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Abstract: Cloud removal is a prerequisite for the application of Landsat datasets, as such satellite
images are invariably contaminated by clouds. Clouds affect the transmission of radiation signal to
different degrees because of their different thicknesses, shapes, heights and distributions. Existing
methods utilize pixel replacement to remove thick clouds and pixel correction techniques to rectify
thin clouds in order to retain the land surface information in contaminated pixels. However, a major
limitation of these methods refers to their deficiency in retrieving land surface reflectance when
both thick clouds and thin clouds exist in the images, as the two types of clouds differ in the
transmission of radiation signal. As most remotely sensed images show rather complex cloud
contamination patterns, an efficient method to alleviate both thin and thick cloud effects is in need of
development. To this end, the paper proposes a new method to rectify cloud contamination based
on the cloud detection of iterative haze-optimized transformation (IHOT) and the cloud removal
of cloud trajectory (IHOT-Trajectory). The cloud trajectory is able to take consideration of signal
transmission for different levels of cloud contamination, which characterizes the spectral response of
a certain type of land cover under increasing cloud thickness. Specifically, this method consists in
four steps. First, the cloud thicknesses of contaminated pixels are estimated by the IHOT. Second,
areas affected by cloud shadows are marked. Third, cloud trajectories are fitted with the aid of
neighboring similar pixels under different cloud thickness. Last, contaminated areas are rectified
according to the relationship between the land surface reflectance and the IHOT. The experimental
results indicate that the proposed approach is able to effectively remove both the thin and thick clouds
and erase the cloud shadows of Landsat images under different scenarios. In addition, the proposed
method was compared with the dark object subtraction (DOS), the modified neighborhood similar
pixel interpolator (MNSPI) and the multitemporal dictionary learning (MDL) methods. Quantitative
assessments show that the IHOT-Trajectory method is superior to the other cloud removal methods
overall. For specific spectral bands, the proposed method performs better than other methods in
visible bands, whereas it does not necessarily perform better in infrared bands.
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1. Introduction

Landsat data have been widely employed to investigate the Earth’s surface in applications such as
urbanization, hazard monitoring, deforestation, and human-environment interactions as results of land
use and land cover change [1–5]. One remaining issue of the Landsat images is that they are invariably
contaminated by clouds, which significantly affect the electromagnetic signal transmission in the
production of images [3,6–9]. Thus, the effective detection and removal of the cloud contamination are
critical steps before the usage of Landsat imagery [3,10–12].

Many efforts have been devoted to alleviate the consequence of cloud contamination. The existing
correction methods differ as the two types of clouds, thick clouds and thin clouds, affect the
application of images in different ways. On the one hand, thick clouds block the majority of
radiation from the land surface; and pixel substitution is the only way to remedy the information
loss [13]. Zhu et al. [14] and Cheng [15] made effective attempts at substituting the clouded pixels
with the spatiotemporal information derived from their neighboring similar pixels. Li et al. [16]
further introduced a multi-temporal dictionary-learning approach to improve the effectiveness of the
substitution process. These methods, however, require a significant portion of clear neighboring pixels
as a prerequisite for restoration. In reality, it is very common that thick clouds and thin clouds both
exist in a scene of a remotely sensed image. The existence of thin cloud will lead to a significant bias of
the substitution process or a waste of the land surface information under the thin cloud. On the other
hand, thin clouds (including hazes) manifest a certain degree of transparency and can be removed by
very different atmospheric correction (AC) techniques [17]. In general, these techniques can be grouped
into two categories: absolute AC and scene-based AC [18]. Absolute AC techniques are effective
in resolving thin cloud contamination; however, they require auxiliary datasets about the regional
atmospheric conditions over a time span, which are usually difficult to obtain [17]. Scene-based AC
techniques consider cloud thickness as a parametric input of the correction process. The cloud thickness
is commonly estimated by haze optimized transformation (HOT) [19] because of its robustness and
simplicity [20–24]. Incorporated in the dark object substitution (DOS) model, the HOT-based AC
techniques have been adopted for Landsat Thematic Mapper (TM) data as well as high-resolution
satellite data [19]. One issue of the HOT is the over- and under-correction errors that affect the
correction accuracy [19]. The DOS model also lacks the capability to recognize and eliminate the
multiplicative effect of thin clouds [17]; and this deficiency has been later alleviated by the visual
cloud point (VCP) method [25]. Such methods, however, are flawed in that (1) the bright surface is
overcorrected because of the spectral confusion between the bright surface and clouds, and that (2)
it is unable to tackle the contamination effect of thick clouds. Other cloud removal methods were
made including attempts at machine learning through extracting multitemporal information [16,26,27]
even though differences in phenology and land types may lead to failed learning.

Recently, a new method, referred to as the iterative haze optimized transformation (IHOT)
technique, has been proposed to estimate the cloud thickness [28]. This method uses a corresponding
clear image as a secondary dataset and applies an iterative regression process among the top of
atmosphere (TOA) reflectance of the clear image, the TOA reflectance of the clouded image, and their
difference in the TOA to characterize the haze contamination in the Landsat images. This method can
distinguish clouds correctly from the bright surface and accurately derive cloud thickness. In addition,
the concept of “cloud trajectory” has been proposed to characterize the spectral response of a certain
type of land cover under increasing cloud thickness [19]. It also indicates that all cloud trajectories
extend and intersect at a point, termed the “cloud point,” that only contains pure cloud spectrum
without land surface information. However, cloud trajectory has been rarely employed for the purpose
of cloud removal. In this paper, we propose a novel method to rectify clouded pixels by fitting
the cloud trajectory with the aid of the IHOT. This method, termed the IHOT-trajectory method,
can simultaneously remove thick clouds and thin clouds in an effective manner.
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2. Methodology

As the reflectance of the clouds is usually larger than the energy attenuation during the signal
transmission, the measured TOA reflectance of the land cover increases with the increase of the cloud
thickness. This effect can be characterized by the cloud trajectory as a relationship between cloud
thickness and TOA reflectance [19], as shown in Figure 1. Specifically, if the land cover is contaminated
by clouds, the TOA reflectance in a band (i.e., Figure 1) displays a mathematical relationship with cloud
thickness (i.e., Figure 1). The cloud trajectory for each land cover is able to take the signal transmission
into consideration, including not only the additive reflectance from the clouds but also the energy
attenuation when solar radiation passes through clouds. The cloud trajectory has two other distinct
features. First, each type of land cover has a unique cloud trajectory; second, all these cloud trajectories
of various land cover types culminate in a point, called the “cloud point,” which represents pure cloud
spectra without land cover reflectance [19]. The rationale of the proposed cloud removal method is as
follows: (1) establish the cloud trajectories of clouded pixels based on their spectral characteristics and
cloud thickness; and (2) retrieve the clear pixels based on the cloud trajectories. The flowchart of the
process, comprised of four major steps, is shown in Figure 2.
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Figure 1. Illustration of the cloud trajectory.

2.1. Cloud Thickness Estimation

The first step of the method is to estimate the cloud thickness using a recently developed IHOT
algorithm [28]. This step requires a clear image of the study region as a secondary data to complement
the clouded image. Then, multivariate regression models are established among the TOA reflectance
of the clear image, the TOA reflectance of the clouded image, and their difference in the TOA in
an iterative manner [28]. This improved IHOT algorithm ensures the large suppression of the land
surface information and, thus, the effective extraction of the cloud information. The IHOT map is then
generated, showing the spatial distribution of cloud thickness in terms of the IHOT index.

2.2. Shadow Detection

An additional source of contamination is the shadow effect, referring to the attenuated solar
radiation on unclouded pixels induced by thick cloud shadows. The shadow effect will largely affect
the accuracy of the restoration as the shadowed pixels may be erroneously used for cloud trajectory
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fitting in a follow-up process. As the shadow effect is mostly induced by thick clouds, a threshold of
the IHOT index (IHOTThickClouds) is employed to demarcate thick clouds, as shown in Equation (1).

IHOTThickClouds = IHOTcr + 3·σcr (1)

where IHOTcr and σcr are the average value and standard deviation of the IHOT index from the clear
image. As there is a geometric similarity between the thick clouds and their shadows, we have adopted
an object-based shadow detection method [9] to retrieve the shadows. This method contains two steps.
First, the flood-fill combined with near infrared (NIR) band is applied to select potential shadow areas.
Second, the view angle of the satellite sensor and the illuminating angle are used to determine the
geographical relationships between clouds and their shadows. In this paper, we modify the second
step by taking thick clouds as an input to match the shadows. The shadow areas can be effectively
identified by matching the shape of the clouds.
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Figure 2. Flowchart of the proposed method.

2.3. Cloud Trajectory Fitting

The impact of increasing cloud optical depth on the reflectance of a given land cover can be
characterized by a ‘cloud trajectory’ in spectral space [19]. Both the additive radiometric effect and
energy attenuation effect of clouds can be characterized by the cloud trajectory as a relationship
between cloud thickness and TOA reflectance, as shown in Figure 3. Therefore, the basic concept of
cloud removal is to fit each unique cloud trajectory for each clouded pixel and migrate it back along the
trajectory to the clear sky condition. This cloud trajectory fitting involves two steps. First, the general
direction of the cloud trajectory is captured by setting the cloud point [19] as the end of the trajectory.
To ensure the accuracy of the cloud trajectory, the second step searches for a series of similar clouded
pixels with cloud thinner than that of the target pixel. By combining the cloud point and a series of
similar clouded pixels, the cloud trajectory is constructed and can be applied for cloud removal.
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2.3.1. Determining Cloud Point

As shown in Figure 1, all cloud trajectories intersect at the cloud point with only cloud signals.
Thus, the first step for fitting the cloud trajectories is to retrieve the cloud point. The cloud point is
obtained by calculating the intersection of the upper and lower bounds of the cloud trajectories by
linear regressions [25]. Specifically, the IHOT of the clouded image is sliced into evenly distributed
intervals, and the lower-bound and upper-bound of TOA reflectance value of histogram in each
slice are found. Considering the unstableness of the minimum and the maximum value, a parameter,
“p” (usually 0.02), and (1− p) are chosen as the lower-bound and upper-bound values, respectively [25].
The trajectories need to be further calibrated as their forms are not exactly linear [19].

2.3.2. Retrieving Similar Clouded Pixels

To ensure the accuracy of the cloud trajectory fitting, the second step searches for a series of similar
pixels with different cloud thicknesses. The similar pixels share the similar land surface reflectance and
their TOA reflectance vary with only cloud thickness. In this search process, two types of pixels should
be excluded: (1) the cloud shadows, as described in Section 2.2 and (2) the clouds thicker than that of
the target pixel, as they contain less land cover information. Therefore, the search for similar clouded
pixels is focused on the pixels with clouds thinner than that of the target pixel. The search range is
a local window centered at the target pixel; and the search radius increases until qualified similar pixels
are identified. The criterion is that at least one similar pixel should be found for each IHOT bin with
an interval of 0.01. This is to ensure that the searched similar pixels are able to be as evenly distributed
along with cloud trajectories, which assists in stabilizing the linear fitting of cloud trajectory. The two
similarity measurements, namely, the spectral similarity and the spectral shape similarity, are applied
to identify similar pixels. The illustration of such a process is shown in Figure 4. Since the spectra of
blurry pixels in the clouded image may be confounded by the land surface [15], it is not practical to
apply the spectral similarity directly to the clouded image. Thus, the secondary clear image of the
corresponding region is used to search for similar pixels. Although images acquired at different times
usually have some changes under different atmospheric or seasonal conditions, the relative positions
of similar pixels generally are coincident in different seasons [14]. Thus, the spectral similarity of the
correlation coefficient r of the clear image is calculated by Equation (2).

r =

n
∑

i=1
(Rtcri − Rtcr)(Rcri − Rcr)√

n
∑

i=1
(Rtcri − Rtcr)

2·
n
∑

i=1
(Rcri − Rcr)

2
(2)
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where Rtcri and Rcri denote the TOA reflectance of band i for a target pixel and that of its similar pixel
under a clear sky, respectively; Rtcr and Rcr denote the average of the TOA reflectance of all bands
for the target pixel and that of its similar pixel under a clear sky, respectively; and n is the number of
bands of the Landsat sensor at a 30-m resolution, which is 6 for Landsat TM/ETM+ and 7 for Landsat
OLI. The threshold is set at 0.99 to strictly identify similar pixels. Such a measurement is reasonable
based on the fact that similar pixels have a similar temporal change trend from the clear to clouded
conditions [14,15]. However, there are still some similar pixels with the temporal change different from
that of the target pixel, possibly induced by land cover change. Such similar pixels need to be further
removed. The spectral shape similarity is then used to further qualify the similar pixels. Because
the spectral shape of clouded pixels can be largely maintained, the clouded image is also used for
the search process. The continuum removal is a useful tool to describe the spectral shape of the land
surface. Thus, the correlation coefficient r’ based on the spectrum’s continuum removal is introduced
to calculate the spectral shape similarity between the target pixel and its neighboring pixel at the time
of the clouded image, as shown in Equation (3).

r′ =

n
∑

i=1
(Dti − Dt)(Dci − Dc)√

n
∑

i=1
(Dti − Dt)

2·
n
∑

i=1
(Dci − Dc)

2
(3)

where Dti and Dci denote results of the continuum removal of band i for a target pixel and its potential
similar one, and Dt and Dc denote the average of the results of continuum removal for the target pixel
and its potential similar pixel. The threshold is always greater than 0.98. As a result, Equation (3)
identifies the pixels sharing similar spectral characteristics and temporal change with the target pixel
in the clouded image. The spectral similarity is a critical index in the selection process, as thick clouds
reduce the differences of the spectral shapes among a variety of land surfaces. The criterion of searching
for the spectral shape similarity has to be less strict (i.e., the lower threshold is set to 0.5) in order to
include more similar pixels. Under the two selection criteria, pixels with different phenologies or land
cover features in the clouded images can be removed; and similar clouded pixels can be selected for
the construction of the cloud trajectories.
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2.3.3. Cloud Trajectory Fitting

After the cloud point and similar clouded pixels are identified, the cloud trajectory for each
clouded pixel can be constructed. For each band, the cloud trajectory can be described by a linear
regression model, as shown in Equation (4).

Rsi = βi·IHOT + ci + εi (4)

where Rsi is the TOA reflectance of band i for the qualified similar clouded pixel, βi is the coefficient of
IHOT, ci is a constant, and εi is the residual of the regression.

2.4. Cloud Removal

Based on the constructed cloud trajectories, the IHOT of the target clouded pixel as a function of
its TOA reflectance can be described by Equation (5).

Rti = βi·IHOT + ci (5)

where Rti is the TOA reflectance of band i for the target pixel to be corrected, βi is the coefficient of
IHOT, and ci is a constant. Based on the cloud trajectories for each band, all clouded pixels can then be
corrected by Equation (6).

R′ti = βi·IHOTcr + ci (6)

where R′ti is the corrected TOA reflectance in band i of the target clouded pixel, Rti is that of the
uncorrected TOA reflectance, and IHOTcr is the average IHOT value in the clear image. It is also worth
mentioning that the shadowed pixels can also be corrected by Equation (6).

For heavily contaminated pixels, land cover information may be obscured by thick clouds.
Thus, the temporal change between the clear image and the clouded image are derived to restore the
lost texture information. Here, we used the following criterion (Equation (7)) to determine the heavily
cloud contaminated pixels).

IHOT′ThickClouds = IHOTcr + 2·σcr (7)

where σcr is the standard deviation of the IHOT map for the clear image. For the heavily contaminated
pixels, temporal changes of the similar pixels are considered in the correction procedure by Equation (8).

R′′ ti = Rtcri + (R′sti − Rscri) (8)

where R
′′

ti is the corrected TOA reflectance of band i for the target pixel under heavily thick clouds,
R′sti is the average TOA reflectance of band i derived from the similar pixels of the target in the clouded
image, Rtcri is the TOA reflectance of band i for the corresponding pixel in the clear image, and Rscri
is the average TOA reflectance of band i derived from the pixels similar to the target pixel in the
clear image.

3. Experiment

3.1. Study Area and Data

To test the proposed IHOT-Trajectory method’s performance on complex cloud contamination
patterns, a study area (37◦N, 117◦E) including a variety of land covers (cropland, vegetation, urban area,
and bare soil) was selected and the corresponding Landsat images (Path 122, Row 34) were collected.
As shown in Figures 5 and 6, the proposed method was tested using the images with different
phenologies. This experiment aims to examine whether a single clear-sky image can be used for
multiple clouded images for the proposed methodology, with the consideration that limited amounts
of clear-sky data are available. Table 1 shows the detailed information of the tested Landsat images.
Specifically, a single clear image captured in March 2014 was used as the secondary image for the IHOT
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calculation and cloud removal of the cloud-contaminated images acquired in April 2014 and June
2013. Large phenological differences can be observed between the clear image and the clouded images.
In the experiments, the proposed method was compared with a classical thin cloud removal method,
the dark object subtraction (DOS) combined with HOT and IHOT as HOT-DOS [19] and IHOT-DOS.
We also compared the IHOT-Trajectory with two cutting-edge cloud removal methods visually and
quantitively, namely the modified neighborhood similar pixel interpolator (MNSPI) [14] and the
multitemporal dictionary learning (MDL) [26]. The former is especially widely used for thick cloud
removal while the latter has recently been developed based on sparse-representation. It is difficult to
acquire the ground truth data for validating the cloud removal results. As an alternative, reference
images captured in the similar seasons but different years were selected for the validation of the cloud
removal results (Table 1). Such a method is reasonable because minor phenological and land cover
changes occurred between the two acquisition dates within three years. However, identifying such
cloud-free images for references is still very challenging, especially for a large area. For this reason,
assessments were only performed in the sub-areas where cloud-free data are available for reference
(Figures 5b,c and 6b,c).

Table 1. Summary of the Landsat scenes acquired in different seasons (path/row: 122/34; size:
3545 × 3239).

Acquisition Date Sensor Image Type Figure

22 April 2014 Landsat-8 OLI Clouded Figure 6
25 April 2015 Landsat-8 OLI Reference Figure 6
6 June 2013 Landsat-8 OLI Clouded Figure 7
11 July 2014 Landsat-8 OLI Reference Figure 7

24 March 2014 Landsat-8 OLI Clear-sky

3.2. Cloud Removal Results

As shown in Figures 5 and 6, the IHOT-Trajectory method simultaneously removed both thick
clouds and thin clouds. The land cover reflectance affected by the shadow effect was also restored.
Moreover, both clouded images with different phenologies were correctly restored, indicating the
IHOT-Trajectory is insensitive to the phenology difference between the secondary clear image and
the clouded image. Even though the acquisition dates of the clouded images were in April 2014
and June 2013, respectively, the secondary image acquired in March 2013 still worked effectively.
Visual evaluations of the subsets of cloud removal results were shown in Figures 5b,c and 6b,c.
In Figure 5b,c, cropland, bare soil, industrial land and urban area were effectively recovered as well
as their texture information. As shown in Figure 6b,c, the IHOT-Trajectory was also able to restore
the cropland, urban and lake. In contrast, the HOT-DOS and IHOT-DOS were only limited to the
removal of thin clouds and are not able to address the issues of thick clouds and shadows (Figures 5
and 6). As the cloud contamination pattern is very complex with mixed clouds (Figure 5a), both the
HOT-DOS and IHOT-DOS methods are ineffective in restoring the correct color of the land cover
of green cropland, bare soil, and urban land. Since MNSPI can remove clouds only if there exist
enough clear-sky neighboring similar pixels [14], here MNSPI performed poorly in a thick-clouded
area for only hazy pixels were available. As shown in Figure 6b, the color of the impervious surface is
largely biased. The MDL method had a better performance than MNSPI (Figure 5), whereas it hardly
restored the correct phenology information of vegetation in the mountain area (Figure 5b) and cropland
(Figure 5c). In general, MDL works poorly when there is large phenological difference between the
secondary clear image and clouded image.
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3.3. Quantitative Assessment of the Methods

Apart from visual validation, quantitative assessment was employed to evaluate the accuracy of
the proposed method. Notably, identifying cloud-free images with phenological patterns matching the
reference image was very challenging, especially over a large area. For this reason, assessments were
only performed in the sub-areas where cloud-free data are available for reference (Figures 5b,c and 6b,c).
We assessed the quality of the cloud removal results by comparing with the subset of the reference
images. Three indices were used for quantitatively describing the accuracy of the cloud removal result.
The mean spectral angle mapper (SAM) was used for evaluating the overall performance of the cloud
removal methods [29]. Spectral angle was calculated between the corrected spectrum and the reference
spectrum. The correlation coefficient (r) and root mean square error (RMSE) were used for evaluating
the cloud removal accuracy in each band. Meanwhile, paired T-tests were conducted to check whether
the mean SAM and the absolute error of the proposed method were significantly smaller than those of
other methods. As labeled in Figures 5 and 6, mean SAM of cloud removal results by proposed method
was significantly smaller than those of other methods. For visible spectral bands, the proposed method
shows significant superiorities (lower RMSE and higher r) compared with other methods (Figures 7
and 8). For infrared bands, the proposed method performed better than DOS-based methods, whereas
not necessarily better than MNSPI and MDL (Figures 7 and 8).
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Figure 7. Correlation coefficients (r) between the reference image and the restored image
using haze optimized transformation-dark object subtraction (HOT-DOS), iterative haze-optimized
transformation-DOS (IHOT-DOS), IHOT removal of cloud trajectory (IHOT-Trajectory), modified
neighborhood similar pixel interpolator (MNSPI) and multitemporal dictionary learning (MDL).
(a–d) correspond to r of Figure 5b,c and Figure 6b,c, respectively.

The results indicated the IHOT-Trajectory was able to overcome large phenological differences
between the secondary clear image and the clouded images. In contrast, the DOS-based methods
performed worst in most land covers. Because there always exist thick clouds, DOS-based methods
quickly become ineffective in all spectral bands from visible to shortwave infrared (SWIR). The MNSPI
method also performed quite poorly in complex cloud-contamination areas because of a strict
requirement for clear similar pixels. Although MDL had a better performance than MNSPI and
DOS in Figure 5, it showed considerable flaws in Figure 6. Possibly, large phenological differences
between the secondary and clouded images influenced the accuracy of multi-dictionary learning.
In summary, the IHOT-Trajectory method has the best performance in most spectral bands except
for infrared bands. The least improvement in the infrared bands might be explained by two reasons.
First, the atmospheric effect is relatively weak in the SWIR bands. Second, there are stronger non-linear
effects in the relationship between IHOT and TOA reflectance in the SWIR bands.

In order to further investigate the relationship between the cloud removal error and the cloud
thickness, mean SAM values were calculated under different IHOT bins. As shown in Figure 9,
the proposed method performed quite robustly and possessed high accuracy and stability as the IHOT
value increased. It indicates that there is no obvious difference between the cloud removal errors on
thick and thin clouds, although the removal of thick cloud is particularly treated with Equation (8)
that is slightly different from Equation (6) used for the removal of relatively thin clouds. In contrast,
the performance of the HOT-DOS and IHOT-DOS methods became increasingly worse as the cloud
thickness increased because DOS methods require a transparent signal for cloud correction. For MNSPI
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and MDL, both of them also have stable performances as cloud thickness increases whereas their mean
SAM values continuously maintain higher values.
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4. Discussion and Conclusions

In this paper, we proposed a new cloud removal method by fitting the cloud trajectory with
the aid of the IHOT algorithm. This method considers the signal transmission process and removes
thick and thin clouds in Landsat imagery in an efficient manner. The method also eliminates the
shadow effect and resolves the issue of information loss in images with complex cloud contamination
patterns. Specifically, the cloud trajectories are established by searching for pixels with similar cloud
thicknesses using the IHOT algorithm. This process enables the fitting of clouded pixels by a linear
model. The application to the clouded images captured in different seasons confirms the efficiency and
robustness of the proposed method, which outperforms other cloud removal methods, including the
HOT-DOS, the IHOT-DOS, MNSPI and MDL. In addition, the proposed method is able to tolerate the
phenological differences between the clouded image and the secondary clear image. This advantage
further corroborates the effectiveness of pixel correction when seasonal dynamics is involved in the
secondary data.

The method still has limitations. First, the IHOT-Trajectory is affected by a shadow detection
error. Sometimes shadows are not successfully detected because of the strict object-based matching
criteria in the shadow detection method employed [9]. The limitation caused by shadow mismatch
can be remedied when more accurate shadow detection methods are developed in future. In addition,
the threshold of thick cloud should be determined empirically, which could affect the cloud removal
result. However, as the IHOT values of clear pixels are reasonably considered as normally distributed,
correctly adjusting this parameter is not very difficult.

In conclusion, the proposed IHOT-Trajectory method introduces the cloud trajectory with the
assistance of IHOT to remove thick, thin clouds and shadows simultaneously. As it can restore
accurate reflectance, texture and phenology information for the clouded images with a variety of
land covers, IHOT-Trajectory has potentials to make full use of the cloud-contaminated Landsat
imagery that were generally wasted in previous applications. In terms of other comparable satellites,
when their clear imagery datasets are available, IHOT-Trajectory could possibly be applied for cloud
contamination removal.
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