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Abstract: Aerial infrared point target detection under nonstationary background clutter is a crucial
yet challenging issue in the field of remote sensing. This paper presents a novel omnidirectional
multiscale morphological method for aerial point target detection based on a dual-band model.
Considering that the clutter noise conforms to the Gaussian distribution, the single-band detection
model under the Neyman-Pearson (NP) criterion is established first, and then the optimal fused
probability of detection under the dual-band model is deduced according to the And fusion rule.
Next, the omnidirectional multiscale morphological Top-hat algorithm is proposed to extract all
the possible targets distributing in every direction, and the local difference criterion is employed
to eliminate the residual background edges further. The dynamic threshold-to-noise ratio (TNR) is
adjusted to obtain the optimal probability of detection under the constant false alarm rate (CFAR)
criterion. Finally, the dim point target is extracted after dual-band data correlation. The experimental
result demonstrates that the proposed method achieves a high probability of detection and performs
well with respect to suppressing complex background when compared with common algorithms.
In addition, it also has the advantage of low complexity and easy implementation in real-time systems.

Keywords: point target detection; dual-band model; optimal fused probability of detection;
omnidirectional morphological filtering; local difference criterion

1. Introduction

Dim point target detection under complex background is a key technology in numerous fields,
including infrared search and track (IRST) systems, terminal guidance, external intrusion warnings,
and medical monitoring [1–3]. When the aerial target is far away from the infrared focal plane array
(IRFPA), the signal intensity is very weak, and the minutiae are very small. More seriously, the target
image is easily obstructed by bad weather, atmospheric radiation, nonstationary cloud and random
noise, which lead to a very low signal-to-noise ratio (SNR) in the image [4]. These difficulties call for
additional requirements for the detection system and target detection algorithm. The energy of the
point target will be dispersed in the long-distance imaging process because of the diffraction-limited
optical system [5], and the actual size of the point target is larger than the ideal imaging size of
geometrical optics, typically no more than 3 × 3 pixels.

An infrared point target detection system usually adopts the mid-wave infrared (3~5 µm, MWIR)
and the long-wave infrared (8~14 µm, LWIR) channels to capture target images [6]. When the aircraft
is flying at a high speed, the envelope is an important infrared radiation source, which has the most
significant radiation in the 8~14 µm band. Additionally, the exhaust flow formed by the engine
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combustion is an important radiation source, and there are two strong emission bands in 4.4 µm and
2.7 µm [7,8]. The single-band detection model cannot produce better results in some cases, as it is
limited to the respective small response ranges. The dual-band detection model including MWIR and
LWIR benefits from the advantages of both and assures the necessary transparency for long-distance
target detection.

Over the past few decades, many researchers have paid much attention to single-band small target
detection algorithms, which can be categorized into two approaches: spatial filtering and temporal
filtering. The spatial methods commonly employ the template matching or background modeling
in single frame or frame by frame detection, such as Max-median filtering [9], frame difference [10],
DoG [11], and visual saliency [12]. The energy of the point target is weaker than the small target and
has no energy characteristic of a Gaussian distribution, which requires a higher adaptability for the
detection algorithm. Also, some scholars introduce the self-adapting filtering technology into spatial
target detection, such as two-dimensional least-mean square (TDLMS) filter [13], the least squares
support vector machine (LS-SVM) [14], and matched filter detector [15]. Although these methods
are simple and fast, the different degrees of background edges are remained in the processing of
background clutter suppression. Genin et al. [16] employed the block matching 3D filtering (BM3D)
and Gaussian mixture model (GMM) to suppress complex background. It achieves a perfect effect
but is time consuming. Niu et al. [17] proposed a higher-order statistics method that can detect point
targets with a low SNR, although the probability of false alarm is high. To reduce the complexity and
the false alarms, the multi-label generative Markov random field (MRF) model was proposed to realize
background suppression and target enhancement [18], which performs a better effect for the point
target in a larger size. As for temporal detection methods, an effective approach for moving point target
detection is based on track before detect (TBD), which uses a path statistic for each potential object
trajectory [19]. Sun et al. [20] proposed a framework for small target real-time visual enhancement
based on the energy accumulation in dynamic programming. Huber-Shalem et al. [21] applied
parametric temporal compressed coefficients to compress infrared imagery sequence containing slow
moving point targets. Foglia et al. [22] proposed the adaptive Rao test and modified generalized
likelihood ratio test (GLRT) to detect point-like targets in Gaussian clutter. When the target shows a
relatively stable trajectory, TBD algorithms can achieve good results. However, the drawback is that
these algorithms are too complex to meet real-time requirements.

In recent years, multisensor data fusion is widely applied in airborne sensing, medical diagnosis,
and disaster prediction [23–26]. Mehmood et al. [27] presented the wavelet and Reed-Xiaoli (RX)
algorithm for dual-band forward-looking infrared imagery, but it did not work for very small-sized
targets. Wang et al. [28] used simple spatial correlation and spectra correlation to perform dual-band
dim target detection, but the number of false alarms was also uncontrollable. Zhou et al. [29]
applied joint sparse representation in dual-band dim target detection, which achieves better detection
performance, yet is also time consuming. Yang et al. [30] found that dual-band detection can extract the
apparent area and equivalent temperature of a small target, while a single-band infrared detector can
only get the radiation intensity information. Yu et al. [31] proved that the probability of detection based
on dual-band optimization is obviously better than that of any single-band detector relying on the NP
criterion, and the traditional morphological Top-hat algorithm was adopted to simulate man-made
targets for detection fusion. The Top-hat transform can extract bright image regions corresponding to
the structural element, and the effect of background suppression depends greatly on the shape and
size of the selected structural element [32–35]. The conventional Top-hat-based point target detection
method only uses a single structural element, which cannot cover various point targets of changing
size in real cases. Bai et al. [36,37] presented a multiscale center-surround Top-hat transform through
constructing two structural elements and successfully extracted regions of interest (RoIs) which were
richer in image details than using single structural element. In our previous research [3], multiscale
morphological filtering combining Top-hat and Bottom-hat is proposed to detect all the possible targets,
and the energy concentration criterion is adopted to eliminate false alarms, which perform a better
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background and noise suppression under single-band model. For the dual-band model, multiscale
Top-hat transform could be optimized by the omnidirectional structural element to achieve better
background suppression.

In this paper, we propose an omnidirectional morphological filtering for point target detection
based on an infrared dual-band model. First, the single-band probability of detection and the
probability of false alarm are established, and then the fused probability of detection and the probability
of false alarm under the dual-band model are deduced according to the And fusion rule. The dynamic
TNR is adjusted to obtain the optimal fused probability of detection under the NP criterion, and the
relationship between the probability of detection and the two SNRs of targets in two channels is
further obtained. Next, the omnidirectional multiscale morphological algorithm is adopted to suppress
complex background. To further reduce false alarms, the local difference criterion is set up to eliminate
the residual background edges, after which we obtain the RoI of the target, which mainly contains the
noise and the target. Finally, the fused TNRs of the two channels are constantly updated according to
the CFAR criterion to further eliminate false alarms and judge the true and false of the target.

The remainder of this paper is organized as follows. Section 2 deduces the optimal fused
probability of detection under the dual-band CFAR model. Section 3 describes the proposed point
target detection method, including omnidirectional multiscale morphological filtering, the local
difference criterion and the adaptive CFAR threshold under the dual-band model. Section 4 presents
the experiments on real infrared images and the results of the proposed method, and Section 5 evaluates
the target detection performance of the proposed method by comparison with the common methods.
Section 6 presents the conclusion of the paper.

2. Target Detection Model

2.1. Single-Band Detection Model

In pursuit of a high probability of detection, the corresponding probability of false alarm will also
become larger. To obtain a predictable and stable detection performance, system designers tend to
design a CFAR target detector [38]. The NP criterion is most effectively and commonly adopted in
radar early-warning systems [39], where the probability of false alarm is limited to a constant and
very small value, and the probability of detection reaches the maximum after the proper statistical
processing. The IRST system can also obtain the CFAR threshold based on the NP criterion.

Random noise and background clutter affect the probability of detection of the target, and the
clutter signal usually demonstrates the random distribution. The noise source of an infrared imaging
system can be divided into photon noise and electronic noise [40]. Electronic noise, which is the main
noise source, includes readout circuit noise, preamplifier noise, and scanning noise, while the photon
noise is from the quantum effect in the detection process [41]. Typically, when the bandwidth is chosen
properly, the noise intensity of the infrared detector can be described as Gaussian white noise with
zero mean, which does not change with the signal.

In real-world scenarios, the amount of background clutter is much larger than that of the targets.
If the background suppression algorithm exhibits good performance, the detector output can still be
approximated to the spatially independent and stationary Gaussian distribution, whose probability
density function is expressed as:

pd =
1√
2πσ

exp

[
− (n−mc −mt)

2

2σ2

]
(1)

where pd is the probability density function of the detector output. mt is the gray mean of the target
area, and mc is the gray mean of the clutter noise. σ is the standard deviation (STD) of the noise.
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The SNR is defined as the ratio of the point target strength to the STD of noise [42], and the TNR
is defined as the ratio of the threshold to the STD of noise, whose definitions are as follows:

SNR =
mt

σ
(2)

TNR =
n−mc

σ
(3)

The complementary error function erfc(x) is defined as:

erfc(x) =
2√
π

+∞∫
x

exp(−t2)dt (4)

Based on the CFAR detection model, the system’s probability of detection is defined as the
probability that the signal value exceeds the CFAR threshold, while the probability of false alarm
is defined as the probability that the noise exceeds the CFAR threshold. The system’s probability
of false alarm under the single-band model generated by Gaussian noise can be expressed by the
complementary error function:

PFA =
1√
2π

+∞∫
TNR

exp(−n2

2
)dn =

1
2

erfc(
TNR√

2
) (5)

where PFA represents the single-band probability of false alarm. It can be considered that the probability
of false alarm is determined by TNR. The TNR calculated from above is: TNR =

√
2erfc−1(2PFA).

The probability of detection can be obtained from Equations (1)–(5), which is given by the
following expression:

PD = 1√
2π

+∞∫
TNR−SNR

exp(− n2

2 )dn = 1
2 erfc(TNR−SNR√

2
)

= 1
2 erfc

[√
2erfc−1(2PFA)−SNR√

2

] (6)

where PD represents the single-band probability of detection.
For a single-band detection system, the system’s probability of detection can be solved by

Equation (6) when the system’s probability of false alarm and the actual SNR of the point target
are given. The relation curve between the probability of detection and SNR of the target is simulated
under several common probabilities of false alarm, as shown in Figure 1.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 27 
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Figure 1. The relation curve of probability of detection and SNR under the common probabilities of
false alarm.
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It can be seen clearly that the higher the SNR of the target, the greater the system’s probability
of detection will be under the CFAR model. The probability of detection is very close to or as high
as 100% when the SNR reaches 8. The SNR of the to-be-detected point target is generally less than 5,
and the probability of false alarm required by the system is usually 10−6~10−3, which is difficult to
meet using the single-band detection model alone. The probability of detection under the dual-band
model is derived in the following.

2.2. Dual-Band Detection Model

The dual-band point target detection model follows the And fusion rule, which can be expressed
as follows:

Pf a = Pf a1·Pf a2 Pd = Pd1·Pd2 (7)

where Pd1 and Pf a1 are the probability of detection and the probability of false alarm in Channel 1,
and Pd2, Pf a2 are the probability of detection and the probability of false alarm in Channel 2. Pd and
Pf a are the fused probability of detection and the fused probability of false alarm under the dual-band
detection model. The fused probability of false alarm Pf a ≤ e0, and e0 is the acceptable maximum
probability of false alarm. It can be seen that Pf a ≤ Pf a1, Pf a ≤ Pf a2, and thus the dual-band target
detection system can effectively reduce the probability of false alarm.

We specify the decision rule as follows: When the suspected targets are detected in both channels,
they are identified as the real point targets. When both channels fail to detect the suspected targets,
they are identified as false alarms. If only one channel detects the suspected targets, we further
analyze them.

From the above analysis, the fused probability of false alarm and the fused probability of detection
under the dual-band model are expressed as follows:

Pf a(TNR1, TNR2) =
1√
2π

+∞∫
TNR1

exp(− n1
2

2 )dn · 1√
2π

+∞∫
TNR2

exp(− n2
2

2 )dn

= 1
4 erfc(TNR1√

2
) · erfc(TNR2√

2
) ≤ e0

(8)

Pd(TNR1, TNR2) =
1√
2π

+∞∫
TNR1−SNR1

exp(− n1
2

2 )dn1 · 1√
2π

+∞∫
TNR2−SNR2

exp(− n2
2

2 )dn2

= 1
4 erfc(TNR1−SNR1√

2
) · erfc(TNR2−SNR2√

2
)

(9)

where Pf a(TNR1, TNR2), Pd(TNR1, TNR2) are the fused probability of false alarm and the fused
probability of detection, respectively, and TNR1, TNR2 are the threshold-to-noise ratios (TNRs) of the
two channels, which are calculated from TNR1 = T1−mc1

σ1
, TNR2 = T2−mc2

σ2
. T1, T2 are the thresholds,

and SNR1, SNR2 are the SNRs of the point target in the two channels. σ1 and σ2 are the STDs,
respectively, and mc1, mc2 are the gray means of the clutter noise, respectively. Pd(TNR1, TNR2) is
determined by the TNRs and SNRs of the two channels.

On the basis of the NP criterion, assuming that the fused probability of false
alarm.Pf a(TNR1, TNR2) is e0, the maximum of Pd(TNR1, TNR2) is named the optimal fused probability
of detection in this paper. In fact, it is very cumbersome to solve the equations, although unnecessarily,
because the SNR of the point target is different in the actual situation. Better yet, the SNRs of the point
target in two channels can be assumed. The overall detection level is determined by the TNRs of the
two detectors, and the optimal fused probability of detection can be obtained by iterating TNR1 under
the dual-band model.

2.3. Simulation and Analysis

The probability of false alarm required by the system is assumed to be 10−4. According to the
SNR of the to-be-detected point target, we assume that the SNR of the point target of IR Channel
1 (SNR1) is 3 and that of IR Channel 2 (SNR2) is 4. By iterating the TNR1 of Channel 1 (from −3 to
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4), we obtain the simulation curve of fused probability of detection via TNR1, as shown in Figure 2.
The simulation result shows that the optimal fused probability of detection is 0.7931, which is higher
than that of any single-band model.
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SNR1 = 3, SNR2 = 4.

For a more intuitive comparison, we have summed up the comparable results of the single-band
and dual-band models, as shown in Table 1, and the comparable curves of probability of detection
are also summarized in Figure 3. As seen, the optimal fused probability of detection after And fusion
achieves a better result.

Table 1. The results of single-band and dual-band contrast.

Group Channel SNR of Channel
Single-Band

Probability of
Detection

Optimal Fused
Probability of

Detection

Probability of
Detection of Each

Channel after Fusion

1
Ch 1 3 0.2361

0.3553
0.4882

Ch 2 2 0.0428 0.7278

2
Ch 1 3 0.2361

0.5621
0.7497

Ch 2 3 0.2361 0.7497

3
Ch 1 3 0.2361

0.7931
0.9201

Ch 2 4 0.6106 0.8620

4
Ch 1 3 0.2361

0.9416
0.9851

Ch 2 5 0.8999 0.9558

5
Ch 1 4 0.6106

0.9740
0.9899

Ch 2 5 0.8999 0.9839

6
Ch 1 4 0.6106

0.9959
0.9989

Ch 2 6 0.9887 0.9971

By using the iterative method proposed above, we simulate the general situation, namely, fixing
the SNR of one channel, by changing the TNR of the other channel to obtain the curve of the optimal
fused probability of detection and compare it with the single-band model further. The specific
simulation parameters are as follows: Single-band 1 (SNR = 3); Single-band 2 (SNR = 0~8); Dual-band
(Ch 1: SNR1 = 3, Ch 2: SNR2 = 0~8). We have discussed four common situations: the system’s
probabilities of false alarm are 10−3, 10−4, 10−5 and 10−6, respectively. A comparison of the probability
of detection between single-band and dual-band models and the dynamic adjustment results of TNR1,
TNR2 are summarized in Figure 4.



Remote Sens. 2018, 10, 1054 7 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 27 

 

Table 1. The results of single-band and dual-band contrast. 

Group Channel 
SNR of 

Channel 

Single-Band 
Probability 
of Detection 

Optimal Fused 
Probability of 

Detection 

Probability of 
Detection of Each 

Channel after Fusion 

1 
Ch 1 3 0.2361 

0.3553 
0.4882 

Ch 2 2 0.0428 0.7278 

2 
Ch 1 3 0.2361 

0.5621 
0.7497 

Ch 2 3 0.2361 0.7497 

3 
Ch 1 3 0.2361 

0.7931 
0.9201 

Ch 2 4 0.6106 0.8620 

4 
Ch 1 3 0.2361 

0.9416 
0.9851 

Ch 2 5 0.8999 0.9558 

5 
Ch 1 4 0.6106 

0.9740 
0.9899 

Ch 2 5 0.8999 0.9839 

6 
Ch 1 4 0.6106 

0.9959 
0.9989 

Ch 2 6 0.9887 0.9971 

 
Figure 3. The comparable curves of probability of detection for single-band and dual-band models. 

By using the iterative method proposed above, we simulate the general situation, namely, fixing 
the SNR of one channel, by changing the TNR of the other channel to obtain the curve of the optimal 
fused probability of detection and compare it with the single-band model further. The specific 
simulation parameters are as follows: Single-band 1 (SNR = 3); Single-band 2 (SNR = 0~8); Dual-band 
(Ch1: SNR1 = 3, Ch2: SNR2 = 0~8). We have discussed four common situations: the system’s 
probabilities of false alarm are 10−3, 10−4, 10−5 and 10−6, respectively. A comparison of the probability 
of detection between single-band and dual-band models and the dynamic adjustment results of 
TNR1, TNR2 are summarized in Figure 4. 

 

Figure 3. The comparable curves of probability of detection for single-band and dual-band models.

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 27 

 

Table 1. The results of single-band and dual-band contrast. 

Group Channel 
SNR of 

Channel 

Single-Band 
Probability 
of Detection 

Optimal Fused 
Probability of 

Detection 

Probability of 
Detection of Each 

Channel after Fusion 

1 
Ch 1 3 0.2361 

0.3553 
0.4882 

Ch 2 2 0.0428 0.7278 

2 
Ch 1 3 0.2361 

0.5621 
0.7497 

Ch 2 3 0.2361 0.7497 

3 
Ch 1 3 0.2361 

0.7931 
0.9201 

Ch 2 4 0.6106 0.8620 

4 
Ch 1 3 0.2361 

0.9416 
0.9851 

Ch 2 5 0.8999 0.9558 

5 
Ch 1 4 0.6106 

0.9740 
0.9899 

Ch 2 5 0.8999 0.9839 

6 
Ch 1 4 0.6106 

0.9959 
0.9989 

Ch 2 6 0.9887 0.9971 

 
Figure 3. The comparable curves of probability of detection for single-band and dual-band models. 

By using the iterative method proposed above, we simulate the general situation, namely, fixing 
the SNR of one channel, by changing the TNR of the other channel to obtain the curve of the optimal 
fused probability of detection and compare it with the single-band model further. The specific 
simulation parameters are as follows: Single-band 1 (SNR = 3); Single-band 2 (SNR = 0~8); Dual-band 
(Ch1: SNR1 = 3, Ch2: SNR2 = 0~8). We have discussed four common situations: the system’s 
probabilities of false alarm are 10−3, 10−4, 10−5 and 10−6, respectively. A comparison of the probability 
of detection between single-band and dual-band models and the dynamic adjustment results of 
TNR1, TNR2 are summarized in Figure 4. 

 
Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 27 

 

 
Figure 4. Comparison of the probability of detection between single-band and dual-band models. 
When the probability of false alarm is 10−3, the curves of probability of detection and TNR via the SNR 
of Ch2 are shown in (a,b); when the probability of false alarm is 10−4, the curves of probability of 
detection and TNR via the SNR of Ch2 are shown in (c,d); when the probability of false alarm is 10−5, 
the curves of probability of detection and TNR via the SNR of Ch2 are shown in (e,f). When the 
probability of false alarm is 10−6, the curves of probability of detection and TNR via the SNR of Ch2 
are shown in (g,h). 

As shown by the single-band and dual-band comparable curves, when the system’s probability 
of false alarm is 10−3 or 10−4, the dual-band probability of detection is always better than that of the 
single-band, regardless of what SNR2 is. When the system’s probability of false alarm is 10−5 or 10−6 
and if SNR2 reaches a small value, i.e., 0.86, 1.19, respectively, there exists a critical point of probability 
of detection between the two models. If SNR2 is less than the critical point, the single-band probability 
of detection is slightly higher than that of the dual-band model. If SNR2 exceeds the critical point, the 
dual-band model has better performance than the single-band model. 

The same iterative method is also employed to simulate a more general and intuitive situation. 
When the SNRs of the two channels change simultaneously, the relation surfaces of the optimal fused 

Figure 4. Cont.



Remote Sens. 2018, 10, 1054 8 of 26

Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 27 

 

 
Figure 4. Comparison of the probability of detection between single-band and dual-band models. 
When the probability of false alarm is 10−3, the curves of probability of detection and TNR via the SNR 
of Ch2 are shown in (a,b); when the probability of false alarm is 10−4, the curves of probability of 
detection and TNR via the SNR of Ch2 are shown in (c,d); when the probability of false alarm is 10−5, 
the curves of probability of detection and TNR via the SNR of Ch2 are shown in (e,f). When the 
probability of false alarm is 10−6, the curves of probability of detection and TNR via the SNR of Ch2 
are shown in (g,h). 

As shown by the single-band and dual-band comparable curves, when the system’s probability 
of false alarm is 10−3 or 10−4, the dual-band probability of detection is always better than that of the 
single-band, regardless of what SNR2 is. When the system’s probability of false alarm is 10−5 or 10−6 
and if SNR2 reaches a small value, i.e., 0.86, 1.19, respectively, there exists a critical point of probability 
of detection between the two models. If SNR2 is less than the critical point, the single-band probability 
of detection is slightly higher than that of the dual-band model. If SNR2 exceeds the critical point, the 
dual-band model has better performance than the single-band model. 

The same iterative method is also employed to simulate a more general and intuitive situation. 
When the SNRs of the two channels change simultaneously, the relation surfaces of the optimal fused 

Figure 4. Comparison of the probability of detection between single-band and dual-band models.
When the probability of false alarm is 10−3, the curves of probability of detection and TNR via the
SNR of Ch2 are shown in (a,b); when the probability of false alarm is 10−4, the curves of probability
of detection and TNR via the SNR of Ch2 are shown in (c,d); when the probability of false alarm is
10−5, the curves of probability of detection and TNR via the SNR of Ch2 are shown in (e,f). When the
probability of false alarm is 10−6, the curves of probability of detection and TNR via the SNR of Ch2
are shown in (g,h).

As shown by the single-band and dual-band comparable curves, when the system’s probability
of false alarm is 10−3 or 10−4, the dual-band probability of detection is always better than that of the
single-band, regardless of what SNR2 is. When the system’s probability of false alarm is 10−5 or 10−6

and if SNR2 reaches a small value, i.e., 0.86, 1.19, respectively, there exists a critical point of probability
of detection between the two models. If SNR2 is less than the critical point, the single-band probability
of detection is slightly higher than that of the dual-band model. If SNR2 exceeds the critical point,
the dual-band model has better performance than the single-band model.

The same iterative method is also employed to simulate a more general and intuitive situation.
When the SNRs of the two channels change simultaneously, the relation surfaces of the optimal fused
probability of detection are altered, as shown in Figure 5. With the increase in the SNR of any channel,
the optimal fused probability of detection becomes larger. The surface shows a symmetric distribution
to the SNRs of the two channels, which is conformable to reality.
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3. Point Target Detection

3.1. Omnidirectional Multiscale Morphological Filtering

The diffraction phenomenon occurs in the long-distance imaging process, so the point target may
be regarded as an Airy spot [43] whose imaging size can be roughly represented as:

d = 2.44λF (10)

where d is the imaging size of the Airy spot, and F is the optical system parameter that is often set as 2,
and λ is the wavelength of the incident light.

For the LWIR detector, the responsive wavelength λ is often assumed to be 9 µm, so the imaging
size d is 43.92 µm after calculation, which is larger than the common element size of the IR detector
(common element size: 15 µm, 25 µm and 30 µm). For the MWIR detector, the responsive wavelength
is assumed to be 4.4 µm, so the imaging size d is approximately 21.47 µm.

Figure 6 presents some typical point target images (the size of window is 5× 5 pixels). The imaging
size of the point target in motion changes from 1 to 3 × 3 pixels, and the morphological information
changes with the imaging distance, attitude angle and imaging position on IRFPA. Also, the point
target is more likely to occur in a complex background at various scales. Thus, the energy distribution
of the point target is not necessarily isotropic, and the target detection algorithm based on the single
and symmetric detection template leads to missed detection.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 27 
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Figure 6. Typical morphological information of the point target. The gray value has been normalized
to [0, 1], and the point target’s central pixel has been marked with a cross.

Morphological filtering has been widely adopted to extract the corresponding form in the image
with a certain structural element to accomplish target recognition. The two basic operations in
morphological filtering are dilation and erosion [44,45]. Let I(x, y) and b(s, t) represent the original
image and structural element. The dilation and erosion of I(x, y) by b(s, t) are respectively defined as:

I ⊕ b = max(I(x− s, y− t) + b(s, t)) (11)

IΘb = min(I(x + s, y + t)− b(s, t)) (12)

where ⊕ represents the dilation operation, and Θ represents the erosion operation.
The opening operation in morphological filtering can eliminate the region that is less than the

structural element, and the closing operation can merge two regions that are very close in the distance,
which are denoted by I ◦ b and I•b as follows:
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I ◦ b = [I(x, y)Θb(s, t)]⊕ b(s, t) (13)

I•b = [I(x, y)⊕ b(s, t)]Θb(s, t) (14)

We use a structural element larger than the target to achieve an opening operation and obtain the
background prediction image. Then, we subtract the background prediction image from the original
image, which is referred to as the Top-hat transform [46]. The Top-hat transform can extract bright
details from the image, which may contain point targets. The definition of Top-hat is as follows:

TH(x, y) = I(x, y)− I ◦ b(x, y) (15)

where TH(x, y) is the resulting image of the Top-hat transform.
The bright details extracted by the Top-hat transform generally show the larger gray values,

while the dark details show smaller gray values, most of which are negative values after the Top-hat
transform. To avoid this undesirable result, the traditional Top-hat transform is modified as follows:

TH(x, y) = I(x, y)−min[I ◦ b(x, y), I(x, y)] (16)

The traditional Top-hat transform method only adopts a single structural element to estimate
the background of the infrared image, which ignores differences in point target distribution in every
direction. In this paper, we employ the multiscale Top-hat transform, which is defined as follows:

THn(x, y) = I(x, y)−min[I ◦ bn(x, y), I(x, y)] (17)

where bn represents different structural elements, and THn represents the resulting image of the
Top-hat transform by bn.

We introduce the eight omnidirectional multiscale structural elements with the size of
5 × 5 dimensions which designed in our previous work [3] to extract the point target distribution
in every direction as far as possible. Moreover, the morphological structural elements with specific
directions can effectively eliminate non-directional and continuous background. The omnidirectional
structural elements bn (n = 1, 2, . . . , 8) contain 0◦ direction, 45◦ direction, 90◦ direction, . . . , and 315◦

direction as shown in Figure 7.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 27 
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Figure 7. Omnidirectional structural elements, including b1 of 0◦ direction, b2 of 45◦ direction, b3 of
90◦ direction, b4 of 135◦ direction, b5 of 180◦ direction, b6 of 225◦ direction, b7 of 270◦ direction, and b8

of 315◦ direction. “1” and “0” are the basic binary morphological operators.



Remote Sens. 2018, 10, 1054 11 of 26

The operator “1” in each structural element represents that the dilation or erosion operation is
performed in its position, and a distribution direction of “1” is similar to the morphological direction
of the point target. Each structural element not only can extract the point targets that are distributed in
the specified direction but can also highlight the candidate points at smaller scales than the structural
element in the image, thus avoiding omission.

The omnidirectional bright suspected target regions TH1 to TH8 are computed for each element.
Any of THn may contain suspected point targets distributing in the detection direction, so the real ROI
should be the combination of the extracted bright suspected target regions in every direction. The gray
values of the bright suspected target regions extracted by the Top-hat transform are usually larger than
those of other regions. Therefore, the ROI should be the maximum gray value of each pixel extracted
in every direction, which is expressed as:

ROI = max(TH1, TH2, TH3, . . . , TH8) (18)

3.2. Local Difference Criterion

Most of the background clutter in the image can be suppressed well by the above omnidirectional
Top-hat algorithm, but some strong undulant background edges may remain. The local difference
criterion is proposed in the following to remove the residual high-frequency background edges.

We suppose one of the suspected targets is I(i, j), and then the four direction vectors Lm (m = 1,
2, 3, 4) are defined in the local neighborhood window centered at I(i, j) as shown in Equation (19).
Each direction vector contains four points on both sides of I(i, j), illustrated in Figure 8. The point
target and the residual background edges are further distinguished by the relationship between the
four direction vectors.

L1 = {I(i− 2, j− 2), I(i− 1, j− 1), I(i + 1, j + 1), I(i + 2, j + 2)}
L2 = {I(i, j− 2), I(i, j− 1), I(i, j + 1), I(i, j + 2)}
L3 = {I(i + 2, j− 2), I(i + 1, j− 1), I(i− 1, j + 1), I(i− 2, j + 2)}
L4 = {I(i− 2, j), I(i− 1, j), I(i + 1, j), I(i + 2, j)}

(19)

Then, the sum of the differences in gray values between I(i + x, j + y) and I(i, j) is calculated
as follows:

d
(m)

i,j
= ∑

(x,y∈Lm)

wx,y
∣∣I(i + x, j + y)− I(i, j)

∣∣ (20)

where wx,y is the weighted kernel to describe the absolute difference between I(i + x, j + y) and I(i, j).

d
(m)

i,j
is the sum of the differences in gray values of Lm. The smaller of d

(m)

i,j
, the closer gray values of Lm

is to that of I(i, j). According to the prior knowledge that the gray values of the four-neighbor pixels
are the closest to that of the center pixel, we assign the larger weight 5/2 to them, and we let weight
equal 2 with respect to the second closest pixels. In addition, we assign the smallest weight 1 to the
four far points whose coordinates x and y are both ±2. The weights of L1 and L3 are the same, and the
weights of L2 and L4 are also the same because of the same position relationship with each other. L1,
L2, L3 and L4 are combined into a large column vector L, and the weighted kernel wx,y corresponding
to the elements of L are obtained as follows:

L =


L1

L2

L3

L4

, wx,y =
1

28


1 2 2 1
3
2

5
2

5
2

3
2

1 2 2 1
3
2

5
2

5
2

3
2

 (21)

We introduce a new variable named the Direction Ratio (DR) to distinguish the residual
background edges from the point targets, which is calculated as the maximum of d

(m)

i,j
divided by its

minimum, as shown in the following:
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DR =
max(d

(m)

i,j
)

min(d(m)

i,j
)

, (1 ≤ m ≤ 4) (22)

The following two cases regarding DR are discussed:

• When it is a background edge pixel, there exist at least one very small d
(m)

i,j
and one very large d

(m)

i,j

because of the differences in the four directions of the background edge. Together, they give rise
to a large DR.

• When it is a point target, all four direction differences in gray value d
(m)

i,j
are similar due to the

isolated characteristics of the spatial distribution of the point target. Hence, the DR of a point
target is approximately 1.

Considering the difference in the DR value between the background edges and the point targets,
we can establish a local difference criterion to eliminate the residual background edges by setting a
threshold of DR that is slightly larger than 1. To visually display the experimental results, the threshold
of DR is set to 1.5 in this paper. Thus, the local difference criterion is obtained as follows:

I(i, j) =

{
a background edge, if DR ≥ threshold
a point target or noise, otherwise

(23)
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Figure 8. Sketch map of four directional vectors Lm (m = 1, 2, 3, 4). Pixels in different locations are
distinguished by different colors.

3.3. Adaptive CFAR Threshold under Dual-Band Model

The rest of the false alarms are mostly random distributed noise and a small amount of fixed
noise, which can be eliminated easily through the interframe relation. For random distributed noise
images, the CFAR dual-band model proposed in Section 2.2 can be employed to calculate the TNRs of
the two channels. The probability of false alarm is also assumed to be 10−4, and the minimum SNR
of the to-be-detected point target is 1.5. The initial values of TNR1, TNR2 are both 2.326 by iterating
Equations (8) and (9). From the definitions of TNR1 and TNR2, the thresholds T1, T2 that acted on the
candidate target images of two channels are calculated as follows:

T1 = mc1 + TNR1 · σ1, T2 = mc2 + TNR2 · σ2 (24)
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In binary image theory, we address the two candidate target images by T1 and T2. If the complexity
of the background clutter in target image is different, the gray mean and STD of the image are also
different. Therefore, T1 and T2 change with the change in background clutter, which have the feature
of self-adaptability.

The dual-band point target detection algorithm is summarized as follows:

(1) The omnidirectional morphological filtering and the local difference criterion are employed
to suppress the complex background for the original infrared images captured by the
dual-band detectors.

(2) Initialize TNR1 of Channel 1 (TNR1 = 2.326) according to the CFAR criterion.
(3) TNR2 of Channel 2 is calculated by Equation (8), and the threshold T2 is obtained from

Equation (24).
(4) The threshold T1 calculated by Equation (24) is used to segment the image of the Channel 1 after

background suppression.
(5) Judge whether there is a suspected target in Channel 1; if any, perform the following steps; if not,

decrease TNR1 (0.2 per time), and return to Step (3) until out of range (assuming 1.5). If TNR1 is
out of range, it will announce the end of the iteration, and judge the next frame.

(6) The threshold T2 is employed to segment the image of Channel 2 after background suppression.
(7) Judge whether there is a suspicious target in Channel 2, if any, and if the coordinate position of

the target coincides with the suspected target in Channel 1, typically within 5 × 5 pixels, it is
declared a point target; if not, increase TNR1 (0.2 per time), and return to Step (3).

The flow chart of the fusion decision of dual-band thresholds is shown in Figure 9. Since the
thresholds T1, T2 have a one-to-one correspondence with TNR1 and TNR2, only T1 and T2 are used in
the figure for simplicity.
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4. Experimental Results

To obtain reliable image resources and verify the effectiveness of the proposed algorithm, Stirling
cooled infrared dual-band equipment is set up to capture the aircrafts at long distances, as illustrated
in Figure 10. The servo-control system adopts the working mode of horizontal sweep. The light that is
focused by the lens is divided into two paths by the spectroscope, which are incident on the infrared
dual-band detectors. The ADS-B global navigation system is also employed to monitor civil aviation
flight information within 300 km, including the speed, latitude, longitude, and altitude of the aircraft,
which are very useful for predicting the trends of the targets.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 27 
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Many experiments were performed to evaluate the performance of the proposed algorithm.
The MWIR and LWIR experimental images captured by the above equipment are 14-bit gray-scale.
The full frame frequency is 100 fps, and each image is of size 512 × 640. The typical infrared scenes
with the point target including the building and the cloud background are displayed in the following.

The first common scene is the point target flying against the complex building and sky background,
as shown in Figure 11. The proper affine transformation, which can describe rotation, scale,
and translation of images, has been performed to register the MW and LW images further. The gray
level distributions of the sky background in both two images are inhomogeneous. Additionally, the dim
point target is lack of texture and shape information, which is overwhelmed in the background.

After image registration, the omnidirectional morphological filtering and local difference criterion
proposed above are applied to the dual-band images to suppress the complex building background.
Figure 12 illustrates the results of the background suppression algorithm of the MWIR and LWIR
images, respectively, and binary processing has been performed. As seen, nearly all the building
background has been eliminated, but there are still many residual candidate points in each image.
In addition, the spatial distributions of most candidate points in two images are different.

Then, TNR1 and TNR2 are constantly updated based on the CFAR criterion to eliminate false
alarms further. The candidate points should be relocated to the original image when we calculate the
thresholds T1 and T2 to ensure the accuracy of the result. Figure 13 displays the results of the CFAR
threshold iteration and fusion of the dual-band images. The fixed noise has been eliminated through
the interframe relation. There remain only several candidate points in each image, which are marked
by red squares, as shown in Figure 13a,b. A false alarm in the building is extracted in the LWIR image,
fortunately, that is not extracted in the MWIR image. Finally, data fusion correlation within 5× 5 pixels
is adapted to the results of background suppression. The result of the fused point target detection is
illustrated in Figure 13c, and the extracted target is marked by a blue square. Figure 13d,e illustrate
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the enlarged areas of the detected point target in MWIR and LWIR images, which occupies 3 pixels
to 4 pixels.

The ADS-B receiver provides the aircraft indicator diagram, which is shown in Figure 14.
After observation and analysis, it can be determined that the extracted target is Airline 0 from China.
The location information of the aircraft target is 43.12◦N, 125.55◦E, and the altitude of the flight is
31050 ft. The location information of our acquisition device in Changchun China is 43.85◦N, 125.40◦E
with an altitude of 335 m. The geodetic coordinate system is computed, indicating that the aircraft
point target is 82.58 km away from the infrared dual-band equipment.

The specific information of the point target in two channels extracted by the proposed method
is summarized in Table 2, including the target coordinate, SNR and local STD of the background.
The difference in the SNRs of the point target between the MWIR and LWIR images is small, and there
is also a small difference between the two local STDs of the background.

The next common scene is the point target flying against the complex cloud background, as shown
in Figure 15 by (a) the MWIR image and (b) the LWIR image, which have been registered by the affine
transformation. The results of the background suppression algorithm of the MWIR and LWIR images
are presented in Figure 15c,d, respectively. Nearly all the cloud background in each image is suppressed
completely, and most residual false alarms are in the sky or the dim point cloud clutter. After the
process of CFAR threshold iteration and fixed noise elimination, only a few candidate points remain in
each image as shown in Figure 15e,f. The real point target is identified in Figure 15g by data fusion
correlation, and the specific information of the point target in dual-band IR images is summarized in
Table 3.
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Table 2. Specific information regarding the extracted point target in two channels.

Channel Target Coordinate SNR Local STD

MWIR (255, 323) 3.56 2.45
LWIR (254, 322) 3.02 2.88

Table 3. Specific information regarding the extracted point target in two channels.

Channel Target Coordinate SNR Local STD

MWIR (254, 205) 3.03 3.21
LWIR (255, 207) 4.12 2.88

The curve of the SNR of the detected moving dim point target in the above two common scenes is
summarized in Figure 16. In the whole moving phase of the point target, the SNR in the MWIR images
varies from 1.71 to 4.71, and that in the LWIR images varies from 1.90 to 4.68, both of which are hardly
visible to the naked eye.

The target images with the larger SNR are also tested by the proposed method, as shown in
Figure 17a MWIR target image with the SNR of 14.21, and Figure 17d LWIR target image with the
SNR of 15.69, in which the targets are marked by the red squares. Through a series of procedures of
background suppression, CFAR threshold and dual-band data fusion correlation, the point target is
extracted in Figure 17g. It can be seen from Figure 17h,i that the point target occupies more pixels
in dual-band images, and the point target’s central pixels in two images are different. The residual
high-frequency candidate points in the MWIR image mainly distribute in the edges of the dim and
weak cloud, while the spatial distribution is different from that of the LWIR image. The SNR range
of the candidate points in Figure 17b,e is relatively large, approximately ranging from 1.5 to 16.
It demonstrates that the proposed algorithm can achieve a robust performance on the point targets
with the larger SNR.
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images; (b,e) are results of the background suppression of (a,d); (c,f) are results of the CFAR threshold
iteration of (b,e); (g) result of fused point target detection; (h,i) are the enlarged areas of the detected
point target in MWIR and LWIR images.

The proposed method performs a better target detection effect in the above three sets of test
images. The omnidirectional morphological filtering can reduce most of the building and the cloud
background, and the residual high-frequency background edges are nearly removed by the local
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difference criterion. The fusion decision of two TNRs ensures that the proposed algorithm has the
CFAR characteristic, regardless of what the background is. The difference of radiation in dual-band
images leads to the different spatial distribution of the remained several candidate points, thus the real
point target is extracted by the dual-band data correlation. Also, the different radiation mechanism of
dual-band images sometimes causes the different central pixels of the point target which has a larger
size or SNR. However, there are little differences in SNR and local STD of the point target between the
dual-band images.

5. Comparison and Discussion

In the simulation results of the target detection model, we have derived the optimal fused
probability of detection under the system’s common probability of false alarm and the common SNR
of the point target according to the NP criterion and And fusion rule. The dual-band probability of
detection is always better than that of the single-band when the system’s required probability of false
alarm is relatively large, such as 10−3 or 10−4. However, when the system’s required probability of false
alarm is relatively small, such as 10−5 or 10−6, the single-band probability of detection is slightly higher
than that of the dual-band model when SNR2 is less than the small critical point. In fact, the SNR of the
common point target that we detected is usually larger than the critical point. In addition, considering
the hardware level and the limited performance of the detection algorithm, the actual probability of
false alarm is rarely less than 10−4.

To validate the effectiveness of the proposed algorithm in background suppression, it is compared
with the common algorithms including the traditional Top-hat, DoG, BM3D, and GMM. Figure 17
illustrates the comparable results of 3 typical target scenes such as the sky background, cloud
background, and buildings, while only the LWIR images are presented here for simplicity. The SNRs
of the three point targets located in Figure 18a are 5.14, 9.41 and 7.25. Figure 18b–e show the results
of traditional Top-hat, DoG, BM3D and GMM, and Figure 18f displays the result of the proposed
background suppression and CFAR threshold algorithm, and only several false alarms remain in
each image, which will be eliminated easily by dual-band fusion correlation. The proposed method
suppresses background clutter well compared with other methods.

Quantitative comparison is also performed here. Since the probability of detection of the
dual-band model is obviously superior to that of the single-band model according to the simulation
result in Section 2.3, all the compared algorithms are performed based on the proposed dual-band
model. The probability of detection, the probability of false alarm and the running time of the target
detection algorithm are selected as the evaluation indexes of the results, which are computed from
the following:

Pd = (Nc/Nt)× 100%
Pf a = [N f /(N f + Nt)]× 100%

(25)

where Nc is the number of detected true point targets, N f is the number of false alarms, and Nt is the
total number of point targets.

There are a total of 1500 point targets in the test sequence including the simple sky background,
the complex cloud and the building background. The SNR of dual-band images is approximately from
1 to 16. The proposed method successfully extracted 1487 point targets with 1 false alarm. Therefore,
the corresponding probability of detection of the proposed method reaches 99.13%, and at the same
time, the probability of false alarm is 0.07%. The traditional Top-hat method extracted 1249 point
targets with 109 false alarms. The DoG method detected 1309 point targets with 82 false alarms.
The BM3D and GMM methods detected more point targets than the traditional Top-hat and DoG
methods, 1461 and 1433, respectively.

For an appropriate compromise between Pd and Pf a, we introduce an evaluation index named
Figure of Merit (FoM). This is defined from [47], calculated as:
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FoM =
Pd

1 + 3Pf a
(26)

FoM is a normalized parameter, such that 0 < FoM < 1. An FoM close to 1 indicates a near perfect
performance. The statistical results of the five algorithms are summarized in Table 4.
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Figure 18. Three typical frames of a point target, including the sky background, cloud background,
and buildings: (a) original image; (b) result of traditional Top-hat; (c) result of DoG; (d) result of BM3D;
(e) result of GMM; and (f) result of the proposed algorithm.

Table 4. Comparison of the five algorithms based on the proposed dual-band model.

Method Pd/% Pfa/% FoM/% Running Time/s

Traditional Top-hat 83.27 6.77 69.21 0.39
DoG 87.27 5.18 75.53 0.83

BM3D 97.40 0.86 94.95 5.24
GMM 95.53 2.41 89.09 4.92

Proposed method 99.13 0.07 98.92 0.46

As seen from the above table, the BM3D and GMM algorithms have a high probability of detection,
exceeding 90%, and they are effective at background suppression although time consuming because
of the complex background modeling process. Traditional Top-hat and DoG algorithms are simple,
but the probability of false alarm is slightly higher, which leads to a lower FoM. The strong advantage
of the proposed algorithm is that the probability of false alarm is very low, which is because that the
omnidirectional morphological filtering and local difference criterion have excellent background
suppression effect. We further calculate the comparable results of the probability of detection,
probability of false alarm, and FoM with the SNR, as shown in Figure 19. The proposed algorithm
performs the advantage of CFAR, while the false alarms of other algorithms are uncontrollable. Image
processing was finished in MATLAB R2014a with the PC configuration of 4 GB main memory and
32-bit system. The proposed algorithm basically meets the real-time requirements when compared
with other algorithms. Some modeling methods such as GMM and BM3D will consume a lot of time
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in background modeling and convergence. Many state-of-the-art TBD algorithms such as dynamic
programming, GLRT and particle filter [48] can produce good detection results, but the complexity of
these algorithms is too high to meet real-time requirements. Our proposed algorithm is carried out in
spatial domain, and the target can be extracted only by one frame. The morphological filtering is very
fast and efficient, and the most time is spent in the iteration process of TNR in dual-band model, and
the computational complexity and convergence speed of our algorithm are obviously superior to the
background modeling and TBD algorithms.Remote Sens. 2018, 10, x FOR PEER REVIEW  23 of 27 
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Although the proposed fused target detection algorithm based on the CFAR criterion is designed
for infrared dual-band images, in most cases, it also performs well in other multiple channels, such as
visible image fusion, visible and infrared image fusion, Synthetic Aperture Radar (SAR) image fusion
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and other types of gray-scale image fusion, as long as the energy of the point target is larger in its
local neighborhood. In addition, the proposed point target detection method is applicable to the point
targets in various cases including stationary targets, slow-moving targets and fast-moving targets.

Here, we specifically study the characteristics of the one false alarm extracted by the proposed
algorithm. The local neighborhood images of the false alarm are displayed in Figure 20a the MWIR
image and Figure 20b the LWIR image, and Figure 20c,d are their corresponding three-dimensional
gray-scale maps. Through calculation, the SNR and the local STD of the false alarm in the MWIR
image are 3.05 and 6.39, respectively, and those of the false alarm in the LWIR image are 2.98 and
4.80, respectively. The extracted false alarm is more likely to be the real existence of a dim point cloud
or weak atmospheric radiation, which is very similar to the point target in terms of its shape and
characteristics in each image. Our future research direction is to distinguish between this kind of false
alarm and the real point target.Remote Sens. 2018, 10, x FOR PEER REVIEW  24 of 27 
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6. Conclusions

Detecting the infrared point target as early as possible can increase response times, thus, it is
necessary to improve the robustness and efficiency of the detection algorithms. However, the point
target’s imaging size and minutiae are very small due to the long-distance imaging system. Based on
the dual-band CFAR model, this paper presented omnidirectional multiscale morphological filtering
and the local difference criterion for aerial point target detection. The single-band target detection
model under the NP criterion is established first, and then the fused probability of detection and
the probability of false alarm under the dual-band model are deduced according to the And fusion
rule. The dynamic TNR is adjusted to obtain the optimal fused probability of detection under the NP
criterion. Next, an omnidirectional Top-hat algorithm is presented to suppress complex background,
and the local difference criterion is also employed to eliminate the residual background edges. The dim
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point target is finally extracted after the CFAR criterion and data fusion correlation. The infrared
dual-band detection equipment is implemented to confirm the effectiveness of the proposed algorithm.
The results show that the probability of detection of the proposed method reaches 99.13% with a 0.07%
probability of false alarm. It demonstrates that the proposed algorithm outperforms the common
algorithms such as the traditional Top-hat, DoG, BM3D, and GMM in terms of background suppression
and running time.

The proposed dual-band model has a better detection effect when the SNR of the point target is
relatively low but higher than the small critical point, and it can significantly reduce the probability
of false alarm. When the SNR is relatively larger, the single-band detection model can also produce
good results to distinguishing the real target and the false alarm by the trajectory correlation or
energy accumulation. In addition, the dual-band detection method will increase the complexity of the
algorithm compared with the single-band model, which is the main limitation of the multichannel
fusion methods. A GPU of parallel computing could be employed which can dramatically increase
the computing speed. However, for the aerial point targets, the IRST system usually adopts the
working mode of horizontal sweep which will cause the jitter of the target in the image. Moreover,
the positioning accuracy of the system is limited, and the feature of target trajectory may not be
obvious, which sets higher requirements for the point target detection in the single frame. Therefore,
the study of stable and efficient dual-band detection algorithms has great prospects.
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