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Abstract: Dictionary pruning step is often employed prior to the sparse unmixing process to improve
the performance of library aided unmixing. This paper presents a novel recursive PCA approach
for dictionary pruning of linearly mixed hyperspectral data motivated by the low-rank structure of
a linearly mixed hyperspectral image. Further, we propose a mutual coherence reduction method
for pre-unmixing to enhance the performance of pruning. In the pruning step we, identify the
actual image endmembers utilizing the low-rank constraint. We obtain an augmented version of
the data by appending each image endmember and compute PCA reconstruction error, which is
a convex surrogate of matrix rank. We identify the pruned library elements according to PCA
reconstruction error ratio (PRER) and PCA reconstruction error difference (PRED) and employ a
recursive formulation for repeated PCA computation. Our proposed formulation identifies the exact
endmember set at an affordable computational requirement. Extensive simulated and real image
experiments exhibit the efficacy of the proposed algorithm in terms of its accuracy, computational
complexity and noise performance.

Keywords: hyperspectral unmixing; semi-supervised unmixing; recursive PCA; mutual
coherence reduction; low-rank representation; linear unmixing; dictionary pruning; hyperspectral
image processing

1. Introduction

Hyperspectral imaging has attained immense popularity in remote sensing community in recent
years owing to its high accuracy in classification and objbfect identification from remotely sensed
images. Diverse application such as environmental studies [1], agricultural studies [2,3], mineral
mapping [4], surveillance employ remotely sensed hyperspectral images. Hyperspectral images record
the image intensity at several bands over the electromagnetic region [5]. The inclusion of detailed
spectral information about a considerable number of spectral bands increases the discriminative ability
of the imaging technology leading to higher accuracy in target detection, classification and object
identification [6]. Hyperspectral imaging has been found to be very useful in identifying different
objects from satellite-borne images. The object identification essentially employs the spectral unmixing
method, which essentially estimates the reflectance profile of the spectrally distinct materials or
endmembers. The reflectance pattern obtained from an image pixel is the resultant of reflectance
profile of multiple signal sources or endmembers due to the poor spatial resolution of the imaging
sensors. Spectral unmixing methods necessarily estimate the reflectance pattern of endmembers
present in the image and compute its fractional abundance. Traditional unmixing methods involve
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three stages estimation of the number of endmembers, endmember estimation and calculation of
abundance of endmembers [7].

Predominantly hyperspectral unmixing can be broadly classified into two categories unsupervised
and semi-supervised unmixing [8] according to the availability of spectral library. Unsupervised
unmixing methods identify the endmember and abundance matrix from the data itself. Whereas,
semi-supervised approach considers the spectral library as the endmember matrix and computes the
abundance matrix of the library endmembers. In recent years, semi-supervised unmixing strategy [9,10]
has gained prevalence as application specific spectral libraries are available due to the rapid increase
in MEMS-based optics. Dictionary pruning process identifies a smaller subset of the spectral library
that can represent the image.

Traditional unsupervised unmixing methods predominantly employ convex geometric,
non-negative matrix factorization or independent component analysis strategy to estimate the
endmembers. The convex geometry based endmember estimation approaches include vertex
component analysis [11], pixel purity index [12], convex cone analysis [13], minimum volume
enclosing simplex [14,15], minimum volume simplex analysis [16], iterated constrained endmember
extraction [17], simplex growing algorithm (SGA) [18]. Independent component analysis (ICA) based
endmember estimation methods include [19–22]. Non-negative matrix factorization approaches
for estimate the endmembers as well as abundance simultaneous incorporating regularization
terms like low-rank constraints, total variation. The notable NMF based unmixing methods such
as Huang et al. [23], Wang et al. [24], Tsinos et al. [25], Arngren et al. [26], Jia et al. [27],
Huck et al. [28], Zhang et al. [29] employ different regularization terms to constrain the solution.
However, unsupervised unmixing methods can produce satisfactory performance only when some of
the image pixels contain dominant endmembers.

Many semi-supervised unmixing methods aim at computing the sparse abundance matrix
assuming the spectral library as the endmember matrix. Popular sparse unmixing methods
like-variable splitting and augmented Lagrangian (SUnSAL) [30] employed l1 sparsity term,
collaborative SUnSAL algorithm [31] combined collaborative sparse regression with the sparsity
promoting term, whereas, SUnSAL-TV [32] introduced a total variation regularization term in the
sparse unmixing. Among the sparse unmixing methods for abundance estimation robust sparse
unmixing [33,34] method incorporates a redundant regularization term to account for endmember
variability, joint local abundance method [35] performs local unmixing by exploiting structural
information of image, co-evolutionary approach [36] formulates a multi-objective strategy and
minimize it by evolutionary algorithm. Other works such as Feng et al. [37] proposed a spatial
regularization framework which employs maximum a posteriori estimation, Themelis et al. [38]
introduced a hierarchical Bayesian model based sparse unmixing method, Zhang et al. [39] transform
data in framelet domain and maximize the sparsity of the obtained abundance matrix, Zhu et al. [40]
proposed a correntropy maximization approach for sparse unmixing. Some recent works such as
Li et al. [34], Feng et al. [41], Mei et al. [42] used spatial information alongside spectral properties of the
data. Since sparse unmixing consider the whole spectral library as endmember. The prevalent sparse
unmixing methods mentioned above generate an abundance matrix which has lower level of sparsity.

Some library aided unmixing methods employ a pre-processing stage, which prunes the
spectral library used. Prevalent dictionary pruning based unmixing methods include orthogonal
matching pursuit (OMP) [43], OMP Star [44], subspace matching pursuit (SMP) [45], compressive
sampling matching pursuit (CoSaMP) [46], simultaneous orthogonal matching pursuit (SOMP) [47],
MUSIC-collaborative sparse regression (MUSIC-CSR) [48], robust MUSIC-dictionary aided sparse
regression (RMUSIC-DANSER) [49], sparse unmixing using spectral apriori information (SUnSPI) [50],
centralized collaborative unmixing [51], deblurring and sparse unmixing [52] regularized simultaneous
forward–backward greedy algorithm (RSFoBa) [53], nuclear norm approach [54]. include a pruning
stage. Other works such as Li et al. [55] proposes a collaborative sparse regression approach which
considers the non-linearity as an outlier and employs an inexact augmented Lagrangian method to
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solve the optimization problem. MUSIC-CSR algorithm [48] identifies the signal subspace and its
dimension by HySIME [56] in the preliminary stage. The algorithm projects each library element on
the signal subspace and identifies the signal components from the resulting projection error. Robust
MUSIC algorithm (RMUSIC) [48] proposes an improved noise robust version of the inversion process,
which also accounts for the variability in the reflectance profile and the discrepancy in the reflectance
profile between spectral library elements and the actual image endmembers. Greedy algorithms like
OMP [43], OMP star [44], SOMP [47], SMP [45], CoSaMP [46] find the best matching projections of
multidimensional data onto an over-complete dictionary. However the above mentioned dictionary
pruning algorithms have some inherent shortcomings, which are listed below

• The size of the pruned library for algorithms like OMP [43], SMP [45], RSFoBa [53], CoSaMP [46],
SUnSPI [50] is much higher compared to the actual number of endmembers.

• Some algorithms require high computational time.
• These algorithms tend to perform poorly when the mutual coherence of library is high.

Researchers have proposed several sparse inversion approaches [31] to compute abundance of
the endmembers. Among the seminal works sparse unmixing method through variable splitting and
augmented Lagrangian (SUnSAL) [30] employed l1 sparsity term, collaborative SUnSAL algorithm [31]
added a collaborative sparse regression with the sparsity promoting term, whereas, SUnSAL-TV [32]
introduced a total variation regularization term in the sparse unmixing. Among the sparse unmixing
methods for abundance estimation robust sparse unmixing [33] method incorporates a redundant
regularization term to account for endmember variability, joint local abundance method [35] performs
local unmixing by exploiting structural information of image, co-evolutionary approach [36] formulates
a multi-objective strategy and minimize it by an evolutionary optimization. Other works such as
Feng et al. [37] proposed a spatial regularization framework which employs maximum a posteriori
estimation, Themelis et al. [38] introduced a hierarchical Bayesian model based sparse unmixing
method, Zhang et al. [39] transform data in framelet domain where abundance sparsity is maximized,
Zhu et al. [40] proposed a correntropy maximization approach for sparse unmixing. Some recent
works such as Li et al. [34], Feng et al. [41], Mei et al. [42] used spatial information alongside spectral
properties of the data.

In this paper, we propose a novel dictionary pruning approach, where we identify the optimum
image endmembers employing popular PCA based dimensionality reduction. In this work, we
have employed recursive PCA formulation to minimize the computational time significantly due to
the repetitive computation of eigenvalue. We also include a compressive sensing based framework
to reduce the mutual coherence of spectral library. The experimental results shown in the paper
demonstrate that our proposed dictionary pruning is a faster and straight-forward unmixing method,
which can identify the exact endmember set.

Overall the paper is organized into the following sections Section 2 presents the signal model
for linear unmixing and describes the existing algorithms, Section 3 illustrates the proposed mutual
coherence reduction strategy and PCA based dictionary pruning method, Section 4 presents the results
obtained on simulated as well as real images, whereas, Section 5 includes the conclusion and presents
future scope of the proposed work.

2. Signal Model for Linear Unmixing

According linear mixing model the spectral reflectance profile of the i-th pixel is written as

xi = aiS + wi (1)
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where, ai denotes abundance of all endmembers in the i-th pixel. S = [s1, s2, · · · , sP] is the endmember
matrix which contains spectral signature of P endmembers. wi represents the noise present in the i-th
pixel. The whole image X = [x1, x2, · · · , xN ] consisting of N pixels is represented in matrix form as

X = AS + W (2)

The abundance values satisfies abundance non-negative constraint (ANC) and abundance sum to
one constraint (ASC). ANC enunciate that abundance values are non-negative, whereas, ASC indicate
that abundance vectors of a pixel sum to one. These constraints are expressed as

∑P
i=1 aij = 1 (ASC)

0 ≤ aij ≤ 1 (ANC)

}
(3)

2.1. Semi-Supervised Unmixing

Semi-supervised unmixing algorithms consider the whole spectral library as endmember matrix
and aims to estimate abundance of the spectral library using sparse inversion. Since the spectral library
employed is over-complete, the obtained abundance matrix has higher levels of sparsity, which makes
abundance estimation a sparse inversion problem, which represents the data as a sparse linear mixture
of the library according to

X = MD + W (4)

where, the hyperspectral image X = [x1, x2, · · · , xN ] comprises of N pixels and, the spectral library
D = [d1, d2, · · · , dK] comprises of reflectance pattern of K elements; MεRN×K represents abundance
matrix; and WεRN×L is the noise and residual term; Sparse unmixing algorithms obtain an abundance
matrix M which leads to minimum reconstruction error while maximizing sparsity and satisfying
other constraints

arg minM ‖X−MD‖2 + λ ‖M‖q (5)

where, 0 ≤ q ≤ 1 Here, the first term represents reconstruction error, whereas, the second term
indicates sparsity of the obtained abundance matrix.

2.1.1. Dictionary Pruning

A hyperspectral data is represented as a mixture of pruned library as

X = M̂D̂ + Ŵ (6)

The pruned library D̂ =
[
d̂1, d̂2, · · · , d̂R

]
contains R elements; and M̂ = [m̂1, m̂2, · · · , m̂R] is the

estimated abundance matrix; The pruned library comprises selected atoms from the spectral library
(D̂ ⊂ D) which can represent the image in a compact formulation. Ideally, size of the pruned library
be closer to the actual number of endmembers (R ≈ P) and R = P means exact match, which us the
aim of ideal dictionary pruning based semi-blind unmixing algorithms.

However, these dictionary pruning algorithms have some inherent shortcomings, which are
listed below

• The size of the pruned library for algorithms like OMP [43], OMP star [44], SMP [45], RSFoBa [53],
CoSaMP [46], SUnSPI [50] is much higher compared to the actual number of endmembers.

• Some algorithms require high computational time.
• These algorithms tend to perform poorly when the mutual coherence of library is high.
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The mutual coherence of spectral library is the maximum cosine angle distance between any two
spectral library elements. The mutual coherence of spectral library is defined as

µ (D) = arg max
1≤i,j≤K,i 6=j

∣∣di
Tdj
∣∣

‖di‖2
∥∥dj
∥∥

2

(7)

The value lies in the range [0, 1] and higher mutual coherence indicates higher similarity between
multiple atoms of the spectral library. High mutual coherence leads to the identification of endmembers
with similar reflectance pattern as separately. Mutual coherence reduction leads to better dictionary
pruning performance.

3. Proposed Dictionary Pruning Method

In this paper, we introduce two novel dictionary pruning algorithms PCA reconstruction error
difference (PRER) and PCA reconstruction error ratio (PRER). Our proposed unmixing framework
comprises of four stages noise removal, estimation of the number of endmembers, dictionary pruning
and abundance computation. We include an additional mutual coherence reduction stage before
unmixing for improving its performance. We utilize multi-linear regression for denoising [56], Harsanyi
Ferrand Chang Virtual Dimensionality (HFC-VD) [57] for estimation of the number of endmembers
along with a novel method for mutual coherence reduction. The mutual coherence reduction task have
not been explored in hyperspectral sparse unmixing.

3.1. Noise Removal by Multi Linear Regression

Since efficient noise removal is pertinent to spectral unmixing we employ multilinear
regression [58] framework for noise removal because of its improved performance in the hyperspectral
setting [56]. This method estimates the noise present in the data by using the correlation between
the consecutive spectral bands. The method models the reflectance pattern of a spectral band as
a linear regressive model of other spectral bands, motivated by the high correlation between the
consecutive bands.

The reflectance value of all pixels in the i-th band can be represented by

x:,i = βiYσi + ξ :,i (8)

where, x:,i represent reflectance profile of the i-th band; βi is the regression coefficient;
Yσi = [x:,1, x:,2, · · · , x:,i−1, x:,i+1, · · · , x:,L] is the reflectance of all bands except the i-th band; and
ξ:,i represents noise in the i-th band. The regression coefficient is calculated by

β̃i = X
(

YT
σi

Yσi

)−1
Yσi (9)

The noise in the i-th band can be estimated as

ξ:,i = x:,i − βiYσi (10)

The noise free image at the i-th band can be obtained by

x̃:,i = x:,i − σi (11)

The noise free image obtained by the process leads to improved unmixing performance.

3.2. Estimation of the Number of Endmembers

State of the art algorithms for estimation of the number of endmembers include-Harsanyi-Ferrand
Chang virtual dimensionality (HFC-VD) [57], hyperspectral subspace identification by minimum error
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(HySIME) [56], eigen GAP index [59], eigen thresholding [60], low rank subspace estimation [61],
entropy estimation of eigenvalue [62], maximal orthogonal complement algorithm (MOCA) [63],
high-order statistics (HOS)-HFC [64] and hyperspectral subspace identification by SURE [65], convex
geometric approach GENE-CH and GENE-AH [66], Hubness phenomenon [67] etc. In this paper, we
employ HFC-VD algorithm [57] for estimation of the number of endmembers due to its accuracy in
the hyperspectral setting.

3.3. Mutual Coherence Reduction

Mutual coherence of a spectral library indicates the maximum similarity between any pair of
library elements. The high mutual coherence of spectral library creates complications in library
aided unmixing as dictionary pruning algorithms identify consider the library elements with similar
reflectance profile as distinct endmembers. Identification of duplicate endmembers reduces sparsity
level of the obtained abundance matrix. The mutual coherence of a spectral library of size K× L is
computed by

µ (D) = arg max
1≤i,j≤K,i 6=j

∣∣∣di
Tdj

∣∣∣
‖di‖2

∥∥dj
∥∥

2

(12)

Ideally, the performance of unmixing should remain relatively unaffected by the high mutual
coherence of spectral library. Although researchers have attempted to address the problem of high
mutual coherence of spectral library in sparse inversion problems and compressive sensing, its
effect on hyperspectral unmixing and mutual coherence reduction task has not bee carried out in
hyperspectral unmixing.

In this paper, we also introduce a compressive sensing method to reduce the mutual coherence of
the spectral library used. The high mutual coherence of spectral libraries creates a challenge in the
library based unmixing of hyperspectral image. Mutual coherence measure identifies the maximum
degree of similarity between any pair of spectral library elements. A spectral library with high mutual
coherence leads to the identification of multiple spectral library elements as single endmember.

The problem of mutual coherence reduction of dictionary or library arises in sparse inversion
problems in compressive sensing setting. Compressive sensing aims at obtaining the sparsest solution
to the linear system

x = Dα (13)

in terms of L0 norm. Here, x ∈ Rn represents the measurement data, D ∈ Rn×p is the over-complete
dictionary and α ∈ Rp indicates the sparse coefficient vector. According to compressive sensing
formulation the problem is written as

min
α
‖α‖0 , s.t. x = Dα (14)

The criteria for obtaining the sparsest solution of the problem [68] are displayed below

‖α‖0 <
1
2

(
1 +

1
µ(D)

)
(15)

Under this condition, α is the sparsest solution. The low mutual coherence of dictionary facilitates
the sparsest solution whereas, high mutual coherence of dictionary creates problems in pruning.
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Welch et al. [69] derived a theoretical bound on mutual coherence of dictionary D of size m × p.
According to the bound, the minimum possible mutual coherence of the library is given by

µ(D) ≥
√

p−m
m(p− 1)

(16)

Since the dictionary employed in the process (D) is fixed, the aim of mutual coherence reduction
method is to estimate an optimum projection matrix K which leads to lower values of mutual
coherence (µ(M)).

The mutual coherence reduction method uses a random projection matrix K as the initial
transformation matrix and obtains the transformed dictionary. The transformed dictionary M = KD is
normalized such that the rows have unit norm.

In the mutual coherence reduction method, we minimize an alternate measure of mutual coherence
termed as t-averaged mutual coherence, since, computation of mutual coherence is an NP-hard
problem. Hence, we propose an alternate mutual coherence measure called t-averaged mutual
coherence as this is computationally more affordable. we exploit the fact that the diagonal entries
of a Gram matrix contains 1, when the library elements are normalized. The t-averaged mutual
coherence [70] term is calculated according to

µt (M) =
∑1≤i,k≤j,i 6=j χt

(∣∣gij
∣∣) ∣∣gij

∣∣
∑1≤i,k≤j,i 6=j χt

(∣∣gij
∣∣) (17)

We aim to minimize the mutual coherence term while satisfying the properties of Gram matrix.
The mutual coherence reduction task is carried out according to the following steps in the first stage, we
initialize the transformation matrix K ,normalize the rows of spectral library and compute t-averaged
mutual coherence of M according to (17). In the succeeding stage, we compute the Gram matrix and
shrink its elements according to

gij =


γgij, i f

∣∣gij
∣∣ < σ

γtsign(gij), i f t >
∣∣gij
∣∣ ≥ γt

gij, i f γt ≥
∣∣gij
∣∣

The shrinking or thresholding operation performed by the aforementioned process makes the
matrix G a full-rank matrix. Hence, we reduce the rank of the matrix G into R by applying singular
value-shrinkage. Compute the square root of G according to

STS = G (18)

where S ∈ RL×R. We minimize µt (KD) while satisfying the constraint ‖S− KD‖2
2 ≤ ξ, which

indicates that S should be a close approximate of the updated library KD. We employ adaptive
direction method of multipliers (ADMM) [71] based optimization framework, which identifies the
transformation matrix that minimizes the mutual coherence µt (PD). The optimization method uses
an indirect formulation for mutual coherence reduction is as follows

min
K

µt (KD) s.t. ‖S− KD‖2
2 ≤ ξ (19)

The problem is expressed according to the Lagrangian function as

min
K

µt (KD) + λ ‖S− KD‖2
2 (20)

Here, the second term limits the power of the transformed library M. ADMM formulation
employs a new slack variable and assumes that
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f (K) = µt (KD)

g (Z) = ‖S− ZD‖2
2 (21)

where, Z = K. ADMM framework solves the sub-problem

min
K

f (K) + g (Z) , s.t. K− Z = 0 (22)

ADMM solution updates K, Z and U according to

Ki+1 = arg min
K

f (K) +
ρ

2

(∥∥∥K− Zi + Ui
∥∥∥2

2

)
Zi+1 = arg min

Z
g (Z) +

ρ

2

(∥∥∥Ki+1 − Z + Ui
∥∥∥2

2

)
Ui+1 = Ui + Ki − Zi+1 (23)

The transformation matrix P obtained by the process minimizes mutual coherence of the library.
The algorithmic steps are clearly described in details in Algorithm 1.

Algorithm 1: Reduction of Mutual Coherence Reduction of Spectral Library

Input: Spectral library with high mutual coherence D ∈ RR×L

Output: Spectral library with relatively lower mutual coherence φ

Initialization: Select a random initial projection matrix K ∈ RR×R

1: Compute the transformed library M = KD ∈ RR×L

2: Compute the Gram matrix G = MT M
3: Set the threshold value t
4: Compute t-averaged mutual coherence according to Equation (17)
5: while The optimization problem Equation (20) not converged do

6: Normalize M to unit length
7: Shrink the elements of G according to

gij =


γgij, i f

∣∣gij
∣∣ < σ

γtsign(gij), i f t >
∣∣gij
∣∣ ≥ γt

gij, i f γt ≥
∣∣gij
∣∣

8: Obtain the square root of the Gram matrix M according to STS = M
9: Apply SVD on M and reduce the rank of M to m

10: end while

3.4. Dictionary Pruning by Recursive PCA

Any hyperspectral data lives in a substantially lower dimensional subspace, since, the data arises
from a latent linear mixing process. The dimension of the subspace is close to the number of signal
sources or intrinsic dimensionality of the data. Accurate identification of the intrinsic dimensionality
is pivotal in dictionary pruning.



Remote Sens. 2018, 10, 1106 9 of 19

We identify the lower dimensional data subspace using Principal component analysis (PCA).
Different signal processing and machine learning application have employed Principal component
analysis (PCA) as a tool for dimensionality reduction. However, researchers have rarely exploited
explored the possibility of employing PCA for dictionary pruning. PCA identifies a low dimensional
signal subspace of dimension d from the original data space (of dimension D). These d principal
components correspond to the maximum variance of the data. The first principal component represents
the maximum variance, and each succeeding component corresponds to the next highest variance
under the constraint that it is orthogonal to the preceding components. first-d PC’s obtained are
statistically uncorrelated and orthogonal to each other. Rank d PCA minimizes the least square error
such that the transformed data has low rank d

min
X̂

∥∥X− X̂
∥∥2

2 s.t. rank
(
X̂
)
= d (24)

Since, PCA is a data driven transformation method, both the transformed data (X̂) and the
reconstruction error (E(d)) depends solely on the retained dimension (d). However, the optimum
reconstruction error corresponds to the numerical rank of the data.

3.4.1. Proposed PCA Reconstruction Error Ratio Criteria (PRER)

According to Craig’s unmixing criteria [72], a hyperspectral data consisting of P endmembers lies
in a P− 1-dimensional subspace obtained by PCA transformation. Transformation of the data into
P− 1-dimension leads to optimum reconstruction error and reducing the data further do not reduce
the reconstruction error significantly.

We propose a dictionary pruning idea based on PCA reconstruction error ratio. In this approach,
we append each library element with the data, obtain an augmented data and transform it to
P − 1-dimension. The augmented data Yi = [X; di] comprise of either P endmembers or P + 1
endmembers. We identify the number of endmembers present indirectly from PCA reconstruction
error obtained from Yi. Let, Ei (P− 1) represent the reconstruction error obtained after transforming
Yi into P− 1 dimension using PCA. Intrinsic dimensionality or numerical rank of the augmented data
Yi relies on the properties of the library element added di. The numerical value of the reconstruction
error obtained after transforming the augmented data also Ei (P− 1) depends on the properties of di.
If, di is an image endmember Ei (P− 1) is expected to be large, whereas, if di is not an actual image
endmember Ei (P− 1) is lower. We propose an index called PCA reconstruction error ratio (PRER),
which is expressed as

RErat (i) =
E (P− 1)
Ei (P− 1)

(25)

This index PRER has considerably lower numerical value for actual image endmembers and has
a higher value for the other library elements. Hence, we consider PRER as a parameter-free indirect
measure to identify the image endmembers. We present the detailed implementation of PRER based
pruning in Algorithm 2.

3.4.2. Proposed PCA Reconstruction Error Difference Criteria (PRED)

Whenever a particular spectral library endmember (di) is appended with the data X, the
augmented data (Yi = [X; di]) lies in either P dimensional or P − 1-dimensional linear subspace,
depending on whether the library endmember is a part of image data or not. In the first case, when the
spectral library element is also an image endmember, the intrinsic dimension of the subspace is P− 1
otherwise, the intrinsic dimensionality is P. In the first situation the reconstruction error Ei(P− 1) is
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low, in the other scenario, Ei(P− 1) is much higher. The difference in reconstruction error between
actual data and appended data

REdi f (i) = |E(P− 1)− Ei(P− 1)| (26)

gives a quantitative measure which indicates whether the spectral library endmembers are also present
in the image. We present the algorithmic steps for PRED based library pruning in Algorithm 3.

Algorithm 2: PCA Reconstruction Error Ratio Criteria (PRER) for Dictionary Pruning

Input: Hyperspectral image data X ∈ RN×L, Spectral library D ∈ RK×L,

Number of endmembers P
Output: Index of the pruned library φ, Pruned library D̂ ∈ RP×L

Initialization:
1: Transform the data into P− 1-dimension by PCA. Record PCA reconstruction error E (P− 1).
2: for i < K and i← i + 1 do

3: Append each library element with the data matrix according to Yi = [X; di]

4: Calculate the reconstruction error by transforming the appended data Yi into

P− 1-dimension by PCA. Obtained reconstruction error Ei(P− 1)
5: Calculate PCA reconstruction error ratio criteria RErat (i) =

E(P−1)
Ei(P−1)

6: end for
7: Consider the P-elements corresponding to the minimum reconstruction error ratio

RErat (i) as endmembers. Index of pruned library φ.
8: Pruned library D̂ = Dφ

9: return Index of the pruned library elements φ, pruned library D̂

Algorithm 3: Dictionary Pruning by PCA Reconstruction Error Difference Criteria (PRED) for
Dictionary Pruning

Input: Hyperspectral image data X ∈ RN×L,

Spectral library D ∈ RK×L, Number of endmembers P
Output: Index of the pruned library φ, Pruned library D̂ ∈ RP×L

Initialization:
Transform the data into P− 1-dimension by PCA. PCA reconstruction error E (P− 1)

2: for i < K and i← i + 1 do

Append each library element with the data matrix Yi = [X; di]

4: Transform the data Yi into P− 1-dimension by PCA and record the reconstruction error

Ei(P− 1)
Calculate the difference in reconstruction error REdi f (i) = |E (P− 1)− Ei(P− 1)|

6: end for
Consider the P-elements corresponding to the minimum reconstruction error difference

REdi f (i) as image endmember index φ.
8: Obtain pruned library by D̂ = Dφ

return Index of the pruned library elements φ and Pruned library D̂
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3.5. Recursive Principal Component Analysis

Our proposed library pruning methods PCA reconstruction error ratio (PRER) criteria and
PCA reconstruction error ratio difference (PRED) rely on repeated computation of eigenpairs of the
covariance matrix of the data. We incorporate a faster formulation to estimate the covariance matrix
after augmenting a spectral library element according to rank one modification. Let, the covariance
matrix of the appended data Yi be denoted by Ĉi. This covariance matrix after appending a row can be
computed from the covariance matrix of the original data using the formula

Ĉi =
1
N

C +

(
N

N + 1

)2
dT

i di (27)

We perform standard eigen decomposition on this modified covariance matrix, which reduces the
computational runtime.

3.6. Abundance Computation

We employ SUnSAL-TV [32] algorithm for abundance computation. Since, the hyperspectral
image of any natural ground scene is smooth in the spatial domain, the abundance of the endmembers
obtained by the unmixing method should also inherit the smoothness. This method exploits
total variation of abundance along with sparsity and reconstruction error constraints. The overall
formulation of this method is

min
M̂

∥∥X− M̂D̂
∥∥2

F + λ
∥∥M̂

∥∥
1,1 + λTV TV

(
M̂
)

subject to M̂ij ≥ 0 (28)

Here, the first term indicates reconstruction error, whereas, the second term computes l1 sparsity
and the final term indicate total variation. The total variation term

TV
(

M̂
)
= ∑

i,j∈ε

∥∥M̂i − M̂j
∥∥

1 (29)

essentially represents the difference in neighbourhood pixels.

4. Results

We apply our proposed unmixing methods on a large number of synthetic and real images.
We vary noise level, pixel purity level, the mutual coherence of the spectral library and number of
endmembers in these synthetic image experiments.

4.1. Performance Measures

We evaluate the performance of the unmixing methods on two parameters signal to reconstruction
error (SRE) and the probability of detection (Pr Det).

• Signal to Reconstruction Error (SRE)
Signal to reconstruction error (SRE) denotes the relative power of reconstructed data with respect
to the actual data.

SRE = 10 log10

(
‖X‖2∥∥X− X̂

∥∥
2

)
(30)

where, X̂ is the hyperspectral data reconstructed by the unmixing or dictionary pruning algorithm.
Better unmixing leads to lower reconstruction error, which in turn increases SRE.
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• Probability of Detection
The probability of detection defines the number of spectral library endmembers accurately selected
according to the formula

Pr Det(Λ̂, Λ) = Pr
(
Λ̂ ∩Λ

)
=

∣∣Λ̂ ∩Λ
∣∣

|A| (31)

where Λ is the indices corresponding to the actual spectral library elements present in the image
and Λ̂ is the indices corresponding to the estimated spectral library elements of the pruned library.

Value of probability of detection lies in the range 0 ≤ Pr Det ≤ 1. The higher value specifies close
match between actual and pruned library elements and exact match is represented by Pr Det = 1.

4.2. Description of Data

4.2.1. Synthetic Image Experiments

The synthetic images used in the experiments contain random endmembers from USGS spectral
library and the abundance matrix was created according to Dirichlet distribution which satisfies
ASC and ANC constraint. In the data A1 the number of endmembers is varied as five and ten and
additive white Gaussian noise is added to the data. We alter the number of image pixels and maximum
abundance of any endmember in a pixel in the synthetic data A2. In the data A3 we alter mutual
coherence of the library and noise level simultaneously. In all these experiments, we perform mutual
coherence reduction prior to unmixing.

4.2.2. Real Image Experiments

We used HYDICE Washington dc mall image (https://engineering.purdue.edu/biehl/MultiSpec/
hyperspectral.html) and HYDICE urban image (http://lesun.weebly.com/hyperspectral-data-set.
html) to validate our proposed algorithms see the Figure 1. DC Mall hyperspectral image consists
of 210 spectral bands which cover the electromagnetic range 400–2400 nm. We use a 188 spectral
band version, which excludes the noisy and absorption bands present in the image. The ground truth
results intimate that the image endmembers are covered in USGS spectral library. HyDICE urban
image (http://lesun.weebly.com/hyperspectral-data-set.html) acquired by HYDICE sensor covers the
electromagnetic spectrum range 400–2500 nm and comprise of 221 spectral bands. The image has a
spatial size of 200× 200 and consists of four endmembers as per ground-truth study [73]. However,
the image contains noisy bands 1–4, 76, 87, 101–111, 136–153 and 198–210. We remove these bands
before processing and use a 162 band version of the data for unmixing.

(a) Washington DC Mall Image (b) HYDICE Urban Image

Figure 1. RGB Display of Real Hyperspectral Images.

https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
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4.3. Algorithms Compared

We compare our proposed unmixing method with state of the art semi-blind unmixing algorithms
like MUSIC-CSR [48], RMUSIC [49], SMP [45], RSFoBa [53] and SUnSPI [50] etc. These algorithms
perform pruning of spectral library before sparse inversion.

We plot the PCA reconstruction error ratio and PCA reconstruction error difference for each
spectral library elements in Figure 2, which highlights that actual library endmembers lead to lower
reconstruction error ratio and reconstruction error difference. Since the PRER and PRED values for the
library elements are significantly lower compared to the other library elements, it is simple to identify
the endmembers from these two parameters. We display the SRE comparison of data A1 and A2 on
Figure 3, which highlights that PRER and PRED obtain significantly higher SRE compared to most
of the methods. Figure 3a illustrates that PRER and PRED obtain relatively higher SRE for images
with high levels of mixing (lower values of maximum abundance per pixel). Figure 3b suggests that
our proposed PRER and PRED outperform the prevalent methods in presence of noise. However, we
do not obtain satisfactory performance on extremely high noise levels. SRE values for most of the
methods predictably decrease as noise level escalates. We show the abundance images corresponding
to ground truth, PRER and PRED in Figures 4–6 respectively. The abundance images obtained by
PRER and PRED are similar to the actual ground truth abundance image. This proves the potency
of our proposed unmixing. We tabulate the probability of detection on data A1 and data A2 on
Tables 1 and 2 respectively. The result displayed in Table 1 illustrates that our proposed algorithms
obtain probability of detection equals to almost unity. The other result displayed in Table 2 shows that
PRER and PRED result into a higher probability of detection in most of the situations. However, high
SNR levels-20, 10 and 0 dB make it difficult to identify the exact set of image endmembers. Table 3
shows that PRER and PRED obtains almost unity probability of detection even for a dictionary with
high mutual coherence. We present the probability of detection result for varied mutual coherence in
Table 3. This result emphasizes that PRER and PRED obtains superior unmixing performance even in
the presence of spectral library with high mutual coherence level.

(a) (b)

Figure 2. (a) PCA Reconstruction Error Ratio (PRER), (b) PCA Reconstruction Error Difference (PRED).

(a) SRE Comparison on Data A1 (b) SRE Comparison on Data A2 (c) SRE Comparison on Data A3

Figure 3. Comparison of Signal to Reconstruction Error Ratio (SRE).
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(a) Asphalt (b) Grass (c) Roof (d) Tree

Figure 4. Ground truth abundance of HYDICE image endmembers.

(a) Asphalt (b) Grass (c) Roof (d) Tree

Figure 5. Abundance of HYDICE image endmembers obtained by PRER.

(a) Asphalt (b) Grass (c) Roof (d) Tree

Figure 6. Abundance of HYDICE image endmembers obtained by PRED.

Table 1. Comparing Probability of Detection (Pr Det) for Data A1.

nEm Max Abun MUSIC-CSR RMUSIC SMP RSFoBa SUnSPI PRER PRED
1 1 0.6 0.8 0.1724 0.2083 1 1

1000 0.8 0.9 0.3 0.8 0.1724 0.2 1 1
0.6 0.9 0.4 0.6 0.1613 0.1852 1 1
1 1 0.6 0.5 0.1563 0.2381 1 1

500 0.8 0.9 0.4 0.5 0.1926 0.2083 1 1
0.6 0.9 0.2 0.5 0.1852 0.1926 1 0.9
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Table 2. Comparing Probability of Deterction (Pr Det) for Data A2.

nEm SNR (in dB) MUSIC-CSR RMUSIC SMP RSFoBa SUnSPI PRER PRED
No Noise 1 0.6 0.8 0.1923 0.1724 1 1

70 1 0.3 0.8 0.1613 0.1563 1 1
50 1 0.3 0.8 0.1515 0.1563 1 1

5 30 1 0.2 0.6 0.1471 0.1429 1 1
20 0.8333 0.2 0.4166 0.1428 0.1351 1 0.8333
10 0.625 0.1851 0.3846 0.1388 0.1351 0.8333 0.8333
0 0.555 0.1786 0.3571 0.1315 0.1282 0.625 0.625

No Noise 1 0.3 0.5 0.303 0.2381 1 1
70 1 0.2 0.5 0.2703 0.222 1 1
50 0.8 0.3 0.5 0.2632 0.1961 0.9 0.8

10 30 0.8 0.2 0.5 0.2326 0.1887 0.9 0.9
20 0.7 0.2 0.3 0.1923 0.1785 0.9 0.8
10 0.6 0.1923 0.2 0.1923 0.1724 0.8 0.8
0 0.4 0.1887 0.1887 0.1724 0.1724 0.7 0.7

Table 3. Probability of Detection for varying Mutual Coherence Created by the Synthetic Data A3.

Mutual Coherence MUSIC-CSR RMUSIC SMP RSFoBa SUnSPI PRER PRED
1 1 0.6 0.5 0.1563 0.2381 1 1

0.8 0.8 0.5 0.6 0.1926 0.2083 1 1
0.6 0.9 0.2 0.5 0.1852 0.1926 0.9 0.9

Our proposed PRER and PRED based unmixing relies on basic operations like covariance matrix
computation and eigen decomposition, it result into low computational complexity. We have employed
Cupens divide and conqer algorithm [74] for eigen decomposition. This algorithm has a computational
complexity of O

(
n2.3). The formulation for performing rank 1 update has computational complexity

of O
(
n3). The overall complexity of the framework is O

(
n3). The runtime comparison of PCA

was reported in [75], whereas the computational complexity of robust PCA was reported in [76].
We compare the runtime performance on an i5 Core 2 Duo system having 8GB RAM. The runtime
plot displayed in Figure 7 illustrates that SMP [45] is the fastest, closely followed by PRER or PRED.
Although SMP [45] is computationally more efficient, its moderate noise performance and lower
probability of detection make it unsuitable.

(a) Runtime Comparison on Synthetic Data (b) Runtime Comparison on Real Images

Figure 7. Runtime Comparison.

5. Conclusions

This paper introduces PCA as an alternative dictionary pruning method, which accurately
estimates the exact spectral library endmember set if the noise level is under certain limit and the
number of endmembers present in the image is accurately estimated. We incorporate a method to
reduce the mutual coherence of spectral library, which improves the unmixing performance. We also
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present a recursive formulation for estimation of covariance matrix after rank one modification, which
significantly improves the runtime performance of the proposed method.
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library endmember selection. He prepared the manuscript. A.R. suggested the use of faster recursive formulation
for computing covariance matrix of the augmented data matrix. He also contributed in giving the manuscript a
compact format. A.K.D. helped improve the technical quality of the manuscript.

Acknowledgments: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Van der Meer, F.D.; Van der Werff, H.M.; Van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.;
Van Der Meijde, M.; Carranza, E.J.M.; De Smeth, J.B.; Woldai, T. Multi-and hyperspectral geologic remote
sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [CrossRef]

2. Chi, J.; Crawford, M.M. Spectral unmixing-based crop residue estimation using hyperspectral remote sensing
data: A case study at Purdue university. IEEE J. Sel. Top. App. Earth Obs. Remote Sens. 2014, 7, 2531–2539.

3. Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with
agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [CrossRef]

4. Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion
for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [CrossRef]

5. Landgrebe, D. Hyperspectral image data analysis. IEEE Signal Process. Soc. 2002, 19, 17–28. [CrossRef]
6. Chang, C.I. Hyperspectral Data Exploitation: Theory and Applications; John Wiley & Sons: Hoboken, NJ,

USA, 2007.
7. Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral

unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2012, 5, 354–379. [CrossRef]

8. Ma, W.K.; Bioucas-Dias, J.M.; Chan, T.H.; Gillis, N.; Gader, P.; Plaza, A.J.; Ambikapathi, A.; Chi, C.Y. A signal
processing perspective on hyperspectral unmixing: Insights from remote sensing. IEEE Signal Process. Mag.
2014, 31, 67–81. [CrossRef]

9. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Dictionary pruning in sparse unmixing of hyperspectral data.
In Proceedings of the 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS),
Shanghai, China, 4–7 June 2012; pp. 1–4.

10. Zou, J.; Lan, J.; Shao, Y. A Hierarchical Sparsity Unmixing Method to Address Endmember Variability in
Hyperspectral Image. Remote Sens. 2018, 10, 738. [CrossRef]

11. Nascimento, J.M.; Dias, J.M. Vertex component analysis: A fast algorithm to unmix hyperspectral data.
Trans. Geosci. Remote Sens. 2005, 43, 898–910. [CrossRef]

12. Chang, C.I.; Plaza, A. A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci.
Remote Sens. Lett. 2006, 3, 63–67. [CrossRef]

13. Ifarraguerri, A.; Chang, C.I. Multispectral and hyperspectral image analysis with convex cones. IEEE Trans.
Geosci. Remote Sens. 1999, 37, 756–770. [CrossRef]

14. Chan, T.H.; Chi, C.Y.; Huang, Y.M.; Ma, W.K. A convex analysis-based minimum-volume enclosing simplex
algorithm for hyperspectral unmixing. IEEE Trans. Signal Process. 2009, 57, 4418–4432. [CrossRef]

15. Ambikapathi, A.; Chan, T.H.; Ma, W.K.; Chi, C.Y. Chance-constrained robust minimum-volume enclosing
simplex algorithm for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4194–4209.
[CrossRef]

16. Li, J.; Bioucas-Dias, J.M. Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data.
IEEE Trans. Geosci. Remote Sens. 2008, 3, 250–253.

17. Berman, M.; Kiiveri, H.; Lagerstrom, R.; Ernst, A.; Dunne, R.; Huntington, J.F. ICE: A statistical approach
to identifying endmembers in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2085–2095.
[CrossRef]

18. Chang, C.I.; Wu, C.C.; Liu, W.; Ouyang, Y.C. A new growing method for simplex-based endmember
extraction algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2804–2819. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2011.08.002
http://dx.doi.org/10.1016/S0034-4257(99)00067-X
http://dx.doi.org/10.1109/TGRS.2003.812908
http://dx.doi.org/10.1109/79.974718
http://dx.doi.org/10.1109/JSTARS.2012.2194696
http://dx.doi.org/10.1109/MSP.2013.2279731
http://dx.doi.org/10.3390/rs10050738
http://dx.doi.org/10.1109/TGRS.2005.844293
http://dx.doi.org/10.1109/LGRS.2005.856701
http://dx.doi.org/10.1109/36.752192
http://dx.doi.org/10.1109/TSP.2009.2025802
http://dx.doi.org/10.1109/TGRS.2011.2151197
http://dx.doi.org/10.1109/TGRS.2004.835299
http://dx.doi.org/10.1109/TGRS.2006.881803


Remote Sens. 2018, 10, 1106 17 of 19

19. Wang, J.; Chang, C.I. Applications of independent component analysis in endmember extraction and
abundance quantification for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2601–2616.
[CrossRef]

20. Nascimento, J.M.; Dias, J.M. Does independent component analysis play a role in unmixing hyperspectral
data? IEEE Trans. Geosci. Remote Sens. 2005, 43, 175–187. [CrossRef]

21. Chiang, S.S.; Chang, C.I.; Ginsberg, I.W. Unsupervised hyperspectral image analysis using independent
component analysis. IEEE Trans. Geosci. Remote Sens. 2000, 7, 3136–3138.

22. Wang, N.; Du, B.; Zhang, L.; Zhang, L. An abundance characteristic-based independent component analysis
for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 2015, 53, 416–428. [CrossRef]

23. Huang, R.; Li, X.; Zhao, L. Nonnegative Matrix Factorization with Data-Guided Constraints for
Hyperspectral Unmixing. Remote Sens. 2017, 9, 1074. [CrossRef]

24. Wang, N.; Du, B.; Zhang, L. An endmember dissimilarity constrained non-negative matrix factorization
method for hyperspectral unmixing. IEEE J. Sel. Top. Appl. Trans. Earth Obs. Remote Sens. 2013, 6, 554–569.
[CrossRef]

25. Tsinos, C.G.; Rontogiannis, A.A.; Berberidis, K. Distributed blind hyperspectral unmixing via joint sparsity
and low-rank constrained non-negative matrix factorization. IEEE Trans. Comput. Imaging 2017, 3, 160–174.
[CrossRef]

26. Arngren, M.; Schmidt, M.N.; Larsen, J. Unmixing of hyperspectral images using Bayesian non-negative
matrix factorization with volume prior. J. Signal Process. Syst. 2011, 65, 479–496. [CrossRef]

27. Jia, S.; Qian, Y. Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci.
Remote Sens. 2009, 47, 161–173. [CrossRef]

28. Huck, A.; Guillaume, M.; Blanc-Talon, J. Minimum dispersion constrained nonnegative matrix factorization
to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2590–2602. [CrossRef]

29. Zhang, Z.; Liao, S.; Zhang, H.; Wang, S.; Wang, Y. Bilateral Filter Regularized L2 Sparse Nonnegative Matrix
Factorization for Hyperspectral Unmixing. Remote Sens. 2018, 10, 816. [CrossRef]

30. Bioucas-Dias, J.M.; Figueiredo, M.A. Alternating direction algorithms for constrained sparse regression:
Application to hyperspectral unmixing. In Proceedings of the 2010 2nd Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHISPERS), Reykjavik, Iceland, 14–16 June 2010;
pp. 1–4.

31. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Sparse unmixing of hyperspectral data. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 2014–2039. [CrossRef]

32. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A. Total variation spatial regularization for sparse hyperspectral
unmixing. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4484–4502. [CrossRef]

33. Wang, D.; Shi, Z.; Cui, X. Robust Sparse Unmixing for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens.
2018, 56, 1348–1359. [CrossRef]

34. Li, C.; Ma, Y.; Mei, X.; Fan, F.; Huang, J.; Ma, J. Sparse unmixing of hyperspectral data with noise level
estimation. Remote Sens. 2017, 9, 1166. [CrossRef]

35. Rizkinia, M.; Okuda, M. Joint Local Abundance Sparse Unmixing for Hyperspectral Images. Remote Sens.
2017, 9, 1224. [CrossRef]

36. Gong, M.; Li, H.; Luo, E.; Liu, J.; Liu, J. A multiobjective cooperative coevolutionary algorithm for
hyperspectral sparse unmixing. IEEE Trans. Evol. Comput. 2017, 21, 234–248. [CrossRef]

37. Feng, R.; Zhong, Y.; Zhang, L. Adaptive spatial regularization sparse unmixing strategy based on joint MAP
for hyperspectral remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5791–5805.
[CrossRef]

38. Themelis, K.E.; Rontogiannis, A.A.; Koutroumbas, K.D. A novel hierarchical Bayesian approach for sparse
semisupervised hyperspectral unmixing. IEEE Trans. Signal Process. 2012, 60, 585–599. [CrossRef]

39. Zhang, G.; Xu, Y.; Fang, F. Framelet-based sparse unmixing of hyperspectral images. IEEE Trans.
Image Process. 2016, 25, 1516–1529. [CrossRef] [PubMed]

40. Zhu, F.; Halimi, A.; Honeine, P.; Chen, B.; Zheng, N. Correntropy Maximization via ADMM: Application to
Robust Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4944–4955. [CrossRef]

41. Feng, R.; Wang, L.; Zhong, Y.; Zhang, L. Differentiable sparse unmixing based on Bregman divergence for
hyperspectral remote sensing imagery. In Proceedings of the 2017 International Geoscience and Remote
Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 598–601.

http://dx.doi.org/10.1109/TGRS.2006.874135
http://dx.doi.org/10.1109/TGRS.2004.839806
http://dx.doi.org/10.1109/TGRS.2014.2322862
http://dx.doi.org/10.3390/rs9101074
http://dx.doi.org/10.1109/JSTARS.2013.2242255
http://dx.doi.org/10.1109/TCI.2017.2693967
http://dx.doi.org/10.1007/s11265-010-0533-2
http://dx.doi.org/10.1109/TGRS.2008.2002882
http://dx.doi.org/10.1109/TGRS.2009.2038483
http://dx.doi.org/10.3390/rs10060816
http://dx.doi.org/10.1109/TGRS.2010.2098413
http://dx.doi.org/10.1109/TGRS.2012.2191590
http://dx.doi.org/10.1109/TGRS.2017.2761912
http://dx.doi.org/10.3390/rs9111166
http://dx.doi.org/10.3390/rs9121224
http://dx.doi.org/10.1109/TEVC.2016.2598858
http://dx.doi.org/10.1109/JSTARS.2016.2570947
http://dx.doi.org/10.1109/TSP.2011.2174052
http://dx.doi.org/10.1109/TIP.2016.2523345
http://www.ncbi.nlm.nih.gov/pubmed/26849863
http://dx.doi.org/10.1109/TGRS.2017.2696262


Remote Sens. 2018, 10, 1106 18 of 19

42. Mei, S.; Du, Q.; He, M. Equivalent-sparse unmixing through spatial and spectral constrained endmember
selection from an image-derived spectral library. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015,
8, 2665–2675. [CrossRef]

43. Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit.
IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [CrossRef]

44. Akhtar, N.; Shafait, F.; Mian, A. Futuristic greedy approach to sparse unmixing of hyperspectral data.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 2157–2174. [CrossRef]

45. Shi, Z.; Tang, W.; Duren, Z.; Jiang, Z. Subspace matching pursuit for sparse unmixing of hyperspectral data.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 3256–3274. [CrossRef]

46. Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans.
Inf. Theory 2009, 55, 2230–2249. [CrossRef]

47. Tropp, J.A.; Gilbert, A.C.; Strauss, M.J. Simultaneous sparse approximation via greedy pursuit.
In Proceedings of the 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing,
Philadelphia, PA, USA, 23–23 March 2005; Volume 5, p. v-721.

48. Iordache, M.D.; Bioucas-Dias, J.M.; Plaza, A.; Somers, B. MUSIC-CSR: Hyperspectral unmixing via multiple
signal classification and collaborative sparse regression. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4364–4382.
[CrossRef]

49. Fu, X.; Ma, W.K.; Bioucas-Dias, J.M.; Chan, T.H. Semiblind hyperspectral unmixing in the presence of
spectral library mismatches. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5171–5184. [CrossRef]

50. Tang, W.; Shi, Z.; Wu, Y.; Zhang, C. Sparse unmixing of hyperspectral data using spectral a priori information.
IEEE Trans. Geosci. Remote Sens. 2015, 53, 770–783. [CrossRef]

51. Wang, R.; Li, H.C.; Liao, W.; Huang, X.; Philips, W. Centralized collaborative sparse unmixing for
hyperspectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1949–1962. [CrossRef]

52. Zhao, X.L.; Wang, F.; Huang, T.Z.; Ng, M.K.; Plemmons, R.J. Deblurring and sparse unmixing for
hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4045–4058. [CrossRef]

53. Tang, W.; Shi, Z.; Wu, Y. Regularized simultaneous forward–backward greedy algorithm for sparse unmixing
of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5271–5288. [CrossRef]

54. Das, S.; Routray, A.; Deb, A.K. Hyperspectral Unmixing by Nuclear Norm Difference Maximization based
Dictionary Pruning. arXiv 2018, arXiv:1806.00864.

55. Li, C.; Ma, Y.; Mei, X.; Liu, C.; Ma, J. Hyperspectral unmixing with robust collaborative sparse regression.
Remote Sens. 2016, 8, 588. [CrossRef]

56. Bioucas-Dias, J.M.; Nascimento, J.M. Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens.
2008, 46, 2435–2445. [CrossRef]

57. Chang, C.I.; Du, Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 608–619. [CrossRef]

58. Acito, N.; Diani, M.; Corsini, G. Hyperspectral signal subspace identification in the presence of rare vectors
and signal-dependent noise. IEEE Trans. Geosci. Remote Sens. 2013, 51, 283–299. [CrossRef]

59. Das, S.; Routray, A.; Deb, A.K. Noise robust estimation of number of endmembers in a hyperspectral image
by Eigenvalue based gap index. In Proceedings of the 2016 8th Workshop on Hyperspectral Image and
Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 19 October 2017;
pp. 1–5.

60. Das, S.; Kundu, J.N.; Routray, A. Estimation of number of endmembers in a Hyperspectral image using
Eigen thresholding. In Proceedings of the 2015 Annual IEEE India Conference (INDICON), New Delhi, India,
17–20 December 2015; pp. 1–5.

61. Sumarsono, A.; Du, Q. Low-rank subspace representation for estimating the number of signal subspaces in
hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6286–6292. [CrossRef]

62. Asadi, H.; Seyfe, B. Source number estimation via entropy estimation of eigenvalues (EEE) in Gaussian and
non-Gaussian noise. arXiv 2013, arXiv:1311.6051.

63. Chang, C.I.; Xiong, W.; Chen, H.M.; Chai, J.W. Maximum orthogonal subspace projection approach to
estimating the number of spectral signal sources in hyperspectral imagery. IEEE J. Sel. Top. Signal Process.
2011, 5, 504–520. [CrossRef]

64. Chang, C.I.; Xiong, W.; Wen, C.H. A theory of high-order statistics-based virtual dimensionality for
hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 188–208. [CrossRef]

http://dx.doi.org/10.1109/JSTARS.2015.2403254
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1109/TGRS.2014.2356556
http://dx.doi.org/10.1109/TGRS.2013.2272076
http://dx.doi.org/10.1109/TIT.2009.2016006
http://dx.doi.org/10.1109/TGRS.2013.2281589
http://dx.doi.org/10.1109/TGRS.2016.2557340
http://dx.doi.org/10.1109/TGRS.2014.2328336
http://dx.doi.org/10.1109/JSTARS.2017.2651063
http://dx.doi.org/10.1109/TGRS.2012.2227764
http://dx.doi.org/10.1109/TGRS.2013.2287795
http://dx.doi.org/10.3390/rs8070588
http://dx.doi.org/10.1109/TGRS.2008.918089
http://dx.doi.org/10.1109/TGRS.2003.819189
http://dx.doi.org/10.1109/TGRS.2012.2201488
http://dx.doi.org/10.1109/TGRS.2015.2438079
http://dx.doi.org/10.1109/JSTSP.2011.2134068
http://dx.doi.org/10.1109/TGRS.2012.2237554


Remote Sens. 2018, 10, 1106 19 of 19

65. Rasti, B.; Ulfarsson, M.O.; Sveinsson, J.R. Hyperspectral subspace identification using SURE. IEEE Geosci.
Remote Sens. Lett. 2015, 12, 2481–2485. [CrossRef]

66. Ambikapathi, A.; Chan, T.H.; Chi, C.Y. Convex geometry based estimation of number of endmembers in
hyperspectral images. In Proceedings of the 2012 IEEE International Conference onAcoustics, Speech and
Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 1233–1236.

67. Heylen, R.; Parente, M.; Scheunders, P. Estimation of the number of endmembers in a hyperspectral image
via the hubness phenomenon. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2191–2200. [CrossRef]

68. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
69. Xia, P.; Zhou, S.; Giannakis, G.B. Achieving the Welch bound with difference sets. IEEE Trans. Inf. Theory

2005, 51, 1900–1907. [CrossRef]
70. Elad, M. Optimized projections for compressed sensing. IEEE Trans. Signal Process. 2007, 55, 5695–5702.

[CrossRef]
71. Liu, H.; Song, B.; Qin, H.; Qiu, Z. An adaptive-ADMM algorithm with support and signal value detection

for compressed sensing. IEEE Signal Process. Lett. 2013, 20, 315–318. [CrossRef]
72. Craig, M.D. Minimum-volume transforPArlettms for remotely sensed data. IEEE Trans. Geosci. Remote Sens.

1994, 32, 542–552. [CrossRef]
73. Zhu, F. Hyperspectral Unmixing: Ground Truth Labeling, Datasets, Benchmark Performances and Survey.

arXiv 2017, arXiv:1708.05125.
74. Gu, M.; Eisenstat, S.C. A divide-and-conquer algorithm for the symmetric tridiagonal eigenproblem. SIAM J.

Matrix Anal. Appl. 1995, 16, 172–191. [CrossRef]
75. Parlett, B.M. The Symmetric Eigenvalue Problem; SIAM: Philadelphia, PA, USA, 1998
76. Li, W.; Yue, H.H.; Valle-Cervantes, S.; Qin, S.J. Recursive PCA for adaptive process monitoring.

J. Process Control 2000, 10, 471–486. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2015.2485999
http://dx.doi.org/10.1109/TGRS.2016.2638541
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TIT.2005.846411
http://dx.doi.org/10.1109/TSP.2007.900760
http://dx.doi.org/10.1109/LSP.2013.2245893
http://dx.doi.org/10.1109/36.297973
http://dx.doi.org/10.1137/S0895479892241287
http://dx.doi.org/10.1016/S0959-1524(00)00022-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Signal Model for Linear Unmixing
	Semi-Supervised Unmixing
	Dictionary Pruning


	Proposed Dictionary Pruning Method
	Noise Removal by Multi Linear Regression
	Estimation of the Number of Endmembers
	Mutual Coherence Reduction
	Dictionary Pruning by Recursive PCA
	Proposed PCA Reconstruction Error Ratio Criteria (PRER)
	Proposed PCA Reconstruction Error Difference Criteria (PRED)

	Recursive Principal Component Analysis
	Abundance Computation

	Results
	Performance Measures
	Description of Data
	Synthetic Image Experiments
	Real Image Experiments

	Algorithms Compared

	Conclusions
	References

