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Abstract: Hyperspectral Band Selection (BS) aims to select a few informative and distinctive bands
to represent the whole image cube. In this paper, an unsupervised BS framework named the band
priority index (BPI) is proposed. The basic idea of BPI is to find the bands with large amounts of
information and low correlation. Sequential forward search (SFS) is used to avoid an exhaustive
search, and the objective function of BPI consist of two parts: the information metric and the
correlation metric. We proposed a new band correlation metric, namely, the joint correlation coefficient
(JCC), to estimate the joint correlation between a single band and multiple bands. JCC uses the angle
between a band and the hyperplane determined by a band set to evaluate the correlation between
them. To estimate the amount of information, the variance and entropy are used as the information
metric for BPI, respectively. Since BPI is a framework for BS, other information metrics and different
mathematic functions of the angle can also be used in the model, which means there are various
implementations of BPI. The BPI-based methods have the advantages as follows: (1) The selected
bands are informative and distinctive. (2) The BPI-based methods usually have good computational
efficiencies. (3) These methods have the potential to determine the number of bands to be selected.
The experimental results on different real hyperspectral datasets demonstrate that the BPI-based
methods are highly efficient and accurate BS methods.

Keywords: feature selection; dimensionality reduction; hyperspectral remote sensing; classification;
greedy search algorithm

1. Introduction

Hyperspectral images contain hundreds of bands with a fine resolution, e.g., 0.01 µm, which makes
it possible to reduce overlap between classes, and, therefore, enhances the potential to discriminate
subtle spectral difference [1,2]. However, the high dimensionality of dataset also brings several
problems, such as heavy computational burden and storage cost. In addition, the high resolution of
the spectrum makes the bands highly correlated. Therefore, to process data effectively, dimensionality
reduction (DR) is important and necessary. Dimensionality reduction techniques can be broadly
split into two categories: feature extraction and feature selection (i.e., band selection) [3,4]. Feature
extraction reduces the data dimensionality by extracting a set of new features from the original ones
through some function mapping. For instance, Principle Component Analysis (PCA) [5] is one of the
well-known feature extraction methods, and other feature extraction methods include Nonnegative
Matrix Factorization (NMF) [6], Independent Component Analysis [7], Local Linear Embedding
(LLE) [8], Maximum Noise Fraction (MNF) [9], and so on. The feature selection reduces the feature
space by selecting a subset of features from the original features. In hyperspectral imagery, Band
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Selection (BS) is preferable for feature extraction because BS methods select a subset of bands without
losing their physical meaning and have the advantage of preserving the relevant original information
in the data. Therefore, in this paper, we focus on BS methods.

Band Selection (BS) has been paid increasing attention in recent years. BS methods can be
roughly divided into two categories: supervised BS [4] and unsupervised BS [10]. The supervised
methods try to find the most informative bands with respect to the available prior knowledge, whereas
unsupervised methods do not assume any object information. Although the prior information of the
class label enables the supervised methods to achieve better performance than unsupervised methods,
the prior knowledge is often unavailable in practice, and, in this case, supervised BS methods are not
suitable. Therefore, there is a need to develop unsupervised BS methods.

In recent years, many unsupervised BS methods have been proposed. Some of them are based on
band-ranking, where different criteria are used to measure the importance of bands. These include
Information Divergence BS (IDBS) [10], Constrained Band Selection (CBS) [10], Linearly Constraint
Minimum Variance (LCMV) [10], Maximum-Variance PCA (MVPCA) [11] and Mutual Information [12].
Other BS methods take bands’ correlation into consideration and resort to finding the bands
combination with the optimal indexes, such as Optimal Index Factor (OIF) [13,14], Maximum Ellipsoid
Volume (MEV) [15], Maximum Information (MI) [16], Minimum Dependent Information (MDI) [17],
Linear-Prediction-based BS (LPBS) [18,19], Manifold Ranking (MR) [20], Volume-Gradient-based BS
(VGBS) [21] and other similar methods [22–24]. Recently, exploiting correlation through clustering
algorithms has attracted more attentions in the field of BS [25]. Some methods based on clustering have
been proposed, such as Affinity Propagation (AP) [26,27], Exemplar Component Analysis (ECA) [28,29],
K-means clustering BS [30] and so on [31,32]. In the clustering-based methods, each band is considered
as a data point, and the dataset is partitioned into groups of similar bands (clusters) without any class
label information.

To design an unsupervised BS method, there are three major points that should be considered:
(1) effective metrics for designing selection criteria; (2) a suitable subset searching strategy which
ensures the algorithm has a good efficiency; and (3) the number of bands that should be selected.
To address these issues, in this paper, we propose a new BS approach, named the Band Priority
Index (BPI), which is a model or framework for BS and different metrics can be used in the model.
The BPI model applies the sequential forward search (SFS) strategy [33] to avoid the exhaustive search.
By combining with SFS, the desired bands are selected one by one. In each round of lookup, the BPI
model computes the score of each unselected band and selects the band with the largest score as the
optimal band, then the newly selected band is added into the selected band set, and next round of
lookup begins. The process is repeated in this manner until the desired number of bands have been
obtained. After the searching strategy has been determined, we need to design a suitable objective
function for BPI, the objective function computes the score of each candidate band and the score
denotes the contribution or the priority of the band. Generally, there are two basic ideas guiding the
design of the selection criterion of an unsupervised BS method. First, the process of dimensionality
reduction almost inevitably results in the loss of information, to minimize the loss, we resort to
retaining the bands within large amounts of information. Second, we also want that the selected bands
have low redundancy with each other, which ensures that the selected band set can provide sufficiently
useful information for further applications. A good BS method should consider both information and
redundancy (usually measured by band correlation). Therefore, the objective function of BPI consists
of two parts: the information metric and the correlation metric: the former estimates the amount of
information of a candidate band, while the latter measures the joint correlation between the candidate
band and the currently selected band set.

The advantages of the BPI model can be summarized as follows: (1) BPI considers the amount
of information and band correlation simultaneously, and, therefore, the selected bands are useful for
further applications such as pixel classification. (2) BPI has a good computational efficiency, because the
correlation metric can be incrementally calculated by using recursive formulas and the calculation of
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amounts of information is usually not computationally complex. (3) BPI is a model for BS; the metrics
in the objective function can be modified or replaced depending on specific applications, which means
that BPI has various implementations. (4) The BPI-based methods have the potential to determine the
number of bands to be selected.

The remainder of this paper is organized as follows: Section 2 introduced some related works
associated with the proposed method. Section 3 specifically explains the BPI model. Section 4
presents experiments on three different real-world hyperspectral images. Finally, Section 5 shows
some concluding remarks.

2. Related Works

2.1. OIF

In 1982, Chavez et al. proposed the formula of Optimal Index Factor (OIF) to find the best band
combination of a multispectral dataset [13]. This formula computes the optimal index of a combination
with n bands:

OIF =
∑n

i=1 σi

∑n
i=1 ∑n

j=i+1 |Ri,j|
(1)

Ri,j =
∑N

k=1(xi,k − µi)(xj,k − µj)√
∑N

k=1(xi,k − µi)2 ∑N
k=1(xj,k − µj)2

(2)

where σi (i = 1, 2, ..., n) denotes the standard deviation of the ith band xi, and xi is a column vector
with N pixels. xi,k and xj,k denote the kth pixels of xi and xj, respectively; µi and µj denote the averages
of xi and xj, respectively; and Ri,j denotes the correlation coefficient between them. In fact, it is easy
to find that the numerator and denominator of OIF, respectively, evaluate the amount of information
and the band correlation of the band combination; thus, OIF is perfectly consistent with the basic
ideas of BS, that is, an unsupervised BS method should consider both amount of information and
band correlation.

However, OIF is originally proposed for the multispectral images with only seven bands, and the
number n of OIF is set to be 3, so the exhaustive search can be executed rapidly, but for a hyperspectral
image with hundreds of bands, exhaustive strategies cannot be used due to the huge computational
time. Besides, in practical applications, the bands selected by OIF are not always the optimum
combination, because the numerator and denominator of OIF are the sums of standard deviations
and correlation coefficients, respectively, which means OIF is not sufficiently sensitive to the band
correlation and thus is likely to select the bands with high correlation [14].

2.2. Variants of OIF

To overcome the drawbacks of OIF, some similar indexes were proposed. For instance, Xijun and
Jun [14] proposed a simplified version of OIF, which is defined as follows:

SOIF =
2σt

Rt−1,t + Rt,t+1
(3)

where SOIF denotes the score of the band xt. Different from OIF, the simplified version of OIF uses three
adjacent bands to calculate the score of one band, and a specific number of bands with the maximum
scores will be selected. Compared with OIF, the variant cares more about the effect of the correlation
among adjacent bands. However, this index only considers the band correlation among adjacent bands
but neglects that among nonadjacent bands. Considering that some nonadjacent bands are also likely
highly correlated, so even though this index can select fewer neighboring bands, the selected bands
may be still with high correlation. In fact, for the hyperspectral images, the adjacent bands are usually
highly correlated with each other, so, for most bands, the denominators of SOIF (i.e., Rt−1,t + Rt,t+1)
are almost the same, then the value of SOIF is mainly determined by the numerator, which means that
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this index also pays not sufficiently attention to the band correlation. Although other similar indexes
have been proposed [34,35], a common drawback of these OIF-based methods is that they cannot well
evaluate the correlation among the bands in the selected band set, so the bands obtained by them are
not always with large amounts of information and low correlation.

3. The Proposed Method

3.1. Band Priority Index

Because an exhaustive search for the optimal solution is prohibitive from a computational
viewpoint [36,37], we apply a simple suboptimal search method in this paper, namely, the sequential
forward search (SFS) method [33]. SFS is a simple greedy search algorithm, which belongs to the
heuristic suboptimal search methods. It starts from the empty set of features, and adds the feature
x that maximizes the cost function f (Yk + x) when combined with the features Yk that have already
been selected, until a feature subset with the desired quantity is obtained. Therefore, the proposed
method selects one band for each time, and in each round of lookup, the band that optimizes the
objective function would be selected and added into the selected band set, then next iteration begins.
This sequence is repeated in this manner until desired number of bands have been obtained.

When the searching strategy has been determined, we need to design a suitable objective function
for the proposed model. In this paper, a new index named the band priority index (BPI) is proposed to
evaluate the contribution of the candidate bands. Considering that a good unsupervised BS method
should consider the amount of information and band correlation simultaneously, and referring to the
selection criterion of OIF, we define the objective function of BPI as follows:

st = ct × δt (4)

where st denotes the score of the tth band xt; ct denotes the joint band correlation between the band
xt and the currently selected band set; and δt represents the amount of information of xt. The score
st measures the contribution or the priority of xt, the larger the score is, the more the contribution is.
Obviously, the band with a larger score is more prior to be selected, therefore, st is called as the BPI
of the band xt. It should be noted that ct is negatively proportional to the band correlation, in other
words, the larger the value for ct is, the less the band correlation is. Hence, the key issue is to find
effective metrics to be used in the model.

3.2. Correlation Metric

3.2.1. Joint Correlation Coefficient

In this section, we proposed a new band correlation metric, i.e., the joint correlation coefficient
(JCC), to estimate the joint correlation between the candidate band and the currently selected band set.
JCC is defined as the sine of the angle between the candidate band and the hyperplane spanned by
the selected bands. It is derived from the correlation coefficient and the cosine version of JCC can be
regarded as the extension of the correlation coefficient into the high-dimensional space. The correlation
coefficient is defined in Equation (2). For a dataset X = [x1, x2, ..., xL] ∈ RN×L, where N and L denote
the numbers of pixels and bands, respectively, assume the mean value of each band has been removed.
Then, the correlation coefficient between xi and xj can be simplified as follows:

Ri,j =
xT

i xj

‖xi‖‖xj‖
= cos θi,j (5)

where xT
i xj denotes the vector inner product; ‖xi‖ denotes the Euclidean norm of xi; and θi,j denotes the

angle between the bands xi and xj (for the correlation coefficient, θi,j lies in the interval [0, π] radians).
In Figure 1a, it is evident that the correlation coefficient actually measures the band correlation by
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computing the angle between two bands. Enlightened by this, we can extend the correlation coefficient
to a high-dimensional space, and use the angle between a single band and the hyperplane spanned by
other bands to evaluate the correlation among them. Hence, we defined the sine of the angle between
a single band and the hyperplane spanned by a set of bands as JCC. Interestingly, when only one band
has been selected, the cosine version of JCC is exactly the correlation coefficient between the candidate
band and the selected band, therefore, the cosine version of JCC can be regarded as the extension of the
correlation coefficient in the high-dimensional space. However, it should be noted that the correlation
coefficient is a pairwise correlation metric, namely, it is used to estimate the correlation between two
bands, whereas the new metric JCC is able to measure the joint correlation between a single band and
multiple bands. Thus, for the BPI model, the band correlation is evaluated jointly instead of pairwise.

Figure 1b shows an example in 3-D, in which xt and W denote a candidate band and the
hyperplane spanned by two selected bands, respectively, and θt denotes the angle between them.
It should be noted that, for the BPI model, we define that θt lies in the interval [0, π/2] radians.
Then, similar to the correlation coefficient, the larger the value for θt is, the less band correlation
is. For instance, in the worst case, the θt equals zero, the band xt can be linearly expressed by the
selected bands, which means xt is totally linearly correlated with the selected bands and thus can be
regarded as a totally redundant band. In the best case, the θt equals ninety degrees, then the band xt

is perpendicular to any band in the selected band set, and it is reasonable to consider that xt has no
correlation with the selected bands. Therefore, the angle between the candidate band and the selected
band set can estimate the joint correlation between them.
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Figure 1. The geometric explanation of the correlation coefficient and the new correlation metric:
(a) the correlation coefficient; and (b) the joint correlation metric (here, for illustration convenience,
assume that each band is a 3 by 1 vector).

The JCC or the angle θt can be obtained by computing the orthogonal projection of xt onto the
vector space (or hyperplane) W. A vector space is defined as a set that is closed under finite vector
addition and scalar multiplication. For instance, suppose that we have obtained k selected bands and
the currently selected band set is denoted as Z = [xid(1), xid(2), ..., xid(k)] ∈ RN×k, where id(i) denotes
the index number of the ith selected band, and then the vector space spanned by the bands in Z can be
expressed as follows:

W = span{Z} = {x : x =
k

∑
i=1

aixid(i), ai ∈ R} (6)

Then, according to Figure 1b, JCC can be obtained by computing

JCCt = sin θt =
‖x⊥‖
‖xt‖

(7)
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where JCCt estimates the joint correlation between xt and Z; and x‖ is the orthogonal projection of xt

onto W. Similarly, x⊥ is the orthogonal projection of xt onto the orthogonal complement of W. The two
orthogonal components can be computed by

x‖ = Pxt (8)

P = Z(ZTZ)−1ZT (9)

x⊥ = P⊥xt (10)

P⊥ = I − P (11)

where I is an identity matrix; P is called the orthogonal projector; and P⊥ is the orthogonal complement
of P [38]. It is worth noting that P (or P⊥) is symmetric and idempotent, i.e.,

P = PT (12)

P2 = P (13)

For simplicity, we use the standardized bands (i.e., the unit vector in the direction of each
band) to compute the angle between the candidate band and the selected band set. Assume that the
standardized bands are denoted as X = [x1, x2, ..., xL] ∈ RN×L, and the currently selected band set is
denoted as Z = [xid(1), xid(2), ..., xid(k)] ∈ RN×k, then Equation (7) can be simplified as follows:

JCCt =
‖x⊥‖
‖xt‖

= ‖P⊥xt‖ (14)

Hence, we can use the JCC as the correlation metric ct for the BPI model, i.e.,

ct = JCCt = ‖P⊥xt‖ (15)

It should be noted that, although we choose the JCC as the default correlation metric for the BPI
model in this paper, other trigonometric functions of θt (e.g., tan θt) or even the angle θt itself can
also be used as the correlation metric in BPI. However, for cos θt, it cannot be directly used, because
cos θt is very close to 1 when there have been several bands obtained; in this case, using its inverse as
the correlation metric will cause that BPI is insensitive to the band correlation, too. Therefore, we do
not recommend directly using cos θt as the correlation metric without additionally proper processing.
As for tan θt and θt, when they are, respectively, applied as the correlation metric, the results are almost
the same as using sin θt, which occurs because, when θt is close to zero, these three metrics are close
to each other. Since JCC (i.e., sin θt) is more easily computed, we choose it as the default choice for
correlation metric.

3.2.2. Incremental Calculation of JCC

However, directly computing JCC is impractical, because the projector P (or P⊥) is an N × N
matrix, where N is the number of pixels and is usually very large, which means the calculation and
storage of P (or P⊥) are unacceptable in practice. Fortunately, JCC can be incrementally calculated by
using recursive formulas without computing and storing the projector P or P⊥. As aforementioned,
JCC is computed by

yt = P⊥xt (16)

JCCt = sin θt = ‖yt‖ (17)

where yt denotes the orthogonal projection of xt onto the orthogonal complement of the vector space
W, namely, yt = x⊥ (Figure 1b). Assume that the number of desired bands is n; to find all the desired
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bands, we need perform n rounds of lookups. For the convenience of illustration, in the ith round,
P⊥ is denoted as P⊥i , and yt and sin θt of the candidate band xt are, respectively, denoted as follows:

y(i)t = P⊥i xt (18)

JCC(i)
t = sin θ

(i)
t = ‖y(i)t ‖ (19)

After the newly selected band xid(i) has been found and its normalized band xid(i) has been added
into Z, the next round of lookup begins. Then, in the (i + 1)th round, for the same candidate band xt,
according to Equations (9)–(13), we have:

y(i)t = P⊥i xt

= xt −
[

Z xid(i)

] [ ZTZ ZTxid(i)
xT

id(i)Z xT
id(i)xid(i)

]−1 [
ZT

xT
id(i)

]
xt

= P⊥i xt − P⊥i xid(i)(xT
id(i)P

⊥
i xid(i))

−1xT
id(i)P

⊥
i xt

= P⊥i xt − P⊥i xid(i)(xT
id(i)P

⊥
i xid(i))

−1xT
id(i)P

⊥
i P⊥i xt

= y(i)t − y(i)id(i)(‖y
(i)
id(i)‖

2)−1y(i)id(i)

T
y(i)t

(20)

which demonstrates that the current y(i+1)
t is only associated with y(i)t and y(i)id(i), and both the terms

have been computed and stored in the previous round. Moreover, we notice that both y(i)t and y(i)id(i)

are the N × 1 vectors, and ‖y(i)id(i)‖
2 is a scalar, thus, the calculation of Equation (20) only involves

low-complexity vector multiplication and scalar multiplication. Furthermore, Equation (20) can be
further justified as

y(i+1)
t = y(i)t − y(i)id(i)[y

(i)
id(i)

T
y(i)t /‖y(i)id(i)‖

2] (21)

where (y(i)id(i))
Ty(i)t is computed first and is also a scalar, thus Equation (21) avoids the generation of the

high-order matrix variables during the calculation, which is useful for saving computing time and
storage space. By using Equation (21), it is unnecessary to compute P (or P⊥) in each round, we can
directly obtain the value of JCC (i.e., sin θ) incrementally, and, at the same time, the computational
complexity is reduced significantly.

3.3. Information Metric

On the other hand, for the BPI model, we need to choose an effective information metric to
evaluate the amounts of information of bands. In this paper, we, respectively, apply two widely-used
information metrics, namely, the variance and the information entropy, as the information metric δt for
the BPI model; and the corresponding methods are denoted as BPI-VAR and BPI-EN, respectively.

The variance is the expectation of the squared deviation of a random variable from its mean;
it measures how far a set of (random) numbers are spread out from their average value. In hyperspectral
remote sensing, variance is often used to estimate the amounts of information of bands, and the value
for variance can be regarded as the classification separability to some extent. For a candidate band xt,
its variance is defined as follows:

var(xt) =
N

∑
i=1

(xt,i − µt)
2 (22)

where xt,i and µt represent the ith pixel and the average of xt, respectively. Then, for the BPI-VAR
method, ct = sin θt and δt = var(xt).

In the field of information theory, the information entropy is defined as the average amount of
information produced by a stochastic source of data [39]. It estimates the disorder or uncertainty of a
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set of variables, and the band that has large entropy can be considered as the band with a large amount
of information. Similarly, for the band xt, its entropy is computed by

e(xt) = −
N

∑
i=1

pi log pi (23)

where p = [p1, p2, ..., pN ] is the image histogram of the band xt and is normalized as a probability
distribution. Hence, for the BPI-EN method, we have ct = sin θt and δt = e(xt).

3.4. Number of Selected Bands

In practice, another important issue for BS should be considered is the determination of the
number of bands to be selected. Interestingly, the BPI model has the potential to find how many
bands should be selected. We find that the score of the newly selected band is always smaller than the
previously selected bands’ scores. Based on this property, the BPI-based methods can determine the
number of selected bands. According to Equation (4), the scores of two sequentially selected bands
xid(i) and xid(i+1) are measured by: s(i)id(i) = c(i)id(i) × δid(i)

s(i+1)
id(i+1) = c(i+1)

id(i+1) × δid(i+1)
(24)

where s(i)id(i) denotes the score of the ith selected band xid(i). Then, we need to prove that

s(i)id(i) ≥ s(i+1)
id(i+1) (25)

However, they have no direct relationship, so we introduce a third variable: s(i)id(i+1), which is the
score of band xid(i+1) in the ith round. Then, it is equivalent to proving that

s(i)id(i) ≥ s(i)id(i+1) ≥ s(i+1)
id(i+1) (26)

Obviously, s(i)id(i) is larger than s(i)id(i+1) because the band xid(i) is the optimal band in the ith round.

Hence, we just need to prove that s(i)id(i+1) is larger than s(i+1)
id(i+1), which is equivalent to proving that

s(i)t ≥ s(i+1)
t (27)

Hence, our goal is to prove that for the same candidate band xt, its score of the current round is
smaller than that of the previous round. According to Equation (4), it is also equivalent to proving that
c(i)t ≥ c(i+1)

t ; since JCC is used as the correlation metric in this paper, our final goal is to prove

sin θ
(i)
t ≥ sin θ

(i+1)
t , (θt ∈ [0, π/2]) (28)

Hence, we compute the equation as follows:

∆ = sin2 θ
(i)
t − sin2 θ

(i+1)
t = y(i)t

T
y(i)t − y(i+1)

t
T

y(i+1)
t (29)

According to Equation (21), it can be found that

∆ =
‖y(i)id(i)

T
y(i)t ‖2

‖y(i)id(i)‖2
≥ 0 (30)
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Therefore, Equations (25)–(28) have been proven, and we can see that the scores of the newly
selected bands decrease as the number of iteration increases. This phenomenon is because, as more
bands have been included in the selected band set, the remaining bands are more correlated with the
selected band set.

When the number of the selected bands exceeds a specific size, the score of the newly selected
band becomes relatively small, which means the contribution of the bands becomes less and adding
more bands into the selected band set no longer increases the total amount of information of the band
combination significantly, in this case, the BS algorithm can be terminated. For instance, Figure 2
shows the scores of the bands selected by BPI-VAR in each round from a real hyperspectral dataset.
It can be seen that the scores of each newly selected band is smaller than that of previously selected
band, and the slope of the curve becomes quite small when sufficiently number of bands have been
selected, which can be used to determine the number of selected bands. Here, a simple way to compute
the decreasing rate is

r(k) =
sid(k) − sid(k−1)

sid(k−1)
(31)

where r(k) denotes the decreasing rate of the kth selected band. Then, during the process of BS,
when the average of three sequentially selected bands’ rate is less than a threshold ε, the BS algorithm
can be terminated. In this paper, the parameter ε is set to be 0.05 in default.
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Figure 2. The scores of the bands selected by BPI-VAR from Pavia University dataset (Section 4.1).

3.5. Computational Complexity Analysis

The BPI model also has the advantage of high computational efficiency. The correlation metric
JCC can be incrementally calculated by using the recursive Equation (21), thus the computation
of this part is not computationally complex. As for the computation of amounts of information,
its computational complexity depends on the choice of information metrics, and, for most information
metrics, the calculation is also not complex. Here, we use the floating point operations (flops) to
measure the computational complexity of proposed methods, and the procedures of BPI-based methods
are given in Algorithm 1, which shows that the calculation of the JCC has been reduced significantly
and only results in about 3nNL flops in total; when using the variance as the information metric,
the calculation of amounts of information results in about NL flops; and, when using entropy as the
information metric, it results in about 2NL flops. Therefore, the total flops of BPI-VAR and BPI-EN
are about 3nNL + NL and 3nNL + 2NL, respectively. This demonstrates that the BPI-based methods
have quite good computational efficiencies.
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Algorithm 1 The BPI Algorithm

Input: Observations X = [x1, x2, . . . , xL] ∈ RN×L, the number of selected bands n. Here,
id(i)(i = 1, 2, ..., n) denotes the index number of the ith selected band.
Band Selection
Step 1: Compute the amounts of information of bands in X and denote them as D = [δ1, δ2, ..., δL] ∈ RL.
Step 2: Select the band with maximum information as the initial selected band, which is denoted as
xid(1). Set the initial selected band set as Φ = {xid(1)}
Step 3: Let Y = [y1, y2, . . . , yL] = X, where X denotes the normalized band set of X, then set counter
i = 2.
while i < n + 1 or (31) is not met do
Step 4: Calculate the ct of the tth normalized band xt, (t = 1, 2, ..., L), i.e.,

yt = yt − yid(i−1)[y
T
id(i−1)yt/‖yid(i−1)‖2]

ct = ‖yt‖

Step 5: Find the band that has the largest score as the optimal band, and add it into Φ, i.e.,

st = ct × δt

id(i) = arg max
t

(st)

Φ = Φ ∪ {xid(i)}

If the tth band xt has already been selected, its yt and st will not be calculated and compared.
Step 6: i← i + 1
end while
Output: Selected band set Φ.

4. Experiments

In this section, we evaluate the performance of the BPI model on three different real-world
hyperspectral datasets. Two of implementations of BPI, namely, the BPI-VAR and BPI-EN methods,
are used in our experiments. For comparison, six different unsupervised BS methods are used:
LCMV Band Correlation Constraint (LCMV-BCC) [10], LCMV Band Correlation Minimization
(LCMV-BCM) [10],Volume-Gradient-based BS (VGBS) [21],Exemplar Component Analysis (ECA) [28],
Manifold Ranking (MR) [20] and the Simplified OIF-based method (SOIF) [14]. Among these methods,
LCMV-BCC and LCMV-BCM are classical BS methods, VGBS; ECA and MR are newly proposed
state-of-the-art methods; and SOIF method has a similar design idea with the proposed method.
The LCMV-based methods aim to select the bands that best represent the whole image cube, and
the representative ability of a candidate band is measured by its correlation with the whole image
dataset. VGBS is a geometry-based method, which tries to find the band set with the maximum
ellipsoid volume. The bands with the maximum volume gradients are removed one by one, until
the desired number of bands remains. ECA is based on an effective clustering algorithm [29], so it
performs quite well in practice. MR is based on many advanced machine learning algorithms including
clustering, clone selection and manifold ranking [20]. As for SOIF, it is similar to the BPI model and
also computes the indexes of bands, the bands with the largest scores are selected as the desired bands.
The comparison includes three aspects: pixel classification results, band correlation and computing
time. Additionally, some tests about the recommended number of selected bands are also introduced
in this section.

4.1. Hyperspectral Datasets

(1) Indian Pine Dataset [40]: The first hyperspectral image we used has been researched extensively.
The image was collected by the AVIRIS sensor over the Indian Pine region in Northwestern
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Indiana in 1992, and it has 145 × 145 pixels (about 20 m per pixel) and 220 bands with a
wavelength range from 400 to 2500 nm (Figure 3a). In our experiments, bands 1–3, 103–112,
148–165, and 217–220 were removed due to atmospheric water vapor absorption and low signal
to noise ratio (SNR) [16], leaving 185 valid bands to be used. Of the 16 classes in the image,
only nine classes are used in our experiment and the others are removed because of the lack of
sufficient samples (Table 1) [16].

20 40 60 80 100 120 140

20

40

60

80

100

120

140

(a)

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

300

350

400

450

500

(b)

50 100 150 200 250 300

100

200

300

400

500

600

(c)

Figure 3. Ground truth maps of different datasets: (a) Indian Pine dataset; (b) Salinas dataset;
and (c) Pavia University dataset.

Table 1. Number of samples for ground objects in Indian Pine dataset.

Class Training Samples Testing Samples

1. Corn-notill 143 1291
2. Corn-mintill 83 751
3. Grass/Pasture 49 448
4. Grass/Trees 74 673
5. Hay-windrowed 48 441
6. Soybeans-notill 96 872
7. Soybeans-meantill 246 2222
8. Soybeans-clean 61 553
9. Woods 129 1165

Total 929 8416

(2) Salinas Dataset [41]: The second image was collected by the 224-band AVIRIS sensor over Salinas
Valley, California, and was characterized by a high spatial resolution (3.7-m pixels) (Figure 3b).
The dataset has a medium size of 512× 217 pixels, and the spectral range is from 370 to 2507 nm.
For this dataset, we discarded the 20 water absorption bands, which were the bands: 108–112,
154–167, and 224. In our experiments, all 16 classes in the Salinas dataset are used.

(3) Pavia University Dataset [42]: The third image is a hyperspectral image at the University of Pavia
acquired by the ROSIS-3 optical sensor (Figure 3c). The dataset has 103 spectral bands with a
spectral range from 0.43 to 0.86 µm. The image size is 610× 340 with a spatial resolution of about
1.3 m. In the image, nine classes are labeled and used: Asphalt, Meadows, Gravel, Trees, Painted
Metal Sheets, Bare Soil, Bitumen, Self-Blocking Bricks, and Shadows [43].

4.2. Classification Performance

To evaluate the performance of different methods, the pixel classifications of the three hyperspectral
images are conducted, respectively, with two different classifiers: K-Nearest Neighborhood (KNN) and
Support Vector Machine (SVM) [44]. In our experiments, the neighbors in KNN are set to be 3; as for
SVM, Gaussian Radial Basis Function (RBF) is used as the kernel function and the one-against-all
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scheme [45] is used for multi-class classification. For all three datasets, we randomly select 10% samples
from each class to construct the training set, and the rest are used for testing. In the following, we
will discuss the BS results on different images with respect to two classifiers. Two kinds of results are
shown in this section: the first kind are the band number-accuracy curves and the second kind are the
averaged accuracy bars (i.e., the average of accuracy curve). It should be noted that the classification
accuracy is defined as the proportion of correctly classified pixels to all the corresponding class pixels
in the image.

For the Indian Pine dataset, we can see in Figure 4 that the overall classification accuracies of all the
methods increase as the number of the selected bands increases. When using SVM, the BPI-EN method
shows the best overall performance, followed by MR, ECA, VGBS and BPI-VAR. The performances
of VGBS and BPI-VAR are similar to each other. The SOIF, LCMV-BCM and LCMV-BCC methods
cannot compete with the two proposed methods, especially when selecting a small number of bands.
As for KNN classifier, likewise, BPI-EN performs the best, followed by MR, ECA, VGBS and BPI-VAR.
For this classifier, VGBS is slightly superior to BPI-VAR. Additionally, the average results of selecting
different numbers of bands are shown in Figure 4c, from which we can see that BPI-EN obtains the
best overall classification performance, followed by MR, ECA, VGBS, BPI-VAR, SOIF and LCMV-BCM,
whereas the LCMV-BCC method performs poorly.

For the Salinas dataset, similarly, BPI-EN outperforms other methods. BPI-VAR, ECA, VGBS and
MR also perform well (Figure 5). Other methods cannot compete with these four methods, especially
when selecting small numbers of bands. When using SVM, BPI-EN is always superior to others,
and BPI-VAR, ECA, VGBS and MR show similar performances, while the remaining methods perform
not as well as these four methods. Figure 5c further demonstrates that BPI-EN has the best overall
performance, and the overall performance of BPI-VAR is almost the same with ECA and slightly better
than those of VGBS and MR. When using KNN, the BPI-EN method still performs the best, followed
by BPI-VAR, MR, ECA, VGBS and others. BPI-EN always performs better than others, and BPI-VAR
also performs much better the competitors when selecting more than 15 bands. Figure 5c also indicates
that the BPI-EN and BPI-VAR methods have the best overall performances for this classifier.

As for the Pavia University dataset, things are a little different (Figure 6). BPI-VAR and VGBS
perform the best, followed by MR, BPI-EN, ECA and other methods. When using the SVM classifier,
the BPI-VAR and VGBS methods obtain almost the same classification performances, MR also performs
well, and the accuracy of ECA is slightly lower than that of MR and BPI-EN. The remaining methods
still cannot compete with these best methods. When using KNN, VGBS and BPI-VAR performs best,
followed by MR, BPI-EN and other methods. ECA performs worse when compared with the results of
SVM, while the BPI-VAR and BPI-EN still obtain good performances. Figure 6c shows the average
results of these methods; for this dataset, BPI-VAR and VGBS ranks the first, followed by MR and
BPI-EN. These four methods outperform the other methods significantly.
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Figure 4. Classification results of the Indian Pine dataset: (a) SVM; (b) KNN; and (c) Average accuracy Bars.
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Figure 5. Classification results of the Salinas dataset: (a) SVMl (b) KNNl and (c) Average accuracy Bars.
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Figure 6. Classification results of the Pavia University dataset: (a) SVM; (b) KNN; and (c) Average
accuracy Bars.

After introducing the classification results, we give some in-depth analysis. In general,
the proposed methods are more effective than the other competitors. BPI-EN obtains the best overall
performances among all the methods we used. BPI-VAR also performs well; it performs the best
on the Pavia University dataset. This is mainly due to the BPI model can evaluate the contribution
of bands properly, the band correlation and amounts of information are well considered by the
proposed methods. For instance, when compared with the similar method, namely, the SOIF method,
our proposed methods have achieved significant improvements on the performances for classification.
Even compared with state-of-the-art methods such as MR, ECA and VGBS, the BPI-EN method
performs better than them, and the BPI-VAR can compete with them, which verifies that the BPI-based
methods are effective. We also notice that the classification performances are influenced by the
number of selected bands. There is a phenomenon that the performance is better when the band
number is larger. Considering that the purpose of BS is to enhance the computational efficiency and
reduce the storage burden at the same time, fewer bands while good classification performance is
encouraged for a BS method; therefore, if the selected band number is not large but the performance of
classification is satisfying, we can think that the BS method is effective and of great value. The proposed
methods (especially the BPI-EN method) have shown satisfactory overall performances in experiments,
and when selecting a small number of bands, the superiority is more evident, which demonstrates that
the BPI-based methods are valuable and have a good significance in practical applications. Additionally,
we also conduct experiments using the whole image cube and the results are as follows: Indian Pine
[SVM (0.8382) and KNN (0.7449)], Salinas [SVM (0.9406) and KNN (0.8806)] and Pavia University
[SVM (0.9396) and KNN (0.8691)]. Comparing the BS methods (Figures 4–6) with the full band method,
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we can find that the proposed BPI-EN method does not reduce the classification accuracy very much.
For each image and classifier, abandoning most redundant bands only leads to a small reduction in
accuracy (<3%) for the classification task. This denotes that the proposed methods are very effective.
Although only a limited number of bands are selected, we can achieve an acceptable performance.
Therefore, the classification experiments on three different datasets verify that the bands selected by
the proposed method are informative for classification, and the proposed methods are highly accurate
BS methods.

4.3. Band Correlation

In this section, we evaluate the average band correlation among the bands selected by different
methods. We use the average correlation coefficients (ACC) to estimate the overall band correlation
among the selected bands. The larger the value for JCC is, the larger the average band correlation is.
Table 2 shows the ACC of the fifteen bands selected from different datasets, and the index numbers
of the fifteen bands selected from the Indian Pine dataset are listed in Table 3. In Table 2, the bands
obtained by SOIF and the two LCMV-based methods are highly correlated, whereas the selected bands
obtained by the other methods are with much lower correlation. Furthermore, according to Table 3,
it can be found that most of the bands obtained by the SOIF, LCMV-BCC and LCMV-BCM methods
are neighboring bands, whereas the other five methods select less neighboring bands. In fact, for the
hyperspectral images, the neighboring bands are usually highly correlated with each other, so the
methods that select too many neighboring bands cannot ensure that the selected band set has low
correlation, and, thus, may result in relatively poor classification performances. The results in Tables 2
and 3 and Figures 4–6 have verified this point; the bands selected by the proposed methods, MR, ECA
and VGBS are with low correlation, and, correspondingly, the classification performances of them are
relatively better than others.

Table 2. Correlation of the fifteen bands selected from different datasets.

ACC SOIF LCMVBCC LCMVBCM VGBS ECA MR BPI-VAR BPI-EN

Indian 0.65 0.98 0.99 0.19 0.30 0.25 0.34 0.17
Salinas 0.79 0.88 0.88 0.39 0.46 0.22 0.38 0.32
PaviaU 0.99 0.98 0.99 0.58 0.66 0.67 0.50 0.54

Table 3. Fifteen bands selected by different methods for the Indian Pine dataset.

Fifteen Bands

SOIF 15 20 21 22 23 24 25 26 27 28 29 30 31 72 88
LCMV-BCC 106 135 139 154 160 165 167 178 179 180 181 182 183 184 185
LCMV-BCM 103 104 106 107 110 117 120 140 143 154 160 165 168 178 179

VGBS 10 15 17 20 26 29 31 32 36 54 58 59 72 85 86
ECA 1 10 28 29 31 32 33 54 58 59 72 87 95 97 156
MR 4 25 39 50 52 55 58 61 131 151 153 159 161 162 185

BPI-VAR 14 15 16 17 19 22 26 29 30 31 32 39 54 58 72
BPI-EN 5 9 22 23 30 37 39 43 54 55 67 73 108 121 142

It is worth noting that these results also verify that the SOIF method cannot always consider
the band correlation properly. It can be seen in Table 2 that, although SOIF can consider the band
correlation to some extent, it does not perform consistently. For instance, when selecting bands from the
Indian Pine and Salinas datasets, the selected bands are with acceptable correlation, but, when selecting
bands from the Pavia University dataset, they are with quite high correlation. This occurs because
that the SOIF method uses the correlation coefficients as the denominator of the objective function,
and the correlation coefficients between neighboring bands are often very close to 1 because of their
high correlation with each other, which means, for most candidate bands, their SOIF’s denominators
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are almost the same, and thus their scores are mainly determined by the amounts of information of
bands. Therefore, the SOIF method sometimes cannot pay sufficiently enough attention on the band
correlation, which deteriorates its performance. As for the two LCMV-based methods, they also select
one band for each time, and the band that is the most correlated with the whole image cube would
be regarded as the optimal band. It is easy to find that LCMV-based methods also do not pay much
attention on the band correlation among the selected bands, therefore, the bands obtained by this kind
of methods are also usually highly correlated.

4.4. Computing Time

In this section, we compare the computing time of different methods. The computing time of
selecting fifteen bands from different datasets is listed in Table 4.

Table 4. Computing time of selecting fifteen bands from different datasets.

Time (s) SOIF LCMVBCC LCMVBCM VGBS ECA MR BPI-VAR BPI-EN

Indian 0.26 2.24 1.88 2.09 1.85 2.67 0.62 0.79
Salinas 2.99 21.62 17.16 24.09 17.32 47.01 3.83 4.14
PaviaU 1.32 13.24 8.84 7.78 6.64 29.54 3.23 3.55

In Table 4, the proposed methods have good computational efficiencies. Among all the methods,
SOIF spends the least time, followed by BPI-VAR and BPI-EN, of which computing time is just a little
more than that of SOIF, but is always lower than the other methods’ computing time. The SOIF method
has a small number of steps, so it has a good computational efficiency. Specifically, the SOIF method
only needs to compute the standard deviation of each band and the correlation coefficients of all the
adjacent band pairs. All these steps only result in about 2NL flops, where N and L are the numbers
of pixels and bands, respectively. As for the proposed methods, the procedures not only include the
calculation of amounts of information but also the computation of JCCs, which results in the additional
computational complexity. However, due to the adoption of recursive formulas, JCCs can be computed
incrementally, which reduces the complexity of the algorithm significantly. For instance, the total
computational complexity of BPI-VAR is about 3nNL + NL, which is slightly larger than that of SOIF.
Considering that the proposed methods have shown much better classification performances than
the SOIF method, a little more time cost is acceptable. When compared with the methods excluding
SOIF, the BPI-based methods cost the least time. VGBS needs to compute the covariance matrix of total
bands and perform Singular Value Decomposition (SVD), which result in about NL2 + L3 flops, so its
computational complexity is higher than the BPI-based methods. Although the clustering algorithm
applied by ECA is quite effective for most clustering algorithms, the computational burden is still high
when compared with the proposed methods. The MR is quite complicated; it involves clustering, clone
selection and manifold ranking, which are all time-consuming. Although the MR method performs
quite well in the classification experiments, it costs the most time, which is a significant drawback of
this method. The LCMV-based methods require to evaluate the correlation between each candidate
band and the whole image cube, which is relatively computational complex, so they cost much time,
too. To sum up, these results have identified that the proposed methods have good computational
efficiencies and can obtain the desired bands in a short time.

4.5. Number of Selected Bands

In practice, it is difficult to determine the number of bands to be selected, a reasonable way is to
choose the number of bands close to the number of classes in the dataset. Generally, the number of
classes can be determined by using a virtual dimensionality (VD) estimation approach proposed in [46],
but this results in additional computational burden and the classes number is sometimes not well
estimated because it is also difficult to choose suitable values for the parameters in VD. Therefore, if the
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BS method can determine the number of bands properly and not increase the computational complexity
very much, we can think the method is of great value. Interestingly, the proposed BPI-based methods
have the potential to determine the number of selected bands automatically, and, most importantly,
the parameters in our strategy of determining the selected bands number can be set easily and this
process causes little additional computational burden in applications, therefore, the BPI model has a
good value for practical applications.

Therefore, in this section, we use the strategy described in Section 3.4 as the stop criterion for the
proposed BS algorithm and test the recommended number of selected bands. For all the three datasets,
we set the parameters ε as 0.05, and the recommended numbers (n) of selected bands are, respectively,
listed in Table 5, from which we can see that the recommended numbers are suitable. Furthermore,
taking the BPI-VAR method as an example, the scores of the bands selected from different datasets in
each iteration are illustrated in Figure 7, from which we can see that the curves of scores have clear
inflection points and the slope of curve becomes quite small when sufficient number of bands have
been selected. When the number exceeds the recommended number, the scores of the newly selected
bands are relatively small and can be neglected when compared with the first several selected bands’
scores. Considering that the scores of bands also denote the contribution of bands, it is reasonable to
consider that the remaining bands cannot supply much additional information for the current band
combination, and, thus, the BS algorithm can be stopped.
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Figure 7. Scores of the selected bands obtained by the BPI-VAR method: (a) Indian Pine dataset;
(b) Salinas dataset; and (c) Pavia University dataset.

Table 5. Recommended Number of Selected Bands (ε = 0.05).

Indian Pine Salinas Pavia U

BPI-EN 12 24 16
BPI-VAR 7 15 20

4.6. Summary

From all the experiments on three different hyperspectral datasets, some important results can
be summarized. In band selection, both the amount of information and band correlation should
be considered. The BPI model can find a good trade-off between the amount of information and
band correlation, and the experimental results have verified that the bands obtained by the proposed
methods are informative and distinctive, and therefore the selected bands can achieve a satisfactory
performance. In our experiments, the performance of BPI-EN is better than other methods, even when
compared with the state-of-the-art methods such as MR, VGBS and ECA. The BPI-VAR also shows
satisfactory performances in applications, its performance is close to that of the VGBS method and
much better than other competitive methods excluded MR and ECA. It is worth noting that BPI-EN
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performs slightly better than BPI-VAR, which demonstrates that the choice of information metric has
significant influence on the performance of the BPI method. Additionally, the proposed methods
always produce good and stable performances of classification in any datasets, which demonstrates that
the proposed methods have a good robustness. Furthermore, the BPI model has a good computational
efficiency, and the experimental results verifies that the BPI-based methods can obtain desired bands in
a short time. Finally, the BPI model also has the potential to determine the suitable number of bands to
be selected; the recommended number can be regarded as a reference value for the number of selected
bands. In conclusion, the effectiveness of BPI has been verified.

5. Conclusions

In this paper, a Band Priority Index (BPI) model for hyperspectral feature selection is proposed to
effectively find a diverse band combination that contains discriminative and informative bands for
hyperspectral image analysis. The BPI model adopts the SFS strategy, so the desired bands are obtained
one by one. A new objective function is designed for BPI, and it consists of two parts: the information
metric and the correlation metric. To evaluate the correlation between a candidate band and the
selected band set, we proposed a new correlation metric named the joint correlation coefficient (JCC),
which is defined as the sine of the angle between the candidate band and the hyperplane determined
by selected bands. JCC can estimate the band correlation between a single band and multiple bands
jointly instead of pairwise. The variance and entropy are, respectively, chosen as the information
metric for BPI, and thus, we give two implementations of BPI, i.e., the BPI-VAR and BPI-EN methods.
Experimental results on three different datasets demonstrate that the BPI-based methods are highly
efficient and accurate BS methods. Moreover, the BPI-based methods have the potential to determine
the number of bands to be selected. Finally, our future research interest is to find effective information
metrics to improve the BPI model’s performance.
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