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Abstract: Cloud detection using downwelling radiation measured by infrared thermometer (IRT)
has been utilized for many applications. The current study investigates the effects of disparate
IRT specifications, including the dynamic range and sampling rates on the performance of cloud
detection, which utilizes the spectral and temporal characteristics of cloudy radiation. To analyze
the effects, the detection algorithm that was prepared with and applied to the IRT data with
different specifications is compared with reference data, a ceilometer, and micro-pulse lidar (MPL).
The comparison results show that the low-altitude clouds are detected with a sufficient accuracy:
better than 97% probability of detection (POD). This is due to the much warmer brightness
temperature (Tb) of the low clouds compared with the clear sky in the atmospheric window region
where the IRT measurement was made. Conversely, the high-altitude cold clouds are hard to detect
with the spectral test due to the much-reduced Tb contrast between cloudy and clear sky. Thus,
the algorithm performance is largely dependent on the performance of the temporal test. Since the
lower measurement noise provides a better estimation of the temporal variability of clear sky Tb
with less estimation uncertainty, the IRT data having a better noise performance shows a better POD
value by as much as 52.2% compared with the MPL result. However, the improvement is realized
only when the dynamic range of IRT covers sufficiently cold Tb, such as −100 ◦C.
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1. Introduction

The roles that clouds play in the atmosphere are ubiquitous, not only in the atmospheric processes
such as the Earth’s energy budget, precipitation, and chemical, dynamical, and optical phenomena,
but also in the atmospheric measurements, specifically by interfering with various types of remote
sensing. The cloud amount, type, height, and microphysical properties are all necessary information to
meet the requirements for studies of the processes, while an accurate detection of the cloud presence
is the basic information to mitigate the interference. Much of the required information is provided
from various means from spaceborne, airborne, and ground-based instrumentations; each has its own
merits and disadvantages [1,2].

Here, the authors focus on the detection of clouds using downwelling radiation measured by an
infrared thermometer (hereafter IRT). Compared with other instruments for cloud detection—active and
passive sensors alike—the IRT used for the current study is relatively simple and easy to operate [3,4].
The measured radiances of approximately 10 µm correspond to the atmospheric window region
and are quite sensitive to cloud presence, resulting in the measured radiance in cloudy conditions
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showing a warmer (spectral) and more variable (temporal) characteristic compared with clear-sky
radiation. Furthermore, as it uses the emitted radiation from the atmosphere, cloud information could
be obtained during both day and night. Therefore, a continuous and automatic cloud detection using
IRT measurement is applicable in real-time to improve the retrieval accuracy of atmospheric profiles
from the radiometric measurements. Ahn et al. [5] showed the potential application of this approach by
eliminating cloud-contaminated data from the radiometric measurement. Furthermore, Brocard et al. [6]
tried to utilize a temporal fluctuation of brightness temperature (hereafter Tb) obtained from the infrared
radiometer to detect cirrus cloud, which regulates outgoing longwave radiation. From these studies,
it has been shown that the detection algorithm using the spectral and temporal characteristics of the
cloud radiation provides quite satisfactory and reliable cloud detection [3,6–9].

However, it is also notable that the dynamic range of the IRT is limited, especially regarding the
measurement limit of −50 ◦C, which could degrade the algorithm performance when the measured
brightness temperature is cooler than −50 ◦C [9]. This issue with cold Tb is further complicated by a
limited capability of the reference data used for the algorithm validation. Since the ceilometer used for
the validation has a detection limit of about 7 km, which is lower than many of the high cold clouds,
a quantitative assessment of the algorithm performance for the high clouds is limited, for example.
Thus, here, the authors attempt to resolve these issues by utilizing an improved set of data from
instruments installed at the Atmospheric Radiation Measurements (ARM) Southern Great Plains (SGP)
site, Tb data from an IRT with a wider dynamic range as low as −100 ◦C and a higher sampling rate
of 5 Hz [10], together with the improved reference data from both a ceilometer and micro-pulse lidar
(hereafter, MPL) that is able to detect clouds as high as 18 km [11].

The paper is organized as follows: Section 2 describes the used data and the instruments,
and introduces pre-processing to utilize the ARM data to resolve aforementioned issues; Section 3
analyzes the effects of the new IRT data on the cloud detection algorithm with respect to the spectral
and temporal characteristics of clouds; this is followed by an overall validation of the algorithm
performance in Section 4. The validation results are analyzed by focusing on two issues—the different
characteristics of the IRT data as well as the improved reference data—followed by a short discussion
on the implication of the findings to the utilization of IRT data for cloud detection. The paper is
concluded in Section 5 with a summary of the current study.

2. Data and Pre-Processing

The cloud detection algorithm using the IRT data [9] is based on the characteristics of the cloudy
Tb against the clear sky Tb (hereafter TbCLR). When the measured Tb is warmer and/or more variable
than the TbCLR, the measurement is determined to be cloud-affected. Since TbCLR and its temporal
variability changes with the atmospheric conditions, the most important part of the detection algorithm
is to have an accurate TbCLR and its temporal variability. Here, it should be emphasized that TbCLR

has a rather large variation, even at the atmospheric window region, which is mainly depending on
the variability of water vapor and the temperature of the lower atmosphere [3,12–14]. It has been
shown that a sufficiently accurate TbCLR is obtained with an empirical formula as a function of the
real-time surface temperature (TSFC) and humidity (e) (a detailed description for the derivation of the
empirical formula is given elsewhere [9], while a summary is also given in Appendix A). Concerning
the derivation of the empirical formulas for clear sky, the measured Tb from the IRT (hereafter TbIRT)
is regressed with the simulated clear sky Tb to reflect the characteristics of a specific IRT. Thus,
the empirical formula for TbCLR depends on the characteristics of the IRT. It is also true that the
temporal variability of TbCLR for the clear sky is derived using the measured TbIRT. Thus, both the
formulas for TbCLR and its temporal variability depend on the instrument characteristics.

The ARM program has been operating various ground-based remote sensing instruments to
characterize the aerosol, cloud, and radiative properties in different atmospheric conditions since
1992 [15,16]. The SGP site (36◦36′18.0”N, 97◦29′6.0”W, and 318 m above sea level) is located in the
mid-latitude climate zone where the seasonal variations in temperature and humidity are distinct,
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as shown in Figure 1. The SGP site hosts one of the most comprehensive sets of instruments ever,
making it a natural choice for this analysis. Among the various instrument data, the current study
utilizes (1) TbIRT, (2) the information on the cloud presence from both MPL and ceilometer, and (3) the
radiosonde observation and surface weather data. Here, the instruments and data used for the current
study are introduced followed by data preparation to consider the different characteristics of the
instrument specifications.
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blades), measures downwelling radiance within its field of view (FOV) of 2.64° with a moderate 
spectral band, from 9.6 μm to 11.5 μm, and reports the measurement in the form of brightness 
temperature, Tb [4]. At the SGP site, the IRT instrument, Heitronics KT 19.85II, is protected by a 
ventilated enclosure which is mounted at a height of 1–2 m above ground. The downwelling radiation 
reflected by a protected gold mirror is guided into the optical lens of the IRT (see Figures 3–6 of 
Morris [4] for details). The IRT instrument that was used for the current study has been operated at 
the SGP site since 2006 with the improved instrument specifications, as summarized in Table 1. First, 
the dynamic range of TbIRT is extended to as low as −100 °C, often associating with the cold clear sky 
and high-altitude cold clouds. Secondly, the data acquisition process is capable of reporting Tb with 
a higher sampling rate at 5 Hz [10], whereas many similar instruments have a longer sampling rate 
of 3 s. It is conceived to capture the temporal variability of clouds better with the increased sampling 
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resolution is slightly better than previous instruments such as used by Ahn et al. [9] (also, see Figure 
2). Here, the temperature resolutions are interpreted as the noise equivalent delta-temperature 

Figure 1. The Southern Great Plains (SGP) site located at the mid-latitude climate zone (36◦36′18.0”N,
97◦29′6.0”W, and 318 m above sea level) (a) and its site map including the location of the infrared
thermometer (IRT), ceilometer, and micro-pulse lidar (MPL) (b). The red circles indicate the location of
each instrument utilized in the current study (image source: http://www.arm.gov/sites/sgp).

2.1. Infrared Thermometer

The IRT, which is an infrared pyrometer with an optical chopper (basically with mechanical
blades), measures downwelling radiance within its field of view (FOV) of 2.64◦ with a moderate
spectral band, from 9.6 µm to 11.5 µm, and reports the measurement in the form of brightness
temperature, Tb [4]. At the SGP site, the IRT instrument, Heitronics KT 19.85II, is protected by a
ventilated enclosure which is mounted at a height of 1–2 m above ground. The downwelling radiation
reflected by a protected gold mirror is guided into the optical lens of the IRT (see Figures 3–6 of
Morris [4] for details). The IRT instrument that was used for the current study has been operated at
the SGP site since 2006 with the improved instrument specifications, as summarized in Table 1. First,
the dynamic range of TbIRT is extended to as low as −100 ◦C, often associating with the cold clear sky
and high-altitude cold clouds. Secondly, the data acquisition process is capable of reporting Tb with a
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higher sampling rate at 5 Hz [10], whereas many similar instruments have a longer sampling rate of
3 s. It is conceived to capture the temporal variability of clouds better with the increased sampling
rate, which is an additional aspect that the current study attempts to analyze. Finally, the temperature
resolution is slightly better than previous instruments such as used by Ahn et al. [9] (also, see Figure 2).
Here, the temperature resolutions are interpreted as the noise equivalent delta-temperature (NEdT),
following the description given by Heitronics [17]. Thus, the temperature resolution represents a
measure of the detector sensitivity at the given observational conditions along with the random noise
of the instrument at the response time and radiation source temperature.

Table 1. The specification of IRT (Heitronics KT 19.85II) used for the current study. Here, the
temperature resolution represents a measure of the detector sensitivity, equivalent to the noise
equivalent delta-temperature (NEdT) at the given observation conditions [17]. Here, the value given in
the table is for the case with the emissivity of 1 and the response time of 0.3 s.

Spectral range 9.6–11.5 µm
Dynamic range −100 ◦C–200 ◦C

Digitization 12 bits
Sampling rate 5 Hz (0.2 s)

Optical field of view (FOV) 2.64◦ (f-120 mm)
Temperature resolution (NEdT) 1.2 ◦C at −50 ◦CRemote Sens. 2018, 10, x FOR PEER REVIEW  5 of 22 
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rates: the original 0.2-s rate, and the reduced 3-s rate. The blue triangle represents the NEdT 
specification of IRT used for the previous study [9]: 1.1 K at −50 °C with a 1-s response time. 
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[22]. Since the forward and return signal overlap near the instrument, about 10 m above the optics 
assembly, the lowest detectable cloud altitude is set to about 10 m above the instrument. Since the 
return signals are collected with the same frequency as the pulsed signal, the vertical resolution is 

Figure 2. The temperature resolution as a function of the response time [17]. The solid and dashed
black lines denote the radiation source temperatures of −50 ◦C and 20 ◦C, respectively. The red plus
indicates the NEdT of the SGP IRT (Table 1). The red vertical lines indicate two different sampling rates:
the original 0.2-s rate, and the reduced 3-s rate. The blue triangle represents the NEdT specification of
IRT used for the previous study [9]: 1.1 K at −50 ◦C with a 1-s response time.

Figure 2 shows the temperature resolution as a function of the response time for two different
target temperatures (−50 ◦C versus 20 ◦C). Here, the response time is given as the time required
to respond to 90% of temperature changes against the internal reference temperature of IRT, while
the temperature resolution at the given response time is a minimum of temperature variation to be
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capable of responding [18]. Thus, in general, the temperature resolution improves with the increasing
target temperature, as well as the increasing response time, simply due to the increased input signal.
Therefore, the temperature resolution of TbIRT needs to be understood in relation to the function of
response time and the target temperature. The SGP IRT seems to have a slightly poorer temperature
resolution of 1.2 ◦C (red plus in Figure 2) compared with the 1.1 ◦C of the previous study (Ahn et al. [9];
blue triangle in Figure 2). However, if the response time is considered to have the same value of 1 s,
the SGP IRT shows a better temperature resolution of about 0.5 ◦C. Since the simultaneous acquisition
of IRT data having different temperature resolutions with a single IRT is not possible, the different
temperature resolutions are simulated with the different sampling rates, which correspond to a specific
measurement period to integrate the input signals. Here, the longer sampling rate against the response
time could enhance the NEdT with the reduced noise level. The high sampling rate with shorter
response time, such as with the SGP IRT, can detect the high variability temporal feature of clouds,
although the NEdT is slightly larger. The disparate sampling rates of IRT—the original 0.2-s rate,
and the modified one by integrating input signals during the lower sampling period—are applied to
investigate the effects of the disparate noise characteristics of IRT on the cloud detection algorithm.
The resulting NEdT of the sampled IRT data for 3 s would be lower than that of 0.2 s.

Along with the instrument specifications, the radiometric calibration is also quite an important
characteristic to be considered for the current study. First of all, the IRTs of ARM SGP sites are calibrated
at a factory using the calibration procedures by means of a black body source. However, during the
field operation, there are sources resulting in the calibration uncertainty. For this, the ARM site relies
on the mentor calibration procedure using the collocated hyperspectral atmospheric emitted radiance
interferometer (AERI), which is compared with the IRT measurement on a weekly basis. Thus, when
any issues occur—in particular calibration issues—the data quality report (DQR) are submitted [4].
Here, only IRT data obtained during the period when no reported calibration issues are noted.

2.2. Ceilometer and MPL

The algorithm is validated through comparisons with the sky conditions obtained by the reference
instruments such as the ceilometer and MPL. Here, the cloud presence is inferred with the cloud base
height (CBH), which is the variable usually given by those reference instruments, by assigning cloudy
sky conditions whenever a meaningful CBH value is observed [19–21]. The CBH data obtained from
both a ceilometer (Vaisala CL31, the same instrument used in Ahn et al. [9]) and MPL (manufactured
by Sigma Space Corporation, Lanham, MD, USA) are used in the ARM SGP site. The top-level
specifications of the two instruments are summarized in Table 2.

Table 2. Summary of top-level specifications of the ceilometer and the micro-pulse lidar (MPL) at the
Atmospheric Radiation Measurements (ARM) SGP site. Note that the lower limit of the MPL cloud
base height (CBH) is 0.5 km, whereas it is 10 m for the ceilometer.

Instrument CL31 Sigma MPL

Wavelength 910 nm 532 nm
Vertical resolution 10 m 30 m
Averaging interval 16 s 30 s

Range of CBH 10 m–7.7 km 0.5 km–18 km
Field of view (FOV) 0.83 mrad 0.1 mrad

The Vaisala CL31 measures the backscattered signal of transmitted radiation from a pulsed
InGaAs diode laser (operated at 910 nm with the pulse rate of 10 kHz). The CBH data, at the maximum
of three different layers, are produced up to an altitude of 7.7 km using a built-in algorithm [22]. Since
the forward and return signal overlap near the instrument, about 10 m above the optics assembly,
the lowest detectable cloud altitude is set to about 10 m above the instrument. Since the return signals
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are collected with the same frequency as the pulsed signal, the vertical resolution is about 10 m.
To reduce the random noise and improve detection accuracy, the signals are averaged for 16 s.

The MPL is also a ground-based lidar system measuring backscattered radiation at a shorter
wavelength of approximately 530 nm. Due to the higher output power, the detection limit is higher
than that of the ceilometer: as high as 18 km [11]. The CBH is derived by MPLCMASK (MPL Cloud
Mask), which is a value-added product of the ARM program that is implemented in the operational
cloud algorithm [23]. The used CBH data from MPL have a vertical resolution of 30 m with the
temporal resolution of 30 s. Due to the beam overlapping effect, the lowest cloud detected by MPL
was at 500 m [24].

Compared with the FOV of IRT (approximately 46 mrad), the ceilometer and the MPL have
relatively narrow FOVs. Thus, the portion of sky viewed by the two instruments is much smaller than
that of the IRT. For example, the IRT FOV increases with increasing cloud altitude: the sky-viewing
area is about 0.046 km2 at the height of 1 km, and is increased 100-fold at a height of 10 km. Therefore,
it is noted that this difference could introduce a slight discrepancy in the cloud detection among
different instruments.

Previous studies [25–28] have reported that the CBH values from a ceilometer and MPL could
be quite different due to the different specifications and approaches. Thus, the CBH data used
for the current study are compared beforehand, and the results are summarized in Appendix B.
The comparison shows that the sky conditions from the ceilometer and MPL agree each other for
about 88.3% of the cases. The main cause of the discrepancy is due to the instrument characteristics.
First, the ceilometer detects cloud below about 7.7 km, while MPL could detect clouds at much higher
altitudes. Conversely, MPL is not able to detect clouds at lower altitudes—below about 500 m—where
the ceilometer has a much better capability. Moreover, due to the difference in the used wavelength,
there are disagreements in the sky conditions during a few days of heavy smoke events, specifically
during 17 February, 20–21 April, 29–30 June, 4 July, and 1 September 2015, when the data were excluded
from the current study.

2.3. Pre-Processing

The effects of the disparate characteristics of TbIRT, in terms of the dynamic range and the
sampling rate, for cloud detection are investigated with four different experimental datasets prepared
using the original TbIRT. The “Control” represents the original TbIRT data, while the EXP1 simulates
the reduced dynamic range of −50 ◦C, as shown in Table 3. The reduced dynamic range is simply
simulated by assigning the original TbIRT having colder temperatures than−50 ◦C to−50 ◦C. The EXP2
is to simulate the reduced sampling rate of 3 s, which is achieved by taking a time average of the
original signals for 3 s. Finally, the EXP3 is to simulate the reduced dynamic range and sampling rate,
which is the same specification as the TbIRT of Ahn et al. [9], but with a slightly better temperature
resolution. Such treatments of the original TbIRT allow the authors to approximately reproduce the
data characterized by different specifications of IRT.

Table 3. The four experimental datasets are used to analyze the effects of the disparate specifications of
IRT to the cloud detection algorithm. Each dataset has a different dynamic range (the lowest boundary)
and/or sampling rate. The original TbIRT are used for the “Control”, while the other experimental
datasets having different characteristics are prepared using the original data. Note that EXP3 has the
same dynamic range and sampling rate as those of the previous study [9], but with slightly better
temperature resolution.

Dataset Control EXP1 EXP2 EXP3

Dynamic range (the lowest boundary) −100 ◦C −50 ◦C −100 ◦C −50 ◦C
Sampling rate 5 Hz 5 Hz 3 s 3 s
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The effects are analyzed with two different aspects of the algorithm: the development of the
algorithm and the overall performance of the cloud detection. The first aspect is analyzed with the
characteristics of the empirical equations that depend on the TbIRT, while the second aspect is through
comparison with the reference data. The datasets are prepared for two different time periods: one
for the algorithm development and the other for the algorithm validation for the analysis. More than
19 months of data, from 4 October 2010 to 27 April 2012, are utilized for algorithm development.
Not only TbIRT, but also the radiosonde observation and surface weather data, are collected and
processed. The algorithm results are compared with the cloud presence determined by both MPL and
the ceilometer for one year, from 1 November 2014 to 30 October 2015 for validation.

3. Methodology

The effects of the disparate IRT specifications on cloud detection are assessed through the analysis
of the impacts to the development process of the empirical relations (Equations (A2) and (A3) of
Appendix A). Special attention is given to the linearity of the empirical formulae, along with their
uncertainties, which consist of the core of the detection algorithm. The analysis is given for the dynamic
range followed by the sampling rate for each of the four experimental datasets.

3.1. Dynamic Range

The effects of the dynamic range on algorithm development are best described with the scatter
plot of the simulated clear sky Tb (TbS) and the corresponding TbIRT. Figure 3 shows such a plot
along with the best-fit lines for each experimental dataset: the left panel for the Control and EXP2,
and the right panel for EXP1 and EXP3. Here, the cloud-contaminated data are discarded through the
empirical procedures (see Appendix A for details). The best-fit lines in Figure 3 show the quadratic
relationship of Equation (A2) used for the real-time estimation of the clear sky Tb (hereafter TbE

CLR) as
a function of TSFC and e (along with Equation (A1)). Interestingly, the two best-fit lines in each scatter
diagram are almost identical, demonstrating that Equation (A2) should be same for the dataset having
the same dynamic range. Conversely, the best-fit lines for the different dynamic ranges are quite a
similar at warm TbS, but they begin to deviate near −50 ◦C, which is the lower limit of the EXP1 and
the EXP3. The deviation increases in the quadratic relationship, and shows as large as 35 ◦C at−100 ◦C
of TbS, which implies that the Control and EXP2 could be better positioned for cold environments
such as the winter time or cold clouds. Another aspect of the relationship between TbS and TbE

CLR is
that the two temperatures are not on the one-to-one line (dashed line in Figure 3); TbE

CLR is warmer
than the theoretical TbS, and the difference increases with decreasing TbS. This is thought to be due
to the inaccurate calibration of the IRT for a relatively very cold sky Tb against the internal reference
temperature of the IRT [4], but confirmation is beyond scope of the current study.

The best-fit coefficients for the four datasets are summarized in Table 4, along with the uncertainty
of the fitting lines (standard deviation of the difference between TbIRT and the estimated TbE

CLR).
Figure 3 indicates that the coefficients for the Control and EXP2 are quite similar to each other, as are
those of EXP1 and EXP3. It also confirms that Equation (A2) depends strongly on the dynamic range,
but weakly on the sampling rate. Additionally, the experimental datasets with the full dynamic range
favor a linear relationship that is closer to the ideal cases. Finally, the fitting uncertainty that is used
for the threshold in the spectral test shows a smaller value with the limited dynamic range due to the
spectral limitations. Since the uncertainty is smaller with EXP1 and EXP3, the spectral test would be
more sensitive with these experimental datasets if other conditions are the same.
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Figure 3. The scatter diagram of the simulated clear sky Tb (TbS) and the TbIRT (potentially clear sky
Tb). The best-fit lines (black, blue, red, and green for the Control, the EXP1, the EXP2, and the EXP3,
respectively) represent Equation (A2), while the dashed line is the one-to-one line.

Table 4. The coefficients for the quadratic formulas of Equation (A2) of Appendix A for the four
experimental datasets. The uncertainty represents a fitting error as a standard deviation of the difference
between TbIRT and estimated TbE

CLR. The uncertainty is used as a threshold value for the spectral test.

Dataset b0 b1 b2 Uncertainty (◦C)

Control 9.12 1.01 2.13 × 10−3 5.0
EXP1 19.37 1.58 8.94 × 10−3 3.3
EXP2 9.96 1.04 2.35 × 10−3 4.9
EXP3 20.56 1.63 9.35 × 10−3 3.0

The potential harm to cloud detection due to the limited dynamic range would be the cases when
the actual cloudy TbIRT and TbE

CLR are very cold, which is usually during the winter in the SGP site.
Figure 4 shows the time series of TbIRT (black solid line), TbS (green solid line), and TbE

CLR (blue solid
line) for three days in February 2015 for the Control and EXP1 datasets. Regarding the Control, TbE

CLR

follows the general trend of TbS quite well, and the values are close to the clear sky TbIRT (bottom
of the black lines). Conversely, in the case of EXP1, the trend and absolute value of TbE

CLR are quite
different from TbS; EXP1 TbE

CLR do not show a large variability of TbS and their values, which are
almost constant at −50 ◦C, and are much warmer than the TbS. Thus, during the periods of the shaded
area in Figure 4, many of the cloudy data detected in the Control are classified as clear sky in EXP1.
These missed cases are due to either the incapability of measuring cold TbIRT, below −50 ◦C, or an
incorrect estimation of TbE

CLR. Thus, the effects of the dynamic range to cloud detection are especially
significant for the cold clear sky Tb and clouds having cold Tb, specifically colder than −50 ◦C, which
usually occurs during the winter, or in instances of high-altitude clouds and optically thin clouds.
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the red diamonds are the cloudy data detected by the spectral test.

3.2. Sampling Rate

While the effects of the dynamic range are closely related to the spectral test, so are those of
the sampling rate with the temporal test. The key for the temporal test is the determination of the
temporal variability of the clear sky TbIRT, which hereafter will be called σE

CLR at the specific situation.
Here, the real-time σE

CLR is determined by Equation (A3) as a function of TbIRT. The close relations of
σE

CLR to the measured TbIRT is explained twofold; the increasing NEdT with the decreasing source
temperature, and the variation of the temporal variability of the actual clear sky Tb. Although it is
not clear which cause is dominant, it is clear that the measured TbIRT reflects both effects, and thus
provides a good indicator for the variability of the clear sky Tb.

Figure 5 shows the relationship between hourly averaged σ1min (the TbIRT variability for one
minute) and TbIRT of the clear sky (for the screening process, see Ahn et al. [9] and Appendix A for
a short summary) with the best-fit lines giving the coefficients for Equation (A3), as summarized in
Table 5. The relationship again is divided clearly into two groups: the Control and EXP1 versus EXP2
and EXP3, which have sampling rates of 5 Hz and 3 s, respectively. Generally, σE

CLR increases with the
cooler TbIRT. More importantly, the σE

CLR difference between the two groups also increases with the
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decreasing TbIRT. The hourly averaged σ1min at TbIRT of −80 ◦C is 0.47 ◦C and 0.15 ◦C for the Control
and EXP2, respectively, resulting in a 0.32 ◦C difference between them. However, at TbIRT of 10 ◦C,
they are 0.14 ◦C and 0.05 ◦C; thus, the difference is only about 0.09 ◦C. Thus, the effects due to the
different sampling rate would be more significant with the cold TbIRT. Overall, σE

CLR is larger for the
cooler TbIRT, and/or the higher sampling rate against the response time. Such a characteristic of σE

CLR

is directly related to NEdT, as shown in Figure 2; the smaller the input signal, the larger the NEdT. The
higher sampling rate would cut off or ignore the input signal before a sufficient accumulation of the
input signal, which results in the larger NEdT.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 22 
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Table 5. The coefficients of the empirical Equation (A3) for the four experimental datasets. The
uncertainty represents a best-fit error as a standard deviation of the difference between the hourly
average σ1min and estimated σE

CLR.

Dataset c0 c1 c2 Uncertainty (◦C)

Control 0.148 −0.84 × 10−3 4.14 × 10−5 1.66 × 10−2

EXP1 0.144 −1.77 × 10−3 2.16 × 10−5 1.26 × 10−2

EXP2 0.055 −0.21 × 10−3 1.09 × 10−5 0.95 × 10−2

EXP3 0.054 −0.52 × 10−3 3.95 × 10−6 1.04 × 10−2

A smaller (or tighter) σE
CLR in the temporal test is quite important, because it means a higher

chance of discerning clouds having a weak temporal variability, such as the uniform stratus or
cirrus-type clouds. Alternately, the larger σE

CLR would be less sensitive to the temporal variability,
which results in an increased chance of missed detection. Figure 6 shows such an example with the
time series of the temporal variability of TbIRT along with the CBH of MPL for high clouds during
the winter. Overall, both the Control and EXP2 detect clouds quite satisfactorily, even when the
cloud altitudes are as high as 8–10 km. However, when the measured temporal variability is not
very strong, the Control does not detect the cloud, while EXP2 does (104 points versus 61 points,
see Figure 6). The discrepancy is shown to be due to the difference in σE

CLR, which is larger with the
Control. Furthermore, in the case of EXP2, σE

CLR is quite similar to the actual temporal variability,
σ1min, during the clear sky, while that of the Control is larger than the clear sky σ1min. Thus, it is quite
important to have a better NEdT characteristic for the temporal test, especially for cold Tb values.
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Figure 6. Time series of the (a) MPL CBH (solid line), the temporal variability, σ1min (solid line), and
the expected clear sky temporal variability, σE

CLR (dashed line) for (b) the Control and (c) EXP2 for 5 h
on 12 November 2014. Here, the diamonds indicate successful cloud detection by the temporal test:
61 data points for the Control versus 104 data points for EXP2.

When the NEdT is smaller, the uncertainty in Equation (A3), as shown in Table 5, is also reduced
from about 0.0166 ◦C (the Control) to 0.0095 ◦C (EXP2), in addition to the smaller value of σE

CLR.
Again, as the fitting uncertainty is used as the threshold; a tighter threshold means an increased
possibility of a successful temporal test. Therefore, although the increased sampling rate could provide
an increased temporal resolution of TbIRT, and thus provide an increased possibility of cloud detection,
the possibility is not going to be materialized unless the NEdT of TbIRT is improved. A better NEdT
characteristic, especially at the cold target temperature, is the preferred characteristic for the increased
sampling rate for the temporal test.

4. Results and Discussion

4.1. Validation

The characteristics of algorithm performance are analyzed through the comparison with the
reference data, the ceilometer, and MPL measurements. A different period from the algorithm
development—one year, from November 2014 to October 2015—was used for the validation. The IRT
data used for the validation were also processed to have the same specifications of each dataset used
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for the algorithm development. The validation results are shown first for the Control, with the different
reference data, followed by the results for the different experimental datasets, cloud altitudes, and
seasons. Through the analysis of the validation results, the effects of the different types of IRT data on
cloud detection are characterized.

First, the overall performance of the Control is summarized into a contingency table, Table 6,
which shows the number of cases for the four categories—hit, miss, false alarm, and corrective
negative—in comparison with the measurement of the ceilometer and MPL. The successful detection
includes hit and correct negative, while miss and false alarm correspond to detection failure. Regarding
the ceilometer-based validation, the success rate is better than 93%, while it reduces to about 73% for
the MPL-based validation. This dramatic decrease is due to the increase of both the false alarm and
miss, especially due to misses. The percentage of miss increases from 3% for the ceilometer-based to
17% for the MPL-based validation. This degree of increase is mainly due to the increased detectability
of MPL for the high clouds (see Appendix B). Consider a case of high clouds that are not detected by
the ceilometer but are detected by MPL, for example. Additionally, assume that the clouds are not
detected by IRT. Then, the comparison result is a correct negative with the ceilometer-based validation,
while it is a miss with the MPL-based validation. Indeed, the difference in the number of correct
negatives between the ceilometer-based and MPL-based validation is 67,059, which is the same as the
difference of misses between the two references. Moreover, it turns out that about 70% of misses in the
MPL-based validation are caused by high clouds that the ceilometer could not detect.

Table 6. Contingency table for the IRT cloud detection (the Control case which is for the original dataset)
compared with the measurement of the ceilometer and MPL. The number inside the parenthesis is
number of data corresponding to the case (among a total of 491,240 data points). Here, “No” in both
ceilometer and MLP means there is no significant backscattering signal obtained from the measurement,
which is regarded as clear sky.

Control Experiment (N = 491,240)
Algorithm

Yes No

Ceilometer
Yes Hit (198,695) miss (12,990)
No false alarm (20,808) correct negative (258,747)

MPL
Yes Hit (167,001) miss (80,049)
No false alarm (52,502) correct negative (191,688)

Then again, the false alarms in MPL-based validation, which also increased compared with the
ceilometer-based validation (from 20,808 to 52,502 points), are due to the characteristics of the reference
instrument: MPL. The difference in the cases of hit for the two reference instruments is 31,694, which
is the same as difference in the false alarms. Thus, the majority of false alarms with the MPL-based
validation, about 65% of the false alarms, occurs when CBH is below 500 m. This corresponds to the
lower boundary of the MPL cloud detection [24,26]. Therefore, the increased false alarms with the
MLP-based validation is originated from the limitations in the reference data, not in the limitations of
the detection algorithm, nor of the IRT.

The algorithm performances for the different experimental datasets are analyzed using two
derived scores: POD (probability of detection) and FAR (false alarm ratio). While POD represents
correct detection when the event actually occurs (thus estimated by the number of hits divided by
the number of occurrences (i.e., hits plus misses)), FAR represents incorrect detection (thus estimated
by the number of false alarms divided by the number of detections (i.e., false alarms plus hits).
Table 7 shows the two scores for the four experimental datasets using the two reference data. Overall,
the characteristics of the validation results in terms of the reference data are the same as those of
the Control: the higher (lower) PODs (FARs) for the ceilometer-based validation compared to the
MPL-based validation. The larger FAR score, which is as large as about 25%, is evident with the
MPL-based validation, which is due to the increase in false alarms with a limited detection of low
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clouds by MPL. It is interesting to note that the highest FAR of EXP2, with the ceilometer-based
validation, is due to the increased false alarms from high clouds resulting from the limited capability
of the ceilometer, rather than due to the limitations of the algorithm.

Table 7. The probability of detection (POD) and false alarm ratio (FAR) scores of the four experimental
datasets with the reference data from both ceilometer and MPL. Here, POD is estimated by hits/(hits +
misses), while FAR is estimated by false alarms/(false alarms + hits).

Reference Data Ceilometer MPL

Dataset Control EXP1 EXP2 EXP3 Control EXP1 EXP2 EXP3

POD 93.9 92.0 96.1 93.2 67.6 65.4 74.4 68.6
FAR 9.5 9.3 16.2 12.6 23.9 24.8 24.2 25.0

The root cause for the large POD difference compared with the reference data is clearly identified
when PODs are estimated for the different cloud altitudes, as summarized in Table 8. When the clouds
are at lower altitude, the POD values are quite similar, all having POD values of higher than 97%,
regardless of the reference data (a slightly better POD with the ceilometer-based validation due to
lower false alarms). However, with increasing cloud altitudes, the POD values decrease significantly,
especially with high clouds, although it depends on the experimental datasets. The POD score with
the MPL-based validation shows the worst value of 32% for EXP1 and the best value of 52.2% for
EXP2. This rather large difference between the two experimental datasets is due to the difference
in the temporal test, which will be shown later. Here, it is important to note that the validation of
cloud detection for the high clouds should be performed with the reference data from instruments that
capable of detecting high clouds, such as the MPL used for the current study.

Table 8. The POD scores of the four experimental datasets for the different cloud base heights. The low,
middle, and high clouds correspond to the layers of 0–2 km, 2–6 km, and over 6 km, respectively. Here,
the range of high clouds is limited to below 10 km, considering the occurrence frequency of the higher
clouds, while the altitude range of low clouds is different (0.5–2 km) in the MPL-based validation.

Reference Data Ceilometer-Based Validation MPL-Based Validation

Dataset Control EXP1 EXP2 EXP3 Control EXP1 EXP2 EXP3

Low cloud (0–2 km) 99.1 98.2 99.5 98.4 98.1 97.4 98.7 97.7
Middle cloud (2–6 km) 94.0 92.1 96.1 93.1 82.2 79.6 86.5 81.6
High cloud (6–10 km) 71.9 66.4 82.0 72.3 36.1 32.0 52.2 39.5

Table 8 also shows the different performances for the different experimental datasets. EXP2,
having the full dynamic range and a lower sampling rate, shows the best performance, while the
Control and EXP3 show a similar performance followed by EXP1, regardless of the reference data.
Also, in general, EXP2 shows the best performance for all of the cloud layers, with the increasing
degree of outperformance paralleling the increasing cloud altitude. EXP1 having a limited dynamic
range and a higher sampling rate shows the worst performance for all of the cloud layers, in fact.
Although it is not as prominent as the MPL-based validation, the results from the ceilometer-based
validation also show similar characteristics. Thus, EXP2 outperforms regardless of cloud layers and
reference data, which entails a more detailed analysis, especially for each spectral and temporal test.

As shown in the algorithm development in Section 3, the spectral and temporal tests are sensitive
to the dynamic range and NEdT, respectively. Since both are dependent on the measured Tb, they
also depend on the atmospheric conditions. Thus, the authors first check the POD performances for
the different atmospheric conditions. To represent the dissimilar atmospheric conditions, the authors
use two different seasons: the warm and moist summer, and the cold and dry winter. Here, the two
seasons are grouped based on the TSFC and e measured at the SGP site; from June to September (JJAS)
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for the summer, and from November to February (NDJF) as the winter. Figure 7 shows the POD values
of the four experimental datasets with the MPL-based validation for the two seasons and the different
cloud layers.
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Overall, the POD scores decrease with increasing cloud altitudes, regardless of seasons
and experimental datasets, which is the same as the results from the yearlong data. However,
the performances with respect to the different seasons and experimental datasets show distinct
characteristics. During the summer, for example, EXP2 and EXP3 (having the lower NEdT) show
almost the same POD scores at all of the cloud layers, followed by the EXP1 and Control scores.
Conversely, during the winter, while the EXP2 still shows the best POD performance, the Control
performs the second best, followed by EXP3 and EXP1 (with the last two having the same dynamic
range). It is interesting to note that there is a rather large performance difference between the two top
performers—EXP2 and the Control—even though they have the same dynamic range. This is due to
the performance differences in the temporal test, which will be shown later. To summarize, during
the summer, NEdT, and thus the temporal test, is the key to differentiating the detection performance.
During the winter, the dynamic range, and thus the spectral test, is the key for the winter, while the
temporal test plays an important role when the dynamic range is the same.

The reasons for such a performance characteristic are traced back to the combined effects of the
IRT data type, the characteristics of algorithm tests, and the atmospheric conditions. First, during the
summer, the clear sky Tb is rather warm, and thus, the estimated TbE

CLR for all four experimental
datasets are almost the same (see Figure 3). Furthermore, the Tb contrast between the clouds and
the clear sky is reduced due to the warmer clear sky Tb. This is especially true for the high altitude
and thin clouds with the warm and humid atmosphere [13,29]. Overall, during the warm and humid
summer, the spectral test for the cold clouds, but over −50 ◦C, becomes less effective than the temporal
test [3,8]. Thus, the POD difference among the four experimental datasets is mainly determined by
the temporal test, which shows a better performance with the lower NEdT. EXP2 and EXP3 equally
outperform the other two experimental datasets as a result.

During the winter, the IRT data having limited dynamic range (EXP1 and EXP3) show the worst
performance, because the actual TbIRT could be well below −50 ◦C for many cases. Regarding those
cases, the measured TbIRT will be −50 ◦C, even though the actual Tb of the cloudy or the clear sky
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is cooler than −50 ◦C. Concurrently, due to the cold and dry atmospheric conditions, the estimated
TbE

CLR would be about −50 ◦C. A combination of the two effects results in the failure of the spectral
test, because the cloudy TbIRT would be almost the same as TbE

CLR. The limited dynamic range also
introduces an issue with the temporal test, because the actual temporal variability of the cloudy Tb
would be smeared out with the constant value of −50 ◦C. Thus, the dramatic reduction of POD with
EXP1 and EXP3 compared with EXP2 is due to the limited performance of both spectral and temporal
tests. Finally, the POD difference between the EXP2 and Control having the same dynamic range is
mostly due to the performance difference of the temporal test due to the NEdT difference.

Finally, the POD performance for each test, season, and experimental dataset for the high clouds
are summarized in Table 9. First, regardless of seasons and experimental datasets, the largest POD
contribution is from the temporal test, confirming the important role of the temporal test in detecting
high clouds. Regarding the temporal test, the experimental datasets with the better NEdT, such as
EXP2 and EXP3, show the better POD values, even though EXP3 has the limited dynamic range.
However, the much smaller POD value of EXP3 during the winter is due to the limited dynamic range,
which smears out the temporal variability, and thus makes the temporal test inefficient. Secondly, in
the case of the spectral test, both the dynamic range and the fitting uncertainty play a role. During the
summer, which has less Tb contrast due to the humid and warmer lower atmosphere, EXP1 and EXP3
show the better performance compared with the others, which have the larger fitting uncertainty (see
Table 4), for example. Then again, during winter, the Control shows a much better POD compared
with the EXP1 and EXP3 values, which have a limited dynamic range. Here, it is noteworthy that EXP2
shows a smaller POD compared to the Control for the spectral test (8.0% versus 4.3%), while EXP2
shows a much larger POD value in both tests (12.5% versus 8.3%). Thus, the total PODs of the spectral
test and both tests for the two experimental datasets are almost the same (about 16%).

Table 9. The POD scores for the high clouds obtained from the spectral test, the temporal test, and both
tests. Note that the sum of the POD values for each experimental dataset equals the POD value of the
high clouds given in Figure 7.

Period Summer Winter

Dataset Control EXP1 EXP2 EXP3 Control EXP1 EXP2 EXP3

Spectral 5.2 8.3 4.7 7.8 8.0 3.7 4.3 2.5
Temporal 19.4 23.2 36.8 32.6 20.4 12.4 35.9 16.0

Both 1.2 2.3 1.9 3.3 8.3 3.6 12.5 4.9

4.2. Discussion

The results from the algorithm development and algorithm validation are used to characterize the
relationship between the characteristics of IRT data and cloud detection. First, the sufficient dynamic
range of IRT is shown to be a necessary condition for the accurate and realistic estimation of TbE

CLR,
especially for cold atmospheric conditions. Regarding the case of the cold clouds, the dataset that
has a limited dynamic range with a better NEdT shows an inferior performance compared with the
case with a full dynamic range. Conversely, if the dynamic range is sufficient, the reduced sampling
rate, which increases NEdT performance, is shown to be highly important for high-altitude clouds.
Thus, the best detection performance for the worst situation—high thin clouds with warm and humid
lower atmosphere—is achieved when the IRT data has the best NEdT performance with the full
dynamic range.

One thing to note with the algorithm performance is the fitting uncertainty that is used as a
threshold for the detection test, particularly for the estimation of TbE

CLR. Although the Control dataset
covers the full dynamic range, its performance for the summer is the worst due to the larger fitting
uncertainty (5.0 ◦C), which is much larger than that of EXP1 (3.3 ◦C) having the limited dynamic
range. The increased fitting uncertainty is mainly due to the increased NEdT with the decreasing Tb.
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As the dynamic range extends toward cold Tb, the number of data with higher NEdT are going to be
increased, and thus, the fitting uncertainty is going to be increased. Therefore, it is important to have a
dataset with a sufficient NEdT performance and a full dynamic range to improve both the spectral and
temporal tests.

Even though the cloud detection could be improved with better NEdT performance, the
performance with the high clouds shows room to improve. Concerning the instrumentation, it is
highly recommended to improve the NEdT performance, especially at the cooler Tb, which would
require a substantial improvement in the noise reduction measures. Alternately, regarding algorithm
improvement, there are at least two areas to be investigated further. The first is to improve the accuracy
of TbE

CLR by utilizing better information for atmospheric water vapor. Currently, the surface humidity
is used for a proxy of total atmospheric water content, or total precipitable water (TPW), in the TbE

CLR

estimation. When the surface humidity does not properly represent TPW, the estimated TbE
CLR does

have an error, and consequently there are also errors in the detection algorithm. Thus, a utilization of
TPW from a collocated instrument such as a microwave radiometer or GPS observation will be further
investigated [30]. Another possibility lies in the improvement of the threshold values used in both
tests by utilizing the detection results, for example, a re-evaluation of the temporal variability using
the measured clear sky Tb. Furthermore, the whole process ought to be performed in the radiance
domain instead of the Tb domain, in order to resolve the non-linearity problem in digitization of the
input signal.

Finally, it is quite important to use proper reference data for an accurate validation of algorithm
performance, especially for the high altitude and optically thin clouds. When a ceilometer with limited
detection capability for high clouds is used for the algorithm validation, the estimated POD is shown
to be higher erroneously than the actual performance available with the comparison of the MPL data.

5. Conclusions

Here, the effects due to the different types of IRT data on cloud detection are investigated using
data from the ARM-SGP site. Since the two important characteristics of IRT—dynamic range and
sampling rate (or overall NEdT)—are directly related to the formulation of the empirical equation
for the detection algorithm, the algorithm performance is highly dependent on the characteristics of
IRT data. It is shown that the dynamic range of the IRT data strongly affects the characteristics of
the expected clear sky Tb, while the sampling rate does so on the expected temporal variability of
the clear sky Tb. Overall, the most significant effect due to the different data type occurs when the
measured Tb are cold such as during the winter, when there are high-altitude clouds, optically thin
clouds, and/or a combination of these conditions. The full dynamic range, especially with the lower
boundary of −100 ◦C, provides a possibility of having realistic clear sky Tb forecasting, even during
the winter. Furthermore, if the dynamic range is not sufficient, the actual temporal variability is not
captured by the limited Tb value, resulting in the failure of the temporal test. Conversely, the lower
sampling rate with the increased NEdT performance has a significant advantage for the detection of
high cold-altitude cold clouds, thanks to the better characterization of temporal variability.

Such effects are quantitatively demonstrated through the validations of the algorithm performance
using the sky conditions inferred from the reference instruments: a ceilometer and micropulse LIDAR
(MPL). Due to the instrument characteristics, the ceilometer has a limited detection capability with the
high clouds, which are usually higher than about 7 km, while MPL has issue with the lower clouds
that are below about 500 m. Thus, the algorithm performances are analyzed for the different reference
instrument, different cloud altitudes, different seasons, and different detection tests. Overall, the
performance analysis is summarized as follows:

(i) The ceilometer-based validation shows the higher probability of detection (POD) and the lower
false alarm ratio (FAR) compared with the MPL-based validation, which is mainly due to the
limited capability of the ceilometer with high clouds.
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(ii) Regardless of the reference data, the POD scores decrease with increasing cloud altitudes due to
the decreased contrast between the clear sky and the cloudy Tbs. Instead, the detectability of the
low clouds is outstanding: better than 97%, in all of the experimental datasets.

(iii) Among the different IRT data types, the dataset having the full dynamic range and the
lower sampling rate shows the best performance, especially for the high clouds, whereas the
poorest performance is shown with the dataset with the limited dynamic range and the higher
sampling rate.

(iv) The algorithm performance for all of the different IRT data types to different seasons reveals
the relative importance of the IRT specifications; the lower sampling rate is the key factor in the
summer, whereas the full dynamic range is the necessary condition for the proper application of
both the spectral and temporal tests.

(v) The majority of successful detections of high clouds come from the temporal test (about 92% of
POD in the winter); thus, the lower measurement uncertainty in the cold Tb is the most important
characteristics for the detection of high clouds.
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Appendix A

The cloud detection algorithm introduced by Ahn et al. [9] consists of two tests—the spectral and
the temporal tests—which basically compare the brightness temperature (Tb) measured by an infrared
thermometer (IRT) with the estimated clear Tb. If the measured Tb (TbIRT) is warmer than expected
clear sky Tb (TbE

CLR) beyond the uncertainty of the expected value, it is determined as the cloudy sky,
naming the spectral test. Similarly, if the temporal variability of Tb is larger than that of the clear sky
Tb (σE

CLR) beyond the uncertainty, it is considered as a cloudy sky. For the temporal test, the TbIRT

variability for one minute is used. If the cloud presence is determined by any of the two tests, it is
determined to be cloudy. Thus, the essence of the algorithm is to obtain TbE

CLR and σE
CLR along with

their uncertainties as a function of real time TbIRT, temperature (TSFC), and humidity (e) measured at
the ground level.

First, the equation for the TbE
CLR is prepared through two steps: establishing a theoretical

relationship, followed by an empirical adjustment. The theoretical relationship of the simulated clear
sky Tb (TbS) as a function of TSFC and e are obtained using the TbS prepared by the radiative transfer
simulations with MODTRAN 5.2.2 [31]. The input atmospheric profiles of temperature and humidity
for the radiative transfer model are from the radiosonde observations: a total of 1993 soundings
obtained at every 6 h at the SGP site. Using TbS and the set of measured TSFC and e (water vapor
pressure), the theoretical relationship is derived. By brute force tests, the most appropriate formula is
determined to have following formula:

TbS = TSFC exp [a0 + a1 × (e/TSFC) + a2 × (e/TSFC)2] (A1)

The second step is an adjustment of the theoretical relationship (A1) to account for the
characteristics of TbIRT that depend on the specific instrument. For example, the systematic
uncertainties in TbIRT could be reduced for the algorithm through the adjustment. The effects due to
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the limited range of the TbIRT used for Ahn et al. [9], having the coldest TbIRT of −50 ◦C, could also
be mitigated. Thus, this adjustment process is the one of the main algorithm parts that is affected by
the instrument characteristics. The adjustment process is relatively simple once the dataset consisting
of TbS and the corresponding clear sky TbIRT is prepared. The time averaged (for 30 min after the
radiosonde launch time) TbIRT and its temporal variability are inspected to select the clear sky TbIRT

(see below). The most plausible formula relating TbS and the clear sky TbIRT and thus giving the
formula for TbE

CLR is determined to be:

TbE
CLR = b0 + b1 × TbS + b2 × (TbS)2 (A2)

where the regression coefficients of b0, b1, and b2 are the instrument specifics.
Finally, the uncertainty in the estimated TbE

CLR is determined by the root mean square error of the
fitting uncertainties in the Equations (A1) and (A2) by assuming that the two relations are independent.
As the TbE

CLR uncertainty is used for the threshold of the spectral test, its magnitude also affects the
algorithm performance; the larger is the larger difference between TbE

CLR and TbIRT that is required in
order for it to be determined as cloudy.

For the temporal variability, σE
CLR, a set of reliable clear sky data are selected by constraining

temporal variation of TbIRT [13,32]. Here, an hourly average σ1min (the TbIRT variability for one minute)
and its standard deviation (σ1h) are used to select a potential clear sky data. Only data points having
a small σ1h value of less than 0.03 (as shown in Figure 5b of Ahn et al. [9]) are considered as the
cloud-free data. The σ1min for clear sky show a clear dependency on the corresponding TbIRT, which
is mainly explained by the dependence of the temperature resolution to the target temperature, the
larger σ1min for the cooler TbIRT. Thus, the expected temporal variability of the clear sky TbIRT for one
minute is given by:

σE
CLR = c0 + c1 × TbIRT + c2 × (TbIRT)2 (A3)

The uncertainty of σE
CLR of Equation (A3) is also determined to be equal to the fitting uncertainty.

Therefore, the TbIRT value obtained from the IRTs having different dynamic range and sampling
rates will affect the empirical Equations (A2) and (A3) along with the fitting uncertainties, which affect
the algorithm characteristics and the overall performances. One thing to note is that the different
characteristics of IRT data are directly related to the derived equations, although the performance of
cloud detection also depends on several other components, such as the atmospheric conditions and
characteristics of algorithm itself, not only the specification of IRT.

Appendix B

The several comparison studies of the cloud base height (CBH) from the ceilometer and micropulse
LIDAR (MPL) have shown that the ceilometer tends to register a slightly higher CBH [25–28,33]. Even
the same brands such as CL31 and CL51 are known to provide a different CBH due to different laser
power [34–36]. Therefore, for a better utilization of the CBH data for a specific instrument, it would be
better to make a comparison to make sure that the reference data are well understood.

For the comparison, the first-layer CBH data from the two instruments are averaged for every
minute, as treated by the previous studies [25,34]. Figure A1 shows the number distribution of CBHs
between ceilometer and MPL over one year (from 1 November 2014 to 31 October 2015). Here, the
lower boundary of 0.5 km corresponds to that of MPL while the upper limit of 7.7 km is due to the
ceilometer. The agreement in the sky condition (clear or cloudy) between the two instruments is about
88.3%: 220,134 points for clear sky (49.4%) and 157,558 points for cloudy sky (38.9%). The majority of
disagreements are concentrated at each limiting altitude; indeed, ceilometer misses the cloud detected
by MPL at higher than about 7.4 km, while MPL is indeterminate at below 500 m. Due to such a
discrepancy in the cloud detection between the two reference data, it is expected that validation results
would vary depending on which reference data is applied. Although Costa-Surós et al. [37] utilized the
cloud base best estimate (CBBE) obtained by combining MPL and ceilometer, CBBE is best applicable
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to determine cloud base height from different types of active remote sensing instruments, rather than
for determination of the cloud presence. Therefore, in this study, with the limitations of each CBH data
in mind, both are utilized as reference data for algorithm validation.

Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 22 

 

 
Figure A1. The number distribution of CBHs between ceilometer and MPL at the ARM SGP site over 
one year (1 November 2014–31 October 2015). The number count within each bin is expressed with 
the different colors. The size of each bin is 0.2 km, and the total data are 404,971 points. Here, “Clear” 
indicates that no significant backscattering signal is detected at each instrument. 

During the inter-comparison between CBHs of ceilometer and MPL, a few interesting cases are 
found exemplifying the different characteristics of the wavelength used for each instrument. As the 
laser light for MPL is shorter than that of the ceilometer (532 nm versus 910 nm), MPL is more 
sensitive to the smaller particles such as dust, smoke, and haze. Therefore, MPL could be sensitive to 
the presence of particles other than the cloud droplets, and could misclassify the aerosol layer as the 
cloud layer. One such an example is the smoke layer from the fires [38]. As shown in Figure A2, 
during about two days on 29 June and 30 June 2015, a heavy smoke layer was transported over the 
SGP sites from the wild fires. 

During the two days, the time series of the derived CBH from both MPL and the ceilometer are 
shown in Figure A3. First, many of the low to middle clouds are well captured by both instruments, 
such as the time between 10:00 UTC to 15:00 UTC, 29 June. On the other hand, the high clouds—
above about 7 km—that were detected by MPL were not captured by the ceilometer. However, the 
most interesting case occurred from 15:00 UTC of 29 June to 09:00 UTC of 30 June, when the 
MPLCMASK (MPL cloud mask algorithm; Sivaraman and Comstock [24]) reported clouds at around 
3 km above ground, while the ceilometer reported no clouds (or zero CBH). In such a case, it is known 
that cloud detection with a ceilometer is more reliable than that of MPL, because of the limit of the 
MPLCAMSK procedure, specifically due to the shortage in separating water cloud from other strong 
scatters [39]. Therefore, the possible contaminated data are checked through a manual inspection, 
and thus, a total of seven days of data are suspected to be affected by the heavy smoke layer and are 
excluded for current study. It is interesting to note that the IRT distinguishes clouds and aerosols 
during this period (the shaded period in Figure A3); during the aerosol episode, it is classified as a 
clear sky. Thus, the IRT-based cloud detection is affected by aerosols only when their optical depth 
is high enough to increase the downwelling radiance significantly (not the current case). 

Figure A1. The number distribution of CBHs between ceilometer and MPL at the ARM SGP site over
one year (1 November 2014–31 October 2015). The number count within each bin is expressed with
the different colors. The size of each bin is 0.2 km, and the total data are 404,971 points. Here, “Clear”
indicates that no significant backscattering signal is detected at each instrument.

During the inter-comparison between CBHs of ceilometer and MPL, a few interesting cases are
found exemplifying the different characteristics of the wavelength used for each instrument. As the
laser light for MPL is shorter than that of the ceilometer (532 nm versus 910 nm), MPL is more sensitive
to the smaller particles such as dust, smoke, and haze. Therefore, MPL could be sensitive to the
presence of particles other than the cloud droplets, and could misclassify the aerosol layer as the cloud
layer. One such an example is the smoke layer from the fires [38]. As shown in Figure A2, during
about two days on 29 June and 30 June 2015, a heavy smoke layer was transported over the SGP sites
from the wild fires.

During the two days, the time series of the derived CBH from both MPL and the ceilometer are
shown in Figure A3. First, many of the low to middle clouds are well captured by both instruments,
such as the time between 10:00 UTC to 15:00 UTC, 29 June. On the other hand, the high clouds—above
about 7 km—that were detected by MPL were not captured by the ceilometer. However, the most
interesting case occurred from 15:00 UTC of 29 June to 09:00 UTC of 30 June, when the MPLCMASK
(MPL cloud mask algorithm; Sivaraman and Comstock [24]) reported clouds at around 3 km above
ground, while the ceilometer reported no clouds (or zero CBH). In such a case, it is known that cloud
detection with a ceilometer is more reliable than that of MPL, because of the limit of the MPLCAMSK
procedure, specifically due to the shortage in separating water cloud from other strong scatters [39].
Therefore, the possible contaminated data are checked through a manual inspection, and thus, a total
of seven days of data are suspected to be affected by the heavy smoke layer and are excluded for
current study. It is interesting to note that the IRT distinguishes clouds and aerosols during this period



Remote Sens. 2018, 10, 1049 20 of 22

(the shaded period in Figure A3); during the aerosol episode, it is classified as a clear sky. Thus, the
IRT-based cloud detection is affected by aerosols only when their optical depth is high enough to
increase the downwelling radiance significantly (not the current case).Remote Sens. 2018, 10, x FOR PEER REVIEW  20 of 22 
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