural Sciences, Brussels, Belgium) [36,37].
With ACOLITE we performed both full and partial (Rayleigh) atmospheric corrections, yielding remote
sensing reflectance (Rrs) and Rayleigh-corrected reflectance values (Rrc). Our reasoning for performing
both full and Rayleigh atmospheric corrections were two-fold: 1. During analysis it was observed
that ACOLITE is extremely sensitive to haze and cloud coverage, which can preclude a complete
atmospheric correction, and 2. Because Rrs and Rrc are related, we wanted to evaluate the use of Rrc
as an input to SSC estimates when Rrs is not available due to atmospheric correction failures. The 14
July 2016 image was obtained from the European Space Agency’s Sentinel 2A Multi-Spectral Imager
(S2-MSI). Like L8 OLI, S2-MSI is a low orbiting push broom sensor. It collects spectral bands at 10–60 m
resolution. S2-MSI imagery was atmospherically corrected using ACOLITE, with only Rrc retained for
analysis due to a failure of Rrs for the majority of the images caused by haze and cloud.

These three satellite images were selected because they coincided (within ca. one day or less)
with two cruises conducted in the SFB by the U.S. Geological Survey (USGS) (Menlo Park, CA, USA),
for which SSC was sampled. Water samples were collected along a 145 km transect at 1 m depth at
pre-determined sampling stations. SSC was determined gravimetrically using an aliquot of the water
sample. The sample was vacuum filtered, dried, and weighed, as well as corrected for residual salt
weight. We elected to use SSC data from USGS because there were no adequate satellite matchups
with the aforementioned subset of SFEI data used to gauge the relationship between SSC and PCBs.

To assess the potential errors in estimating SSC using satellite imagery, we also used MODIS
Aqua data from 2002 to 2015. While spatial resolution (1 km) is greatly reduced compared to S2
and L8, this was preferable given the significantly increased number of direct matchups. Data were
extracted generally following [38]. Briefly, 3 × 3 Rrs (667 nm) pixels centered on USGS stations and
within 24 h of field collection were extracted from MODIS L2 data acquired from the NASA Ocean
Biology Processing Group. Data were filtered to remove matchups with less than 7 of 9 valid pixels,
and within 3, 12, and 24 h of the field observations. The Rrs values were then used to calculate total
suspended matter (TSM), comparable to SSC, following [20]. Both the median of nine pixels and the
centroid pixel were used in the analysis; there were no significant differences for the full dataset, so
subsequent analysis used the median value. The algorithm could not be applied to S2 imagery given
the atmospheric correction issues.

We evaluated continuous (15 min) data from Central Bay (Angel Island) and South Bay
(Dumbarton Bridge) for May 2016, collected by USGS (available at https://ca.water.usgs.gov/projects/
baydelta/) to identify potential issues with temporal mismatch between satellite and field observations.
Autocorrelations were calculated, and the first crossing point compared to 95% confidence intervals
for a white noise process were considered the decorrelation scale.

2.3. Data Analysis

To gauge the feasibility of monitoring PCBs using spatially resolute satellite imagery two-step
empirical relationships between PCBs and satellite reflectances (Rrs & Rrc) were developed. First,
linear regression was used to compare SSC and PCBs. Here we compared SFEI-sampled SSC and
PCBs across the SFB (n = 164), as well as within each of the three sub-embayments: Northern Bay

https://ca.water.usgs.gov/projects/baydelta/
https://ca.water.usgs.gov/projects/baydelta/
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(n = 90), South-Central Bay (n = 21), and Southern Bay (n = 53) (Figure 2; Table 1). Next, satellite
reflectance (Rrs or Rrc) in the red (λ = 640–670 nm), previously shown to be a reliable proxy for
sediment, was related to SSC [20,21]. We matched USGS-sampled in situ SSC with the corresponding
red reflectance values from coincident satellite imagery. We then performed linear regression (Table 2).
These steps were repeated for all four remote sensing products (satellite + atmospheric correction
regime): terrestrial-derived Rrs from L8 OLI (n = 16), ACOLITE-derived Rrs from L8 OLI (n = 16),
ACOLITE-derived Rrc from L8 OLI (n = 16), and ACOLITE-derived Rrc from S2 MSI (n = 5). Analysis
of co-variance (ANCOVA) was performed to compare the localized linear relationships between SSC
and PCBs between the three sub-embayments. Root mean square error (RMSE) was calculated to
quantify the relationships between in situ PCB and SSC as well as satellite reflectance and SSC for all
remote sensing products and sensors tested.

We indirectly examined the likelihood of the SSC to PCB relationship changing over time in
San Francisco Bay. To ascertain this likelihood over the entire bay, we first combined the SFEI PCB
data set (1998–2006) with more recent SFEI PCB measurements (2009–2011, 2016) based on the sum
of 209 PCB analytes, and standardized the PCB residuals. The residuals were examined for temporal
trends [38]. A similar analysis was performed for SSC using water quality data from the USGS
shipboard time series [39]. These more recent PCB data (2009–2011, 2016) were excluded from our
empirical algorithm (Table 1) because data do not contain spatially and temporally matching SSC. The
discrepancy between the Sum of 40 and Sum of 209 PCBs is a result of the evolving analytical methods
for PCBs (described above). However, comparison of the two show that sediment and organism PCB
levels are highly correlated [40], and that the differing sums are also highly correlated in forage fish
and we considered the two data sets therefore to be comparable [41].
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Figure 2. Relationship between in situ PCBs and suspended sediment concentration (SSC) in the the
SFB for (A) the entire the SFB (data collected February, April, July, August, 1998–2006); (B) Northern
Bay (data collected February, April, July, August, 1998–2006); (C) South-Central Bay (data collected
July, August, 2002–2006); (D) Southern Bay (data collected February, April, July, August, 1998–2001).
All data were collected at stations within the SFB (see Figure 1 for locations). Black cross symbols
indicate in situ PCB and SSC samples. The red line is the best-fit linear regression. All relationships
are statistically significant at the 99% confidence level and highly significantly different (ANCOVA;
p < 0.001).
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Table 1. Statistical relationships between SFEI-sampled PCBs and SSC. a

Area of Bay R2 p-Value Empirical Relationship RMSE (pg/L) Mean Percent
Error

Entire SFB
(n = 164) 0.33 <0.01 PCBs = 7.22(SSC) + 346 2.67 14.62%

Entire SFB b

(n = 164)
0.28 <0.01 PCBs = 8.84(SSC) 3.38 18.12%

Northern Bay
(n = 90) 0.64 <0.01 PCBs = 3.47(SSC) + 150 1.91 10.70%

South-Central Bay
(n = 21) 0.80 <0.01 PCBs = 20.89(SSC) + 153 1.45 6.07%

Southern Bay
(n = 53) 0.52 <0.01 PCBs = 11.05(SSC) + 878 2.31 11.23%

a Empirical relationships reported were used to remotely estimate PCBs. The entire the SFBa,b data collected
February, April, July, August, 1998–2006; Northern Bay data collected February, April, July, August, 1998–2006;
South-Central Bay data collected July, August, 2002–2006; Southern Bay data collected February, April, July, August,
1998–2001. All data were collected at stations within the SFB (see Figure 1 for locations). Linear regressions
tested with ANCOVA are significantly different (p < 0.001). The RMSE was calculated for each relationship and is
reported in PCB units (pg/L) and as a percentage of the mean. SSC represents the spatial map generated by the
SSC-reflectance relationship (Table 2), which is overlain by the PCB-SSC relationship. b SSC to PCB relationship for
the entire bay, with the y-intercept forced through zero.

3. Results

3.1. In Situ PCBs and Suspended Sediment

The relationship between SSC and PCBs across the SFB is significant, but weak (R2 = 0.28, p < 0.01).
This relationship improves substantially (R2 > 0.5, p < 0.01) when linear regressions are localized to
the three sub-embayments (Table 1; Figure 2). ANCOVA indicates that the relationships between SSC
and PCBs differ significantly across the three sub-embayments (p < 0.01). Since the SFB exhibits strong
regional differences in residence times, riverine inputs, tidal forcing, and currents, we would expect
that the relationship between SSC and PCBs would differ across the three sub-embayments. RMSE
and percent mean error also indicate the existence of a strong relationship between SSC and PCBs.

3.2. Suspended Sediment and Satellite Imagery

Strong relationships between red reflectance and SSC were observed for all four remote sensing
products (R2 > 0.72, p < 0.01; Table 2). The strength of these correlations suggests that the relationship
between red reflectance and SSC is extremely robust, and can be reliably estimated using imagery
generated from a multitude of remote sensing products. RMSE was relatively high across the
four relationships (1.44–2.67 mg/L) (Table 2; converted from log-space). To directly compare
results by sub-embayment, RMSE from Table 2 was converted to a percentile range for the various
algorithms and methods. The South-Central Bay exhibits a disproportionately high amount of the
error (RMSE = 69–78%) relative to Southern Bay (RMSE = 39–40%). The Northern Bay’s small sample
size precluded percent estimates of RMSE.

3.3. Total Error for PCB Estimates

Given the two-step algorithm, total error results from a combination of the satellite-derived SSC
values and the conversion of SSC to PCB. In this analysis the error is driven by the SSC determination
which exhibits up to 48% error, resulting in total error of ~60%. We note, however, that if data are
restricted to times when the TSM relationship of Nechad et al. (2010) [20] can be used, the total
error would be between 35% and 60%, with improvements when using tighter spatial and temporal
matchup criteria.
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Table 2. Statistical relationships between satellite reflectance and USGS-sampled SSC. a

Satellite/Atmospheric Correction Relationship R2 p-Value Empirical Relationship log(RMSE) (mg/L) Mean Percent Error

L8 OLI/Marine Correction Rrc vs. SSC (n = 16) 0.73 <0.01 SSC = 10ˆ[13.718(Rrc) + 0.3811] 0.62 48%
L8 OLI/Marine Correction Rrs vs. SSC (calculated) (n = 16) 0.77 <0.01 SSC = 10ˆ[37.363(Rrs) + 0.6521] 0.62 47%

L8 OLI/Terrestrial Correction Rrs vs. SSC (n = 16) 0.76 <0.01 SSC = 10ˆ[0.0014(Rrs) + 0.4703] 0.62 48%
L8 OLI/Terrestrial Correction

Nechad et al. (2010) [20] Rrs vs. TSM (n = 16) 0.83 <0.01 TSM = (362.09*$w(654))/(1 − *$w(654)/0.1738) 0.21 17.4%

Sentinel 2A/ACOLITE
(Upper Atm Correction) Rrc vs. SSC (n = 5) 0.96 <0.01 SSC = 10ˆ[15.98(Rrc) + 0.0493] 0.45 47%

a Red reflectance and SSC relationships. L8 OLI imagery was sampled ca. one day prior to USGS cruises (L8 OLI imagery: 06/27/2016, 07/13/2016; USGS in situ measurements:
06/28/2016, 07/14/2016). S2-MSI image was sampled the same day as USGS cruise (S2-MSI image: 07/14/2016; USGS in situ measurements: 07/14/2016). In situ data were collected in
south-north transect of the SFB (see Figure 1 for locations). L8 OLI and S2-MSI images are reported with corresponding Rrs or Rrc and marine/terrestrial atmospheric correction. For the
[20] algorithm, water-leaving reflectance ($w) is used. All relationships are statistically significant at the 99% confidence level. Regressions tested with ANCOVA are highly significantly
different (p < 0.001). Empirical relationships used to derive SSC from reflectance spectra are reported. RMSE for each relationship was calculated and expressed in SSC units (mg/L) and as
a percentage of the mean.
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4. Discussion

4.1. In Situ Measurements and Satellite Imagery

The strong relationship between SSC and PCBs, as indicated by linear regression and RMSE,
suggest that the primary limitation in application of this proposed method is the remote detection of
SSC [42]. Similarly, application of this method beyond SFB would require measurements of local SSC
and PCB concentrations. This could facilitate regional understandings of the relationship between SSC
and PCBs, which could then be used to account for the spatial and temporal variability of PCBs within
those regions.

With regards to red reflectance vs. SSC, the higher RMSE observed in the South-Central Bay
compared to the Southern Bay can be explained by the fact that the South-Central Bay is subject to
significantly more tidal forcing than either the Northern Bay or Southern Bay. It would, therefore, be
expected that SSC would fluctuate more rapidly diurnally in the South-Central Bay than either of the
other two sub-embayments due to its low residence time [27–30]. Consequently, the South-Central
Bay would be more sensitive to the temporal mismatches between satellite imagery and USGS cruises
relative to the Northern Bay and Southern Bay.

It should be noted that these findings are not without potential sources of error. The sample size
in these analyses (particularly for Sentinel 2A) was limited by the availability adequate spatial and
temporal (time < 24 h) matchups between in situ SSC measurements and satellite reflectances. It should
also be noted that L8 OLI imagery was sampled ca. one day prior to USGS cruises (L8 OLI imagery:
06/27/2016, 07/13/2016; USGS in situ measurements: 06/28/2016, 07/14/2016). This is a potential
source of error, as SSC would be expected to change during this intervening time due to hydrological
forcings (e.g., tides, currents, and fluvial influx), which can alter the spatial distribution of suspended
sediments over relatively short timescales (<1 day) [43]. Intuitively, the existence significant time lag
between SSC and reflectance would be expected to degrade and not improve the reflectance/SSC
relationship. Indeed this is what we observed. Evidenced by Figure 3, SSC varied markedly between
USGS cruises and L8 OLI across USGS cruise stations north of the mouth of the SFB. Improved
agreement at stations south of the mouth may be attributed, at least in part, to higher residence times,
which characterize the South Bay [29]. The satellite data were collected during a rising tide, while
stations 1–15 were collected (offset by eight days) on a falling tide, while the remaining stations were
during a rising tide (tidal magnitude was very similar for the two days). Analysis of continuous
(15 min) data from sites in the South Bay (Dumbarton Bridge) and Central Bay (Angel Island) also
showed autocorrelation for ~3–4 h, with repeating (tidal) correlations extending for ca. four days in
the Central Bay, but ~7–8 days in the South Bay.

Nevertheless, a strong overall relationship between L8 OLI red reflectance and SSC was still
observed (R2 = 0.73–0.77, p < 0.01). This attests to the strength and robustness of the reflectance/SSC
relationship, as we would expect the correlation between SSC and reflectance to have been higher,
had L8 OLI imagery and SSC been sampled simultaneously. The improved relationship and lower
error between SSC and red reflectance generated using Sentinel 2A imagery (Table 2), buttresses this
assumption, as these data were collected on the same day, hours apart.

The strong relationships that we have observed between red reflectance and suspended sediments
are also consistent with previous studies [19–21]. Using AVHRR satellite sensors [19] demonstrate
similar relationships between SSC and reflectance in the SFB to the ones that we observed (R2 = 0.59,
RMSE = 0.17). Moreover, [20] also report strong relationships in the North Sea between TSM and
reflectance (650–750 nm) derived from three distinct Earth-monitoring satellites: MERIS, MODIS,
and SeaWiFS (R2 = 0.79–0.93, error = 30–40%). These studies further demonstrate the robustness of the
SSC vs. reflectance relationship with respect to remote sensing products, as well as geographic location.
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Figure 3. Comparison of PCB concentration estimated from a USGS cruise, collected 18 May 2016 (solid
black), and an L8 OLI image, collected 26 May 2016 (grey). SSC values corresponding with the USGS
stations were extracted from the image, converted to PCB values using the entire-bay model with zero
intercept, and compared against PCB values estimated from the USGS cruise (by converting SSC to
PCB values using the same algorithm).

4.2. PCB Concentration Maps

To demonstrate the potential utility of our proposed two-step empirical algorithm in estimating
PCBs in the SFB, we produced two PCB concentration maps using the L8 OLI image, sampled on 26
May 2016 and corrected using OLI’s terrestrial-based algorithm (Figure 4). The first map (Figure 4A)
uses a modified empirical SSC to PCB relationship derived for the entire SFB, while the second
(Figure 4B) uses localized relationships specific to each sub-embayment (see Figure 1). Each of these
approaches offer distinct advantages. Mapping PCBs using the SSC to PCBs relationship fitted for
the entire SFB (Figure 4A) provides a continuous estimate of surface concentrations for the entire SFB
with no arbitrary boundaries. However, this approach sacrifices accuracy, as localized SSC to PCBs
relationships were statistically more robust (Figure 2; Table 1). Additionally, because an estimated
99.8% of PCBs are particulate in nature (bound to sediment) [44,45], PCBs are not detectable in the
water column in the absence of suspended sediment. To enforce this observation, the y-intercept of the
SSC to PCB was forced through zero for Figure 4A (see Table 1). Alternatively, building concentration
maps using SSC to PCBs relationships localized to the three sub-embayments (Figure 4B) substantially
improves the accuracy of the concentration map. However, when using the localized relationships,
sub-embayments must be defined geographically. This leads to discontinuous concentration gradients,
separated by artificial geographical boundaries between the sub-embayments. While we continue to
acknowledge that PCBs likely drop to zero in the absence of suspended sediment, we did not force
y-intercepts through zero for localized SSC to PCB relationships. Our reasoning behind this was that
these relationships are substantially stronger (and more accurate) than the SSC to PCB for the entire
SFB. Forcing these localized y-intercepts through zero is therefore likely to degrade the accuracy and
predictive capacity of Figure 4B. It would also diminish the agreement between Figure 4A,B. Here we
should point out that it was the forcing the y-intercept of the entire SFB SSC to PCB relationship to
zero that maximized agreement between Figure 4A,B (and likely the accuracy of Figure 4A as well).
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Concentration maps produced using satellite imagery offer great promise as a method for higher
spatial and temporal resolution PCB monitoring. While PCB concentration maps, the finished product
of our efforts, are less accurate than in situ sampling, they provide a view of the relative spatial
distribution of PCBs in SFB. Given that PCB concentrations in the SFB have consistently exceeded
proposed total daily maximum load (TMDL) values by orders of magnitude [14], the ~60% RMSE error
documented in this study suggest that a remote-sensing approach for estimating spatial/temporal
concentrations of PCBs would be useful for management purposes. Producing series of these maps
from sequential satellite images would enable spatial distribution of PCBs to be tracked through
time. This far exceeds the scope of in situ data, which although more accurate, are constrained to
specific times and places where sampled. Our maps also demonstrate that PCB concentrations can
vary markedly across the SFB (Figures 4 and 5); SFEI sampling stations may not be representative
of areas in close proximity (Figures 4 and 5). More accurate PCB concentration maps depend on
improved understanding of regional SSC vs. PCB relationships and their spatial and geographic
constraints. More consistent in situ monitoring would also improve understanding of hydrological and
meteorological forcing and would validate the remote sensing approach. As our data was collected
predominantly during the dry season, we cannot be certain as to whether our empirically-derived SSC
vs. PCB relationships differ during the rainy season. Filling in these gaps will require more rigorous
and consistent PCB and SSC monitoring throughout the SFB.
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Figure 4. PCB concentration maps (pg/L) generated using SSC to PCB relationship generated
for the entire SFB (A) and localized to the three sub-embayments (B) (see Figure 1). (A) Entire
bay [PCBs = 8.84(SSC)]. To correct for the observation that PCBs tightly coupled with sediments and are
not otherwise detectable in the water column, the y-intercept was forced through zero for 4A (y = 8.84x).
(B) 1. Northern Bay [PCBs = 3.47(SSC) + 150]. (B) 2. South-Central Bay [PCBs = 20.89(SSC) + 153].
(B) 3. Southern Bay [PCBs = 11.05(SSC) + 878]. Satellite imagery was taken on 26 May 2016 by L8
OLI and corrected using OLI’s terrestrial-based algorithm. Concentration maps were created in ENVI
(Harris Geospatial Solutions, Boulder, CO, USA) using the respective relationships between PCBs, SSC,
and reflectance previously reported in Tables 1 and 2. All relationships are highly significantly different
as tested by ANCOVA.
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Figure 5. To illustrate the cross-shelf variability that is not captured by traditional sampling, PCB
concentration was estimated from 26 May 2016 OLI image using the entire-bay model with zero
intercept (Table 1). Panels (a–e) indicate estimated cross-shelf PCB variability (solid black lines) along
cross-shelf transects located in (a) Suisun, (b) San Pablo, (c) Central, (d) South, and (e) Lower South
Bay. Grey circles indicate PCB concentrations estimated from UCBS-measured SSC, which spatially
correspond with transects. Transect locations are indicated as red lines on the inset map (upper
right-hand corner).

4.3. Limitations of Our Two-Step Algorithm

The PCB concentration maps (Figure 4) generated in this study rely on two underlying
assumptions: first, that the relationship between PCBs and sediment remain consistent over time, and
second, that suspended sediments at the water surface are representative of the entire water column.
We base our first assumption on the fact that PCB hydrophobicity and long half life result in a strong
association with sediments, where they are likely to remain for many years [42,46]. The concept that
PCB concentration remains stable, despite the 40-year production moratorium, is well documented.
For instance, PCB tissue concentrations have remained relatively consistent in shiner perch across
the SFB over a 20-year period (1994–2014) [47]. Shiner perch are considered an indicator species for
assessing PCB total maximum daily load and, hence, reflects ambient SFB PCB concentrations [48].
These findings are bolstered by [18], who demonstrate a strong linear relationship between PCB in
sediment and PCB in fish tissue, and report that local PCB concentrations remain stable over time. Our
statistical analysis of PCB trends through time support this with no significant trend identified (p > 0.5)
(Figure 6). Although the availability of coinciding PCB and SSC are limited, we also point out that, in
the Northern Bay, the empirical relationship between SSC and PCBs did not change over time, as tested
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by ANCOVA (p > 0.75) (1998–2001: y = 3.511x + 153, R2 = 0.66; 2002–2006: y = 3.281x + 149, R2 = 0.50).
We, therefore, assume that PCB/SSC relationships observed from 1998 to 2006 are still applicable today,
within the associated error of our model, and can be used with current satellite imagery.

The veracity of our second assumption, that suspended sediments at the water surface are
representative of the entire water column, is supported by previous observations. According to [14],
the most effective indicator of the spatial distribution of PCB impairment in the SFB is by PCB
concentrations in surface (benthic) sediments. However, the SFB is shallow over the shoals, with an
average depth of 5.3 m, and a median depth of 2 m [45]. The shallow depth of the SFB combined
with strong wind- and tide-driven currents result in an intense mixing of sediment, with large rates
of resuspension and deposition. Subsequently, a high rate of exchange exists between particles of
water and sediment in the SFB, resulting in elevated SSC in the water column [45]. In a one-box model
observing the long-term fate of PCBs in the SFB, water and sediment are so tightly coupled by this
rate of exchange that they are assumed to effectively behave as one compartment [45,49]. Additional
studies examining regions of the SFB have shown that the estuary is generally considered to be weakly
stratified and typically mixed, excluding specific conditions, such as seasonal high fresh water flow or
climatological anomalies which temporarily suppress mixing [50,51]. However, we do acknowledge
that the shipping channels and Central Bay (proper) are significantly deeper than the shoals (~15 m),
and our method would only capture the trends and patterns in the upper well-mixed water column.
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Figure 6. Box plot comparing standardized PCB residuals over time across the entire SFB. Orange lines
represent median values, while lower and upper box boundaries represent the 1st and 3rd quartiles
(Q1 and Q3). The upper whisker represents the highest datum less than Q3 + interquartile range (IQR)
× 1.5; likewise, the lower whisker represents the lowest datum greater than Q1 − 1.5 × IQR. Note the
split y-axis. Open circles outlying data points.

To assess whether estimates of SSC (TSM) are robust for San Francisco Bay we also evaluated
MODIS AQUA data from 2002 to 2015. For the full dataset (n = 1200), the algorithm performed
as expected based on [20] with RMSE of 5.12 mg m−3 and 55% error. Reducing the matchups to
12 (n = 949) and 3 (n = 778) h resulted in RMSE of 5.08 and 2.89 mg m−3, with 55% and 36% error,
respectively. For comparison, errors for MODIS of 10.98 mg m−3, or 37%, were reported (Table 10 [20]).
The 3 h matchup data were subsequently used to generate residual errors between observations and
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MODIS by month and by station. The satellite estimates were consistently lower during June, July,
and August (i.e., when fog and haze are common in the region), but there were no other strong spatial
or temporal patterns in the residual errors (Figure 7), suggesting that, as expected, robust estimates
of SSC can be obtained from satellite observations for this region. For the analysis of S2 and L8,
the atmospheric correction frequently failed, leading us to develop local empirical relationships for
imagery. For the L8 data there were enough full retrievals (n = 16) to apply the [20] method, as well,
with good results (Table 2).
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Figure 7. Box plot comparing residuals of in situ SPM (from USGS cruises) to SPM derived from
MODIS AQUA using [20] with matchups as described in the Methods. Data were log10-transformed
prior to calculating residuals. Orange lines represent median values, while lower and upper box
boundaries represent the 1st and 3rd quartiles (Q1 and Q3). The upper whisker represents the highest
datum less than Q3 + interquartile range (IQR) × 1.5; likewise, the lower whisker represents the lowest
datum greater than Q1 − 1.5 × IQR. Open circles represent the outlying data points.

5. Conclusions

In this study we demonstrate the feasibility of estimating polychlorinated biphenyls (PCBs) from
red reflectance in the San Francisco Bay (SFB) using a two-step empirical algorithm. We demonstrate
strong relationships between in situ suspended sediment concentration (SSC) and PCBs in all three
SFB sub-embayments (R2 > 0.5, p < 0.01), as well as a robust relationship between SSC and satellite
measurements for both Landsat 8 and Sentinel 2A (R2 > 0.72, p < 0.01). Total error (~60%) results
from a combination of the satellite-derived SSC values and the conversion of SSC to PCB, with error
in this analysis driven by SSC determination (up to 48%). This study is limited by, and could be
improved with, the addition of data for both in situ measurements of SSC and PCBs, as well as satellite
imagery that corresponds with in situ sampling. In situ PCB and SSC measurements used in this study
were collected by the San Francisco Estuary Institute (SFEI) in February, April, July, and August from
1998–2006 (n = 164) at locations throughout the SFB (Northern Bay data collected in February, April,
July, August, 1998–2006; South-Central Bay data collected in July, August, 2002–2006; Southern Bay
data collected in February, April, July, August, 1998–2001). Satellite imagery (n = 16) used in this
study were sampled ca. one day prior to in situ SSC measurements, with the exception of the S2-MSI
image (n = 5) (L8 OLI imagery: 06/27/2016, 07/13/2016; USGS in situ measurements: 06/28/2016,
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07/14/2016. S2-MSI image: 07/14/2016; USGS in situ measurements: 07/14/2016). The data in this
study are therefore limited by the availability of adequate matchups between in situ measurements of
SSC and PCBs (1998–2006), time of the year in situ SSC and PCBs were collected (primarily the dry
season), as well as corresponding satellite images and in situ SSC measurements. The accuracy and
error of our empirical algorithm, therefore, could be better validated by increased in situ measurements
of SSC and PCBs, as well as tighter spatial and temporal matchup criteria for satellite imagery. While
analysis of in situ PCB and SSC concurrent with the satellite observations suggests that the relationships
used in our models are still valid, we cannot rule out the possibility, without recent simultaneous
estimates of PCB and SSC, that the relationship has changed. Despite these data limitations, our results
indicate that the empirical algorithm could be used with imagery collected using a diverse array
of Earth-monitoring satellites and processed using multiple atmospheric correction methods with
consistent and reliable results. One of the primary strengths of our two-step algorithm is that it can be
employed to generate concentration maps of PCBs in any water body sampled by satellites, if there
are sufficient data to develop a regional relationship between SSC and PCBs. Furthermore, because
satellites typically sample locations (e.g., the SFB) at consistent time intervals, this algorithm could
be used to track PCBs within a given water body over time. It would enable the implementation of
SFEI’s recommendations of identifying high-priority areas for PCB monitoring in the SFB. Stakeholders
could then concentrate their finite resources, such as in situ sampling of SSC and PCBs in these areas,
which would in turn improve our ability to remotely sense PCBs in the SFB, especially if sampling was
carried out in conjunction with satellite flybys. These efforts may also lead to increased understanding
of the roles of seasonality, precipitation, erosion events, and tidal forcing on spatial distributions
PCBs [14,19].
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