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Abstract: The structure of industrial components is diversified, and extensive efforts have been
exerted to improve automation, accuracy, and completeness of feature surfaces extracted from such
components. This paper presents a novel method called multistep segmentation and optimization
for extracting feature surfaces from industrial components. The method analyzes the normal vector
distribution matrix to segment feature points from a 3D point cloud. The point cloud is then divided
into different patches by applying the region growing method on the basis of the distance constraint
and according to the initial results. Subsequently, each patch is fitted with an implicit expression
equation, and the proposed method is combined with the random sample consensus (RANSAC)
algorithm and parameter fitting to extract and optimize the feature surface. The proposed method is
experimentally validated on three industrial components. The threshold setting in the algorithm is
discussed in terms of algorithm principles and model features. Comparisons with state-of-the-art
methods indicate that the proposed method for feature surface extraction is feasible and capable of
achieving favorable performance and facilitating automation of industrial components.

Keywords: 3D point cloud; feature surface extraction; RANSAC; region growing; segmentation and
optimization; industrial components

1. Introduction

Industrial components are essential parts of machinery manufacturing processes, and their
structural information exerts an important influence on industrial production. Benefiting from the
advances in sensor technology for laser scanning, dense 3D point clouds have become increasingly
common [1]. Industrial components can be digitized into 3D point cloud models that represent
objects” external surfaces with a large number of points, and can be freely accessed in computers [2].
There are several 3D data acquisition techniques, which are classified into two groups: passive methods
and active methods. In passive methods, the problems are illumination, shadow, and complicated
image analysis, etc. So, generally, for industrial quality inspection, passive methods are not used.
Active methods include time of flight, phase difference, conoscopic holography, and laser triangulation,
etc. The first two methods are mostly suitable for large objects such as rooms or buildings because
they cannot easily achieve high precision. Conoscopic holography and laser triangulation are suitable
for small objects with simple construction and high measurement speed. For a demanding industrial
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purpose like a distance not more than 1 or 2 m, laser triangulation is used very commonly [3].
Previous studies that used 3D point cloud models to obtain detailed features from industrial
components focused on high-redundancy points without examining point features [4]. Point features
reveal spatial relations between neighboring points and essential topologic information for surface
extraction. However, automatic feature extraction is usually difficult due to the limited point density
of models [5], relatively high measurement noise [6], and uneven distribution of cloud points [7].
Many feature extraction routines, such as sampling [8], georeferencing [9], and smoothing [10],
still require human intervention and manual operations.

Recent studies have proposed effective feature extraction methods based on curvature [11-15],
normal vectors [16,17], local neighborhood distribution [18,19], and so forth. Misclassification,
over-segmentation, and mixed models often occur during feature extraction because a large number
of discrete points exist in models with noise and outliers [20]. Qin et al. [19] used the principal
component analysis (PCA) method based on point coordinate information to extract building feature
lines from a point cloud. This method relies on the distribution of the local neighboring points;
therefore, it may cause misclassification when the distribution of discrete points is inconsistent
with the actual surface. Several studies have proven that a surface normal provides useful data
for reconstruction methods [21,22]. Ni et al. [5] proved the usefulness of the local normal vector and
overcame the dependence on the distribution of local neighborhood points.

Clustering algorithms are also frequently employed in feature surface extraction [23,24].
A clustering algorithm manually determines the number of final aggregated collections and adjusts
fine-grained patches in the results. Region growing, another commonly used algorithm for feature
surface extraction, selects seeds and gathers the nearest neighbors in the seed area on the basis of certain
constraints [16,25]. Minimal human intervention is required in region growing, but seed selection
and the method’s limiting conditions remain crucial issues. Vo et al. [26] proved the effectiveness
of region growing in surface construction. In the meantime, they found that the method requires a
considerable amount of time for parameter tuning. Wang et al. [27] confirmed that region growing can
automatically extract features with minimal manual intervention.

The topology of object surfaces that vary in shape and size is supposed to be comprehensively
considered to extract accurate surfaces. Random sample consensus (RANSAC) has been widely used
to extract optimized surfaces robustly with local and global spatial constraints [28-30]. Wu [31] proved
the effectiveness of RANSAC for feature extraction and shape recognition. The surface obtained after
feature surface extraction needs to be represented and reconstructed, and implicit field is an effective
method for this task [32,33]. The implicit description method can generate tightly closed 3D models
from discrete data points [34], repair missing data points, fill holes, and filter noise that is introduced
during the acquisition of target objects [25]. However, the generated 3D dataset may contain numerous
points. Hence, a reduced-sized dataset should be established for obtaining accurate implicit equation.
Combined fragment implicit description divides a 3D dataset into patches according to certain rules,
and each patch is fitted by different implicit functions before the fitting results are combined [35].
An advantage of this method is that it enables low computational load and a small amount of data in
addition to local smoothing [36].

Parameter expression is a primary tool used for describing the geometry of an object [37],
especially in industrial manufacturing where parametric surfaces are widely applied [14].
Nonuniform rational B-spline (NURBS) is supported by much advanced 3D modeling software [38,39],
and it can parameterize a surface model, thus facilitating the display and reuse of each platform.
Therefore, the advantages of implicit and parameter expressions in surface reconstruction are supposed
to be comprehensively utilized to obtain improved models.

In this study, we establish a novel method to extract feature surfaces from industrial components.
The method adopts PCA based on the normal vector distribution matrix to analyze local features in the
3D point cloud. Patch classification is then performed based on the preliminary extraction results and
shape features of the patches. Two forms of implicit and parameter expressions are used for surface
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reconstruction after combing the RANSAC algorithm and parameter fitting to extract and optimize
feature surfaces. This method is designed to improve the automation and reliability of feature surface
extraction, rapidly obtain high-level surface geometric feature information from the original point
cloud data, and provide effective routes for automated model construction in the reverse engineering
design of industrial components.

2. Method

The proposed method uses PCA based on the normal vector distribution matrix to classify feature
points as surface, edge, or corner points. For the set of surface points, the region growing method with
a distance constraint is applied to obtain divided patches. These patches can be classified as regular
quadratic, complex, and free-form surfaces according to their shape. In this study, we apply implicit
and parametric surface models to reconstruct the feature surface. First, the RANSAC algorithm is used
to analyze the implicit expression on patches, and the remaining edge and corner points that are not
classified are substituted into the implicit expression to expand the patches. Second, the patches that
fail to find a surface are expanded based on the distance constraint in the unclassified point space.
Finally, the discrete point set of completely expanded patches is fitted using NURBS. The flowchart of
the proposed method, called multistep segmentation and optimization (MSSO), is shown in Figure 1.
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Figure 1. Flowchart of the feature surface extraction method.



Remote Sens. 2018, 10, 1073 4 of 21

2.1. Feature Point Segmentation Based on the Normal Vector Distribution Matrix

The distribution features of discrete points can be obtained by analyzing the local neighboring
point coordinates via PCA. Point misclassification occurs when the distribution of discrete points is
inconsistent with the actual topology relation of the surface. The red dots in Figure 2 illustrate the K
nearest neighbors [40] of a point on the edge. The neighboring points are arranged in a planar shape,
indicating that the points are incorrectly divided into the surface feature using PCA [19].

Figure 2. K nearest neighbor set of a point on the edge.

The original 3D point cloud contains point coordinates but lacks topological connection
information between points. A point normal vector reflects spatial characteristics in a local surface
area. Therefore, the neighboring relation between normal vectors should be obtained before other
procedures. The fandisk model’s original point cloud is shown in Figure 3a, and its normal vectors
are calculated with the local plane fitting method [41]. The local neighbors of each point can be
approximately regarded as a plane due to the large number of points in the point cloud model [42].
For discrete point p in the point cloud, its K nearest neighbors set Q = {q1, 42, ... , gk} is searched,
and Equation (1) is used to calculate the plane:

k
P(n,d) = arg min)_ 6(|| p — g7 ||)(n - q; — d)* @
i=1

where 4 is the distance between point p and fitting plane P and 7 is the normal vector of the fitting
plane. The effect of the distance from neighbor point g; to point p on local features is considered,
and the distance from p to projection point g; of neighbor point g; on the fitting plane is used as a
variable of the weight function 6. A moving least squares method is used to fit the plane and calculate
the plane equation, and its normal vector is the normal vector of the point. Figure 3b indicates the
directions of the normal vectors with purple lines. Figure 3¢ presents a locally enlarged display of
normal vectors where the red line illustrates the surface edge. In this figure, the normal vectors on
the same surface are in the same direction, and the angle between normal vectors of two adjacent
surfaces is equally divided by the normal vector of a point on the edge. In this study, we use point
normal vectors to replace the point coordinate information in PCA to improve the performance of local
feature extraction.

(@ (®) ' ©

Figure 3. Normal vector of the fandisk model [43]: (a) original point cloud; (b) normal vectors; and (c)
locally enlarged display of normal vectors.
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For each discrete point, the normal vector distribution matrix is used to segment the feature points.
First, the K nearest neighbors set of point p; is searched. Second, the normal vectors of the nearest
neighbor points are calculated by Equation (1), and the normal vectors are substituted in Equation (2)
to construct the normal vector distribution matrix:

T
A=[m ny --- nKHm ny .- ng )

where n; (i = 1 ... K) is the normal vector of a neighboring point, and A is a symmetric,
semipositive definite matrix. Third, the three non-negative eigenvalues are acquired by applying PCA
on the normal vector distribution matrix and are normalized, as shown in Equation (3):

Ai

- R 3
A+ A+ Aj ©)

1
where A; (i = 1, 2, 3) is the eigenvalue and A1 > Ay > A3, and J; (i = 1, 2, 3) is the normalized eigenvalue.
Finally, the points are segmented according to the magnitude of normalized eigenvalues.

In PCA, the first normalized eigenvalue J; is the largest and is much greater than the second
and third normalized eigenvalues (i.e., /, and é3), which indicates that the neighboring sets’ normal
vectors of the points on the surface are more consistent. Furthermore, é, and 3 are approximately
equal and much smaller than §1. The normal vectors of neighboring points on the edge are mostly
toward the normal direction of their adjacent surfaces, and J, is much larger than J3. The normal
vectors of corner points are not uniform; J, approximately equals é3, and they approach é;. On the
basis of the relationship between the magnitudes of the second and third normalized eigenvalues,
we set two thresholds ey and e; (g9 < e1) to segment the feature points. The type of point p; is marked
as T(p;) and is determined based on Equation (4).

1, b < ep
T(pi) =4 2 by > ey, 03 < e 4)
3, 3 >e

Point p; is on the surface, edge, or corner when T(p;) is equal to 1, 2, or 3, respectively.

To obtain a significant contrast, first the nearest neighbor set Q = {41, 42, . .. , gk} of discrete point p
in the point cloud is searched when PCA is used to segment feature points based on point coordinates.
This procedure is similar to methods that are based on normal vectors. Second, covariance matrix C is
constructed by the point’s coordinates and the neighbors’ coordinates, as shown in Equation (5):

1 _ _ _ _ _ T
C=xla—-7 -7 - -9l q—-9 @2-9 - q—7] ®)

where 7 is the center of gravity of point set Q. Matrix C is analyzed by PCA to obtain normalized
eigenvalues 6.; (i =1, 2, 3 and A,y > A > Ag3). Finally, the points are segmented according to the
magnitude of normalized eigenvalues, which is similar to the rule used in feature point segmentation
based on normal vectors. Table 1 shows the steps, notation, and explanations for feature point
segmentation based on points’ coordinates and normal vectors. Figure 4a demonstrates the results
of feature point segmentation using PCA based on point coordinates, and Figure 4b displays the
results using the normal vector distribution matrix with the same parameters and algorithm. The blue,
pink, and yellow points denote the surface, edge, and corner points, respectively. Many edge points
in Figure 4a are misclassified as surface points. Several misclassified corner points in Figure 4a are
corrected in Figure 4b by using the normal vector distribution matrix. Thus, the feature points in this
study are initially segmented using the normal vector distribution matrix. We establish that the surface,
edge, and corner points are stored in sets S, E, and C, respectively. Surface points on different surfaces
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are separated by sets E and C rather than connected, and the separated surface points initially form the
patch area.

Table 1. Steps, notation, and explanations for feature point segmentation based on points’ coordinates
and normal vectors.

Notation

Steps Explanations
Segmentation Based = Segmentation Based
on Point Coordinates on Normal Vector
p p Discrete point
Search for K nearest K K Number of nearest neighbor
neighbor points points
Q Q K nearest neighbor set
qi qi ith point of K nearest neighbor set
- P Fitting local plane
) d Distance between point p and
fitting plane P
Fit local plane - n Normal vector of the fitting plane
o ith projection point of a neighbor
) i point on the fitting plane
- 0 Weight function
} C Covariance matrix constructed by
Calculate normal point’s coordinate
vector of discrete - q Center of gravity of point set Q
points ) " ith normal vector of discrete
! points
Covariance matrix constructed by
C A point’s coordinate or normal
PCA vector
q - Center of gravity of the point set Q
A (1=1,2,3) Ai(i=1,2,3) ith eigenvalues
Segment feature 6. (0=1,2,3) 6;(i=1,2,3) ith normalized eigenvalues
points ) € First threshold
e e1 Second threshold

(a) (b)

Figure 4. PCA results of point cloud segmentation by using (a) point coordinates and (b) the normal
vector distribution matrix. The blue, pink, and yellow points denote the surface, edge, and corner
points, respectively.

2.2. Patch Classification

The distance-constrained region growing algorithm is applied to separate a single patch.
This algorithm facilitates the analysis of geometric features and improves the accuracy of surface
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reconstruction. The flowchart for classifying set S that stores surface points by using the region
growing algorithm with a distance constraint is shown in Figure 5.
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Set the classification flag f //“_156)}_1\?1_""";’1
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Figure 5. Flowchart of patch classification.

Given the unclassified surface point set S from point cloud segmentation, the method for patch

classification is implemented as follows:

1.

A classification flag f; is set for each point in surface point set S. The flag is initialized to —1,
and the number of sorts, 1, is initialized to 0.

The algorithm is terminated when all the points in point set S are extracted. Otherwise, 7 is
incremented, and a point p is extracted from point set S to determine whether its classification
flag f. is —1 one by one. f; is regarded as a seed point, marked as 7, and stored in the temporary
point set Q when its value is —1. If f, is not —1, another point is obtained from S.

If set Q is empty, then Step 2 is repeated. Otherwise, element g; is removed from Q, and the R
nearest neighbors set of g; is searched.

Flag f. of point 7; in the R nearest neighbors set of g; is marked as 7 and stored in set Q when its
value is —1.

The points in set S with an equal flag f. are on the same patch. The points are stored based on

their category, and each element of S = {Sq, Sy, ... 54} is a category. The original point display is shown
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in Figure 6a, and the classification display is presented in Figure 6b, where point sets with different
colors represent different patches.

()

Figure 6. Comparison of results before and after patch classification: (a) original points display and
(b) classification display.

2.3. Surface Implicit Reconstruction

Special quadric surfaces are typical structures in industrial components [31]. Determining if
the discrete points are on the surface is easy when the implicit expression is used. Each patch after
classification has a single structure, and many inliers exist. The RANSAC algorithm can be used to
build the surface implicit equation effectively. In this study, the RANSAC algorithm is applied to three
types of regular quadric surface models, namely, plane, cylinder, and sphere, to estimate the model
parameters. The coordinates of discrete points can be combined with the normal vector to quickly
calculate the parameters of a regular special quadric surface.

2.3.1. 3D Surface Model

A geometric primitive is a curve or surface that can be described by an equation with a number
of free parameters [44]. The manual model surface can be described as a set of surface patches,
and each surface patch is considered to be a geometric primitive [45]. Therefore, it is key for industrial
component feature extraction to extract geometric primitives reliably. Eighty-five percent of mechanical
components can be described by plane, spherical, cylindrical, and conical surfaces [31]. In this study,
the plane, cylindrical surface, and spherical model are considered because of their relatively simple
and common equations.

3D Plane Model

The implicit expression of a plane in 3D space is as follows:
Ax+By+Cz+D =0 (6)

where A, B, C, and D are constants that describe the characteristics of the plane space; and x, y, and z
are variables that represent the 3D coordinates of a point on the plane.

The normal vector of a plane is perpendicular to the vectors of the plane. Thus, the point normal
form equation of a plane with a point (xg, 1o, zg) and normal vector (11, 12, 113) is expressed as follows:

n1(x —xo) +n2(y — yo) +n3(z —29) =0 7)

where x, y, and z represent the 3D coordinates of a point on the plane.

According to Equations (6) and (7), the normal vector of each point on the plane is equal to the
normal vector of the plane. The plane equation can be obtained by using any point on the plane with
coordinates and normal vector information.
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3D Cylindrical Surface Model

The distance from a point on a cylindrical surface to the central axis of the cylinder is equal to the
radius of the cylinder. A cylindrical surface is represented by seven parameters at any position in the
3D space. These seven parameters include center of the cylinder C, (xy, vy, zp), vector of the central
axis Cy, (X, Yn, zn), and radius Cg. Given the 3D coordinates and normal vector of any two points in
the 3D point cloud as p1(x1, y1, 21), p2(x2, Y2, 22), 11 (Xn1, Yn1, Zn1), and n2(Xn2, Yu2, 2n2), the equations of
the seven parameters are as follows:

(p1+s-n1) — (p2+s-n)

Cu = ®)
" pits m P+ pitsom |
l=p1— CP
cos (Cp, 1) = —2L__ )

VG212
Cr =] 1 || sin{(Cp,1)

where s and f are constant parameters, C; is the central axis direction vector of the cylinder, C, is the
point on the center axis of the cylinder, and Cy, is the radius of the cylinder.

3D Spherical Model

All points on the spherical surface have the same distance from the center of the sphere, and the
normal vector of these points is toward the center of the sphere. The sphere’s center coordinates
Se(xe, e, zc) and the radius Sy of the sphere can determine the position of the sphere. On the basis of
the geometry of the sphere, the spherical model is represented by Equation (10).

P1— S¢c = Sgrmy
1
{ pr — Sc = Sgmz {10

Center coordinates S. and radius Sg of the sphere can be obtained by substituting points
p1(x1, y1, 21), p2(x2, Y2, 22), and their normal vectors 11 (X1, Yn1, Zn1), 12(Xn2, Yn2, Zn2) into Equation (10).

2.3.2. Model Parameter Solution Based on the RANSAC Algorithm

The shape of the isolated patch area cannot be directly represented by a fixed mathematical model
due to its uncertainty. A few sample points are randomly selected to calculate the model parameters
for the three models stated in Section 2.3.1 and the inliers of the three models using the RANSAC
algorithm. The model type and inliers are recorded when the number of inliers is larger than the
threshold, and the recording times are marked as the frequency of the model to which the patch
belongs. After multiple cycles, the ratio of model frequency to the total number of cycles is recorded as
the probability of the model to which the patch belongs. The model with the maximum likelihood is
the optimal expression of the surface.

One point is required when using the point coordinates and normal vector to solve a plane,
whereas two points are required to solve a cylinder or sphere. We randomly select three points as
small samples, and the points can be used for necessary calculation and preliminary verification.
Selecting the minimum number of points on the basis of satisfying calculations and verifications can
reduce calculation. Patch S; is defined in surface point set S and loops n. The specific steps of the
algorithm are as follows:

1. Three points are randomly extracted from S; when the number of iterations is less than #, and the
cosine values cq, ¢z, and c3 of the angles between the normal vectors of the three points are
calculated, and Step 2 is executed. When the number of cycles is equal to 1, Step 4 is executed.

2. The patch may be a plane if the angles among the three normal vectors are roughly equal, that is,
the absolute values of cj, ¢, and c3 are approximately 1. Four parameters of the plane are
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calculated, and the inliers of the parametric model are calculated. The frequency of the plane
model is incremented by 1 when the number of inliers is greater than the threshold, and the
optimal parameters are updated and Step 1 is executed. Otherwise, Step 3 is executed.

3. The parameters of the cylindrical or sphere model are calculated using two points, and the
third point is used for verification. The inliers of the parametric model are calculated when the
third point satisfies the calculated model. The frequency of the cylindrical or sphere model is
incremented by 1 when the number of inner points is greater than the threshold, and the optimal
parameters are updated. Continue to Step 1.

4. Point set S; does not conform to the above three models when the maximum frequency of the
model is less than 3 after n iterations, and the model output is 0. Otherwise, the maximum
probability model is calculated, all the model inliers under the corresponding optimal model
parameters are optimized using the least squares method, and the obtained model parameters
are the final outputs.

2.4. Patch Optimization

2.4.1. Patch Expansion

Considering that edge point and corner point sets contain several surface points during point
cloud segmentation, the patch should be expanded to obtain a complete patch. The implicit equation
of each patch is easy to obtain from the solved model parameters of the patch. After substituting the
point coordinates into the implicit equation of the neighboring surface, a point is deemed to belong
to the surface when the point coordinate satisfies the implicit equation. On this basis, the edge and
corner points can be classified into the patch they belong to.

Situations wherein patches belong to the same surface in the space may exist, and these patches
satisfy the same equation expression, although they are separated from one another in the actual
object. A distance limit should be added on the basis of satisfying the implicit equation to prevent
misclassification. In this study, the minimum distance from a point in edge or corner point sets to the
patch is used as the distance limit. The point is considered as the extension point of the patch when the
distance from a point to a patch is smaller than threshold y, and the coordinate of the point satisfies
the implicit equation of the patch.

The results of the original patch before and after expansion are displayed in Figure 7. The regular
surface exhibits significant expansion in space, as shown in Figure 7b.

@) (b)
Figure 7. Comparison of results before and after patch expansion: (a) before patch expansion display
and (b) after patch expansion display. The patches are marked by different colors.
2.4.2. Patch Merging and Resegmentation

Over-segmentation occurs in patch classification. The two patches selected by the black rectangles
in Figure 8 are divided into several surfaces, and the patches that belong to the same surface should be
combined. On the basis of the surface implicit equations calculated by the RANSAC algorithm, we can
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determine if the patches belong to the same spatial surface. When patches belong to the same spatial
surface and the distance between the nearest points of the patches is less than the distance constraint,
the patches are merged.

Figure 8. Over-segmentation in patch classification.

Several surfaces that fail to find the model parameters in implicit reconstruction are considered
complex or free-form surfaces. A complex surface is composed of multiple regular surfaces.
Meanwhile, several points satisfying the regular surface equation are assumed to exist on a free-form
surface. The RANSAC algorithm is used to resegment complex or free-form surfaces for further
extraction of a regular or local regular surface from them. The points are substituted in the plane,
cylindrical surface, and spherical models because the number of point sets and the type of regular
surface contained in the complex or free-form surface are not prior knowledge. After each regular
quadric surface is determined and added to regional surface set S, the remaining points in S; continue
to be searched until the model can no longer be extracted or only a few remaining points exist.
The distances from the unclassified points to the surfaces are calculated when points that are not
classified to the surface set still exist. The points are then categorized into the nearest surface based
on the distance constraints. In this manner, expansion and optimization of all regional surfaces are
completed, and the point cloud model is divided into a number of feature surfaces according to
shape characteristics.

2.5. Surface Parameterization

After completing the feature surface extraction of the point cloud model, each surface is
represented via parameter expression to facilitate the display and reuse of each platform. This study
uses the NURBS module packaged in Point Cloud Library [43] to program NURBS fitting on the Visual
Studio platform. Considering the effect and speed of the algorithm, the NURBS polynomial order is
set to the experimental value 3, and the number of vertices in each parameter direction is set to the
experimental value 100. Then, each feature surface is automatically fitted, and the fitting result based
on the fandisk model is shown in Figure 9.

Figure 9. Result of feature surface extraction based on the fandisk model.
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3. Experiment and Results

3.1. Testing Data

In our study, three groups of point cloud data [46] (i.e., fandisk, support frame, and connecting
piece models) were used to conduct the experiments. The point density of the point clouds is uneven.
The point density of edge and corner points is high, whereas it decreases rapidly in the surface areas.
The fandisk model is a complex industrial component model [31] that consists of regular and complex
surfaces, with an indistinctive difference in the area of surfaces. The fandisk model has various
feature surfaces with obvious corner points. The support frame model is the simplest among the three
models, and it comprises regular surfaces, with a more significant difference in the area of surfaces
than in the fandisk model and obvious corner points. The connecting piece model has moderate
complexity in surface structure among the three models, and it consists of regular surfaces and only
one complex surface, with a significant difference in the area of surfaces and no obvious corner points.
The corresponding data are shown in Table 2, where Boxx is the length of the oriented bounding box of
the point cloud model, Boxy is the width and Boxz is the height. The model display is presented in
Figure 10.

Table 2. Point cloud data of the three models.

Bounding Box Size

Average Point Minimum Point

Model Surfaces Points Spacing (dm) Spacing (dm) Boxx Boxy Boxz

dm) (dm) (dm)
Fandisk model 21 55,105 0.0426 0.006 4.8281 52445 2.6805
Support frame model 38 200,018 0.0052 0.0002 1.0000 1.0000 0.6000
Connecting piece model 12 1,514,884 0.0024 0.0005 0.9975 0.9264 0.7838

(a) (b) (c)

Figure 10. Model display: (a) fandisk model; (b) support frame model; (c) connecting piece model.

3.2. Parameter Tuning

In feature point segmentation, the main parameters are the K value of the K nearest neighbors set
and thresholds ey and e;. In patch classification and surface reconstruction, the main parameters are
the nearest neighbor search radius R when classifying a patch, cycles 71 in the RANSAC algorithm
when calculating the implicit expression, cycles 11, and the minimum inner points x in the RANSAC
algorithm when resegmenting to determine rule surfaces, and distance threshold y between a point and
the nearest point on the surface when expanding a patch. Threshold & denotes the error range between
data and theoretical values, and it is applied in many algorithms. In this study, surface complexity
is classified into three grades, the simplest of which is the regular surface. The second grade is the
complex surface, which is composed of multiple regular surfaces. The most complex surface is the
free-form surface, which is the surface that cannot be a combination of any regular surface.
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K, eg, and e; directly affect feature point classification. K affects the range of feature point
segmentation, and a K value that ranges from 15 to 20 can be adjusted to become large when the
number of model points is large, the point space is small, and the complexity of the surface is low.
The values of ey and e; are set by the sampling method. First, we manually select the sample points,
which are surface, edge, and corner points, each with 50 points. Second, we calculate the normalized
eigenvalues J1, dp, and 3 of all sample points by using PCA based on normal vectors. Finally, we set
two thresholds ¢y and e; according to the relationship between the magnitudes of the second and
third normalized eigenvalues. The two thresholds satisfy the following conditions: e is larger than
the second normalized eigenvalues of the surface point and the third normalized eigenvalues of the
edge point, and e; is smaller than the second normalized eigenvalues of the edge point and the third
normalized eigenvalues of the corner point. For an easy comparison of the probabilities of model
types, n1 is set as an odd number and changes with the complexity of the surface of the industrial
component. The larger the values of 11 and n; are, the more accurate the result is, and the higher the
computational efficiency is. Usually, 11 ranges from 50 to 150, and 7, ranges from 100 to 200. n1 and
ny are set to a large value when complex or free-form surfaces exist. In the fandisk model, 77 and rn,
are set with larger values compared with those in the other models because complex surfaces exist
in the fandisk model. The value of x influences the optimization of the feature surface, and « usually
ranges from 500 to 600. A large number of surfaces that require resegmentation are obtained when the
value of x is small. The feature surface of the connecting piece model is simple, and the feature surface
obtained in patch classification is accurate. Thus, « is set to a large number (i.e., 1000). The value of u
as the distance limit threshold of patch extension is related to the width of the K nearest neighbors
set in the feature point extraction process. Here, y is set to half of the width (K multiplied by average
point spacing). No resegmentation occurs in the support frame model. Thus, 1y, x, and y have no
effect on their extraction results. R is generally set to a value that is 1 to 10 times larger than average
point spacing and ranges with the complexity of the surface. The lower the grade of complexity is,
the smaller the value of R is. The value of ¢ is related to average point spacing in the point cloud
model, and it is set to a value that is close to average point spacing when the point spacing is less than
0.01. Otherwise, the value of ¢ is approximately 5 to 10 times less than that of average point spacing.
The parameter settings in the experiment are shown in Table 3.

Table 3. Point cloud data of the three models.

Parameter  Fandisk Model = Support Frame Model =~ Connecting Piece Model

K (en) 15 16 20
€ 0.0045 0.005 0.035

e 0.006 0.01 0.1

ny (time) 125 25 55
ny (time) 200 - 150
K (ea) 600 - 1000
u (dm) 0.35 - 0.025
R (dm) 0.07 0.02 0.02
€ (dm) 0.006 0.005 0.002

3.3. Results

The result of feature point segmentation for the fandisk model is shown in Figure 11a, the feature
surface extraction is shown in Figure 11b, and the feature surface reconstruction is shown in
Figure 11c. The experimental results from the support frame and connecting piece models are shown
in Figures 12 and 13, respectively.



Remote Sens. 2018, 10, 1073 14 of 21

(a) (b) (0

Figure 11. Experimental results of the fandisk model: (a) feature point segmentation; (b) feature surface
extraction; (c) feature surface reconstruction.

@) (b) (©

Figure 12. Experimental results of the support frame model: (a) feature point segmentation; (b) feature
surface extraction; (c) feature surface reconstruction.

@) (b) (©)

Figure 13. Experimental results of the connecting piece model: (a) feature point segmentation;
(b) feature surface extraction; (c) feature surface reconstruction.

To evaluate the performance of the proposed MSSO, we refer to [47,48] and quantitatively evaluate
the results of feature surface segmentation at the point level by using four measures: Corr (correctness
rate of feature surface extraction), Comp (completeness rate of feature surface extraction), Qual (quality
of feature surface extraction), and T (execution time of the extraction). The first three measures pertain
to accuracy, and the last pertains to time. The accuracy measures are defined as follows:

Cortr = ————— 12
th + Nmp ( )

N
Comp = id (13)

th + Nop
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Nty

ual =

(14)

where th is the number of true positive feature points contained in the detected surfaces, Nmp is
the number of misclassification points contained in the detected surfaces, and N, is the number of
omitted points. The sum of the three types of points is the total number of points N, in the model.
Larger values of Comp, Corr, and Qual and a small value of T are desirable.

The fandisk, support frame, and connecting piece models are evaluated. To compute the four
measures for evaluating the surface segmentation results, we count the number of the three types
of points to which the detected points belong in each model and the execution time. The results of
the location evaluation (correctness, completeness, and quality) and execution time of extraction are
shown in Tables 4 and 5.

Table 4. Defining assessment quantities.

Model Nap th Nmp Nop

Fandisk model 55,105 54,688 222 195
Support frame model 200,018 199,693 218 107
Connecting piece model 151,484 149,943 220 1321

Table 5. Result of evaluation and execution time of feature surface extraction.

Model Corr (%) Comp (%) Qual (%) T (s)

Fandisk model 99.60 99.64 99.24 54.36
Support frame model 99.89 99.95 99.84 22.55
Connecting piece model 99.85 99.13 98.98 43.29

As shown in Table 5, the correctness, completeness, and quality of feature surface extraction in
the fandisk and support frame models exceed 99%, and the models” completeness is better than their
correctness. The correctness and completeness in the connecting piece model exceed 99%, but the
quality is low (98.98%) and completeness is worse than correctness. Feature extraction in the three
models can be completed within 55 s. The fandisk model takes the longest time, which is 54.36 s,
to extract the feature surface.

4. Discussion

4.1. Comparative Studies

The proposed method is compared with other software [49] and algorithms [9,50,51] in terms of
three aspects, namely, operational complexity, execution time, and accuracy.

The operational complexity of the proposed method is compared with that of a commercial
software called Geomagic Studio [49], which is a reverse engineering application developed by
Raindrop. Surface construction with Geomagic Studio involves three phases, namely, point cloud,
polygons, and patches. In the point cloud phase, users are required to erase outliers manually
or automatically, reduce noise by manually setting different smoothness levels, and down-sample.
In the polygon phase, users set parameters to wrap the object with a polygon mesh, fill holes,
clean up redundancy, adjust the quantity of polygons, and smooth and correct the polygon
mesh. In the last phase, surfaces are automatically reconstructed with one parameter for a
sample model. However, for a complex model, users are required to perform four steps, namely,
constructing contours, constructing patches, constructing grids, and fitting surfaces. Each step of
Geomagic Studio in constructing the abovementioned surfaces requires the user to manually tune
parameters (approximately a dozen). However, with our method, surfaces can be automatically
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constructed with nine parameters entered before the execution of the program, instead of manual
processing. Thus, the proposed method facilitates automation of feature surface extraction.

Zhou [50] proposed a new approach to reconstruct and optimize feature surfaces at large scales
with the division and joining of surfaces. Chen et al. [51] proposed a method to compute a triangular
mesh and complex surfaces with restricted Delaunay triangulations from an unorganized point cloud.
They both extracted feature surfaces from discrete point cloud data, and verified the execution time of
the algorithm based on a fandisk model. We compare the two methods with the proposed method in
terms of execution time, and the comparative results are shown in Table 6.

Table 6. Comparison of execution time results based on the fandisk model.

Method Points Execution Time (s) Qual (%)
Zhou [50] 23,400 79 99.04
Cheng et al. [51] 66,100 140.88 -
Our method 55,105 54.36 99.24

The hardware parameters, such as CPU and RAM, of this method are similar to those in [50],
and the number of points in the fandisk model in [50] is less than half of that in this study. However,
compared with the method in the literature, our method requires less time to extract surfaces, as shown
in Table 6. The method of [51] takes 140.88 s to construct feature surfaces, which is approximately three
times longer than that of the proposed method and exceeds the impact of the hardware and number of
points. Therefore, the proposed method performs well in terms of efficiency.

In terms of accuracy, the proposed method is compared with the method of Cao et al. [9],
who developed a novel surface fitting scheme to automatically reconstruct a genus-0 object into
a continuous parametric surface. The method is experimentally validated on the fandisk model.
The fitting error is related to the number of control points and number of iterations. The initial fitting
iteration is obtained through experiments. The accuracy results are shown in Table 7. The proposed
method does not require control points, and the accuracy of the proposed method is higher than that
of Cao et al.’s method with control points (the number is 582).

Table 7. Comparison of accuracy results based on the fandisk model.

Method Points  Control Points  Qual (%)
582 98.84
Cao et al. [9] 56,000 4994 99.97
Our method 55,105 0 99.24

4.2. Result Analysis

The results of the location evaluation (correctness, completeness, and quality) and execution time
of feature surface extraction are shown in Table 5. The correctness rate of the fandisk model is the
lowest among the three models, because it has the most complex surface structure and the lowest point
density. The completeness rate of the connecting piece model is the lowest, and its completeness rate is
much lower than its correctness rate compared with the difference in the other models. A large and
irregular surface is observed in the connecting piece model, resulting in omission. Moreover, all of the
location evaluations of the support frame model are the highest among the three models because the
surface structure of the support frame model is regular, and its area is apposite. Furthermore, all of the
surfaces can be represented by an expression in surface implicit reconstruction. The details of the error
sources are analyzed in Section 4.3. The execution time of the fandisk model is the longest, and that of
the support frame model is the shortest, although the fandisk model has the least number of discrete
points. According to the analysis in Section 3.2, the larger the cycles n; and n; are, the lower the
computational efficiency. That is, the more complex the surface structure is, the longer the execution
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time. Thus, the complexity of the surface exerts a greater impact on operating efficiency than does
the point density of point cloud in the 3D model. In our method, surfaces with low complexity are
expected, that is, regular and complex surfaces containing plane, cylindrical, and spherical surfaces
only rather than free-form surfaces will achieve greater results. Meanwhile, a high point density of the
point cloud is expected when there are free-form surfaces.

Using PCA in the normal vectors to define the point features for classification is accurate, as proven
in Section 2.1. Thus, normal vectors are introduced in this method. However, this process requires
considerable computing resources to segment the point cloud using normal vectors to define point
features rather than point coordinates. However, we determine that computing resources will not be
consumed in large quantities due to the small number of points in the industrial component point
cloud compared with buildings and complex man-made objects [13]. Nevertheless, the issue that the
proposed method requires a large amount of computing resources should be taken seriously.

4.3. Error Analysis

The experimental results show that the fandisk model contains two free-form surfaces.
Hence, two cases of misclassification occur. In the first case, the points outside the area are also
classified in the patch when the regular surface is extended and the threshold of the distance constraint
is large (Figure 14). In the second case, the patches extracted from the complex surface are disconnected
from one another because the connection of extracted patches is not considered when extracting the
inliers. As shown in Figure 15a, two plane point sets that are not connected to each other are obtained
by subdividing the free-form surface. Figure 15b illustrates the misclassification in which patch overlap
occurs between the blue plane and the green cylindrical surface.

(a) (b)

Figure 14. Outer points are extended to regular surfaces in the fandisk model: (a) plane;
(b) cylindrical surface.

(a) (b)

Figure 15. Patches extracted from the free surface are disconnected in the fandisk model: (a) two
unconnected plane point sets; (b) patch overlap between the plane and cylindrical surface.
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The support frame model only has two types of plane and cylindrical surfaces without a complex
surface. Therefore, this model exerts a better extraction effect than the fandisk model. Although the
distances for the inliers are relatively strict in regular area extension, several misclassification points
are still observed at the junction between the patches. Figure 16 illustrates the misclassification for
the two situations. Such a misclassification point occurs because the distance from the point at the
boundary to the nearest point of two adjacent surfaces simultaneously satisfies the threshold, and the
points that have been marked are no longer considered a close patch.

(@) (b)

Figure 16. Display of boundary misclassification points in the support frame model: (a) the junction of
the plane and cylindrical surface; (b) the junction of two planes.

The feature surface structure is relatively simple in the connecting piece model. Hence, no obvious
misclassification occurs. However, several missing points are observed in the feature surface extraction
results, especially in regular surfaces such as cylinders and planes, as presented in Figure 17.
Several inliers are regarded as outliers and removed when RANSAC is executed. Omission points can
cause incomplete model boundaries without affecting surface reconstruction because the small holes
will be filled after NURBS reconstruction.

(a) (b)

Figure 17. Display of boundary misclassification points in the connecting piece model: (a) cylindrical
surface in the original model; (b) extracted cylindrical surface.

In the three groups of models, misclassification of the boundary points causes the breakage of the
boundary junctions. In this case, the boundary of feature surfaces in software such as Geomagic and
ProE should be manually repaired. Overall, the algorithm has high automaticity for extracting feature
planes and shows a good extraction effect for regular patches, that is, the quadric surfaces of the plane,
cylinder, and sphere that are applied in this study. The boundary of the feature surface is incomplete
due to misclassification, which can be solved by manual repair.
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5. Conclusions

To improve the efficiency of model reconstruction in reverse engineering, this study developed a
new feature surface extraction method for 3D point cloud models. First, PCA based on a normal vector
distribution matrix was used, and two thresholds were set to extract feature edge, surface, and corner
points. Compared with the PCA method based on point coordinates, the proposed method extracted
feature points completely. The RANSAC algorithm was applied to establish the implicit equation
and extend the incomplete feature surface. NURBS fitting was then performed to reconstruct each
complete feature surface. Two forms of implicit and parameter expressions were used for surface
reconstruction to improve the accuracy and practicability of the developed model. The quality of
feature surface extraction exceeded 99% in the fandisk and support frame models, and the quality
in the connecting piece model also reached 98.98%. Feature surface extraction with the three models
was completed within 55 s, and the support frame model took 22.55 s to extract the feature surface.
This study provided a method for setting the threshold parameter in the algorithm, which can improve
automation of feature surface extraction.

This algorithm can obtain relatively complete feature surface vector information, and it is more
suitable for regular and complex surfaces containing plane, cylindrical, and spherical surfaces only
rather than free-form surfaces. In our future studies, we plan to expand the types of fitting surfaces,
such as circular conical and paraboloid, in implicit expressions to better describe the free-form
surfaces of industrial components. Although a threshold setting method was proposed in this study,
setting appropriate parameters is still difficult for non-professionals because of the lack of adaptive
setting of the parameter threshold. Subsequent studies may consider the adaptive adjustment of model
parameters. In addition, we will further evaluate different industrial component models and extend
this approach to extract features from the point clouds of other objects. Therefore, the proposed method
is expected to be improved to automatically analyze the characteristics of various point cloud models.
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