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Abstract: Single photon lidar (SPL) systems have great potential to be an effective tool for mapping
due to their high data collection efficiency. However, the large number of false returns in SPL point
clouds represents a huge challenge for the extraction of weak signal targets with low reflectivity or
small cross sections. Numerous filtering methods have been proposed that attempt to effectively
remove these noise points from the final point cloud model. However, weak signal points have
similar characteristics to noise returns, and thus can be incorrectly eliminated as noise points during
the filtering process. Herein, a novel voxel-spherical adaptive ellipsoid searching (VSAES) method
is proposed, by which weak signal returns can be successfully retained while still removing a
majority of the noise points. By employing this voxel-spherical (VS) model, our proposed method can
simultaneously process a combined SPL dataset containing multiple flightlines, in which the noise
density is unevenly distributed throughout the whole dataset. In addition, an improved adaptive
ellipsoid searching (AES) method based on hypothesis testing is able to remove noise points more
robustly than the originally described version. The experimental results show that the proposed
method retains 89.1% of the weak signal point returns from electric power lines, which is a significant
improvement over the performance of either to the original AES method (25.9%) or a histogram
filtering based method (13.4%).
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1. Introduction

New generation single photon lidar (SPL) systems are designed to detect very weak laser returns,
much more efficiently than linear mode lidar (LML). This high quantum sensitivity affords SPL a
tremendous efficiency advantage over LML systems because they are able to collect data with a wider
swath and from a higher altitude [1]. Unfortunately, this high quantum sensitivity also makes the
detectors of these systems susceptible to false returns from both solar background noise and detector
dark count [2]. Thus, it is difficult to classify and reconstruct features with low reflectivity or small
cross sections from raw SPL data with current filtering and analysis methods because these points are
typically sparsely distributed.

The removal of false returns has recently been an active area of research, with a majority of the
approaches to date taking advantage of the fact that the noise points are randomly distributed and
sparse, while the signal points tend to be much more clustered in space [3]. The approaches can
be broadly classified into two categories, histogram analysis [4–7] and voxel-based methods [2,3] .
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The core motivation behind all approaches is similar: to retain those data bins or voxels which satisfy
standards based on an expected local noise density in a fixed volume. These approaches have high
computational efficiency and are able to remove a majority of solar noise. However, they work at
the resolution of a data bin or voxel within which all the photons are determined as either signal
photons or noise returns, and thus are unable to remove near-signal noise returns at spacing smaller
than the bin or voxel size. To overcome this limitation, an adaptive ellipsoid search (AES) method was
previously presented, which can effectively remove near-signal noise by using an adaptive morphing
ellipsoid [8].

However, the original AES approach does not take advantage of the spatial correlation between
overlapping observations from different epochs because it filters SPL data from individual portions of
flightlines separately, without considering time or spatial overlap. During data collection, a majority
of imaged areas are scanned repeatedly at multiple epochs and with differing collection geometries.
In these overlapping areas, the spatial correlation of noise returns is not enhanced because of their
random distribution within the range gate. However, for signal photons, the return locations from
different observational epochs are correlated. The simultaneous analysis of all observations from a
particular area results in more clustered signal points, which will enable improved filtering results.
These clustered observations are more advantageous when considering weak signal returns from
objects such as power lines than for larger targets with strong reflectance (e.g., rooftops).

The filtering process required for a combined point cloud consisting of multiple time separated
observations of an area differs from that used to examine raw SPL data on an epoch by epoch basis.
For instantaneous epoch filtering, the basic processing flow for the histogram-based, voxel-based,
and AES methods is similar: extract the characteristics of the noise returns (e.g., distribution, point
density, etc.) in regions without signal points, and then use these characteristics to remove them in the
entire dataset according to the expected instantaneous properties of the noise. However, for combined
multi-look SPL data, the statistics and characteristics of the noise returns are not static because different
observations are combined from different points in time, and the noise density is known to vary
substantially with both time and viewing geometry. Therefore, a new methodology for combined SPL
data filtering is required.

In this paper, an improved AES method is proposed, called the voxel-spherical adaptive ellipsoid
searching (VSAES) method, in which a voxel spherical (VS) model is adopted to estimate the point
density of the combined point cloud, and an improved adaptive ellipsoid searching (AES) method is
applied to remove the noise points. The new VSAES method is based on a probabilistic hypothesis
test and the selection of a 95% confidence interval instead of the empirically determined ratio test
used in the original AES method. The performance of this new method is evaluated by examining the
preservation of powerline points during the filtering process. Powerline impingement points have a
small effective cross section and are normally made of dark (at the laser wavelength) material which
makes for weak reflections, and are thus an ideal case study of the improvement in filtering results
using our proposed VSAES method. Extraction of powerlines is also an important reconstruction
task in a variety of lidar point cloud applications [9–12] and therefore examining the extraction of
lidar returns from powerlines is important to assess the potential of SPL for large scale automated
powerline mapping.

The rest of the paper is organized as follows: Section 2 describes the experiments undertaken
by introducing the datasets and study areas, followed by a detailed explanation of the proposed
VSAES method, and the recent modifications to adaptive ellipsoidal search criteria. In Section 3,
the experimental results are explored and discussion of findings is provided. Finally, in Section 4,
the conclusions which were drawn from the study are presented.
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2. Experimental Section

2.1. Datasets

The experimental datasets were collected using the SPL-100 system developed by Sigma Space
Corporation (Lanham, MD, USA) and Leica Geosystems Inc. (Lanham, MD, USA). The SPL-100 is a
moderate altitude Lidar system employing multiple laser beamlets [13,14], where green laser pulses
(532 nm) are split into 100 beamlets that image the target with a 10 × 10 array of illuminated footprints.
A circular scanning pattern [15] is used by the SPL-100 and the recorded data are divided into two
datasets, fore and after looking, as shown in Figure 1. The first experimental dataset was collected on
10 November 2016 in Easton, MA, USA and contains three overlapping flightlines. Data collection was
from ∼3.5 km above ground level (AGL) with a half cone angle of 9◦ and scan frequency of 25 Hz and
pulse repetition frequency (PRF) of 60 KHz. The point density is ∼18 points/m2 for a single flightline
and the dataset was truncated with a range gate of 300 m around the expected signal return location.
The other experimental dataset was collected on 23 February 2017 in a rural area near Lufkin, TX, USA
and also contains three overlapping flightlines. The aircraft flew at ∼2 km AGL with a half cone angle
of 15◦ and PRF of 50 kHz. The point density is ∼20 points/m2 for a single flightline pass and the
dataset was truncated with a range gate of 85 m.

Figure 1. An overview of the SPL100 scanning pattern: (left) fore and after observation data; and (right)
the details of one laser shot and beamlet vectors. The transmitted laser pulse is split into 100 beamlets
and the footprints form a 10 × 10 array on the target. A range gate is used to truncate the raw data.
H is the highest point in one beamlet vector, i.e., the start of the range gate.

2.2. Methodology

The filtering workflow for the combined point cloud is comprised of three steps: (A) tiling the raw
data into data blocks; (B) estimating point density using the VS model; and (C) removing noise returns
with a modified and improved AES method. Details of each step are given in the following subsections.

2.2.1. Data Tiling

The study datasets were gridded with a horizontal grid size of 100 m × 100 m using TerraScan
software. An individual file is generated that contains all the points within the grid cell. In addition
to the 3D coordinates in the Universal Transverse Mercator (UTM) coordinate system, the GPS time,
channel number and line point density are also encoded in each laser return. Line point density is
calculated from the raw single epoch observation dataset by counting the average number of noise
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points per meter for each laser beamlet. More details about the calculation of line point density are
given in [8]. Figure 2 shows a representative data block and line point density for each point.

Figure 2. An overview of a 100 m × 100 m data block after tiling: (A) colored by elevation; and (B)
colored by estimated line point density.

2.2.2. Voxel Spherical (VS) Model

As previously mentioned, the noise density varies both horizontally and along the laser
line-of-sight. Therefore, the noise density for the whole dataset needs to be adaptively estimated
instead of computing a single noise metric based on analysis of the noise returns known a priori,
which is usually employed to compute a single estimate of noise density [8]. Herein, the points are
grouped into voxels and the voxel noise density is estimated and assigned to all the points inside
the voxel. It is safe to assume that the noise density is relatively constant for a voxel with a small
area, for example 10 × 10 × 10 m, which is the voxel volume used in this paper. A sphere located
at the center of the voxel is then defined with the same volume as the voxel. Next, the expected
number of noise points in the sphere is estimated. For every point in the data block, the corresponding
aircraft location can be interpolated using the post-processed GNSS/INS (Global Navigation Satellite
System/Inertial Navigation System) aircraft trajectory. The line-of-sight vector connecting the data
point and the aircraft location at laser emission describes the direction of the outgoing laser beamlet.
By calculating the distance between the line vector and the center of the sphere, it can be determined
if the laser beamlet intersects the sphere. Given the spatial relationship among the query data point
Q, the corresponding aircraft location F and the sphere center O, as shown in Figure 3, the distance
between the laser beamlet and the sphere center is calculated by the following equation.

d =
∣∣∣−→OF×−→OQ

∣∣∣/∣∣∣−→FQ
∣∣∣ (1)

The laser beamlets with distance to the center shorter than the radius intersect the sphere. The part
of a laser beamlet inside the sphere is labeled red in Figure 3 and its length l can be easily calculated
using the Pythagorean Theorem. By applying this process to each data point in the block, all the
laser beamlets intersecting the sphere can be obtained along with the corresponding length of the
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line segment inside the sphere. Then, the estimated density of noise points inside the sphere can be
calculated as

ρE =
n
∑

i=1
ρi

l liγ
/(

4
3 πr3

)
γ = 100nu/n

(2)

where ρi
l is the line point density of the ith laser beamlet which is calculated according to the

methodology detailed in [8]. li is the length of part of the ith beamlet inside the sphere, r is the
sphere radius and γ is a correction coefficient which is the ratio of the number of laser shots nu to the
number of beamlets n in the sphere. The correction coefficient compensates for the channels with no
returns recorded. Figure 3 shows the entire process flow of the VS model.

F

O

Q

l
d

Figure 3. Workflow for the VS model. The data block is first voxelized into 10 × 10 × 10 m voxels.
Then, for each point, a sphere with the same volume as the voxel is defined at the center of the voxel.
Finally, the expected number of noise points is calculated based on the geometry of the data points and
the corresponding aircraft trajectory.

2.2.3. Adaptive Ellipsoid Search (AES)

From the previous subsection, the expected number of noise points inside the voxel was estimated.
Next, the actual number of neighboring points are calculated and will be used as the basis for
determining noise returns. Instead of counting the number of neighbor points directly, it is calculated
based on local geometry information. When considering local geometry information, the near-signal
noise returns can be effectively removed. For each query point, its 15 nearest neighbors are selected
and a Principle Component Analysis (PCA) [16] of their 3D coordinates is computed to obtain three
principle components and three corresponding eigenvalues. Then, a base sphere with a radius of rs is
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defined at the query point center. The base sphere morphs into an ellipsoid with directionality defined
by the local point cloud neighborhood based on the three eigenvalues using the following equations

a = re1

/
3
√

E

b = re2

/
3
√

E

c = re3

/
3
√

E

E = e1e2e3

(3)

where a, b and c are the three axis of the ellipsoid and e1, e2 and e3 are the three eigenvalues.
The orientation of the ellipsoid is then modified to better fit local point geometry. To make this
transformation simple, instead of rotating the ellipsoid, all the points within the data block are
transformed using the following equation xr

i
yr

i
zr

i

 = P−1

 xi
yi
zi

 (4)

where [xi, yi, zi] is the coordinate of the ith point and
[
xr

i , yr
i , zr

i
]

are the corresponding rotated
coordinates. P is a 3 × 3 transform matrix comprised of three principle components. It is then
easy to check if a point is located inside the ellipsoid using the following equation

f lag =
xr2

i
a2 +

yr2
i

b2 +
zr2

i
c2 (5)

If flag is less than 1, the point is inside the ellipsoid. The number of points that reside in the
ellipsoid are then counted for the whole data block. With the expected number of noise returns and
the actual number of points in the ellipsoid, a hypothesis test can be established: H0:, the query point
is a noise return; and H1, the query point is a signal return.

For a given query point and a region of any shape around it, the number of neighbor points
inside the region conforms to a Poisson distribution; the proof is as follows. Consider a 3D space with
randomly distributed points. For any point, the probability of the number of its neighbor points inside
the region is calculated as

P =

(
k

N − 1

)(
v
Vs

)k(
1− v

Vs

)N−k−1
(6)

where k is the number of neighbors, v is the volume of the region, Vs is the volume of the whole space
and N is the total number of points in the space. When Vs and N are very large, the equation can be
approximated as

P =
Nk

k!

(
v
Vs

)k
e−

Nv
Vs (7)

the point density can then be defined as ρ = N
/

Vs, and the equation rewritten as

P =
1
k!
(ρv)ke−ρv (8)

The density is obtained from the VS model by dividing the expected number of points by the
volume of the voxel. If the cumulative probability from zero to k is less than 95%, then the null
hypothesis H0 is true and the point is a noise return, otherwise the point is a signal return.
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3. Results and Discussion

3.1. Results

The VS model was first applied to each data block. Figure 4 displays the results for a representative
VS model where it can be seen that the noise density is uneven throughout the whole data block.
This demonstrates the importance of considering the scanning geometry when estimating noise level.

Figure 4. Estimated expected number of noise points for a representative voxel using the VS model.
The data are colored by the expected number of noise returns.

The filtered result with both VS and AES applied is shown in Figure 5. For comparison, the filtered
result for the same area using a histogram method and the original AES method are also shown.
The histogram method proposed by Degnan was used; more details on this method can be found in [1,4].

The red linear feature crossing Figure 5 from the top left to bottom right is a transmission line.
Significant differences in the appearance of this transmission line can be noted when comparing the
three filtered results. The transmission line returns have also been manually classified for comparison
with the automatically filtered results. Figure 6 shows vertical profiles of the filtered and manually
classified transmission line and Table 1 gives a comparison of the filtered and manually classified
datasets. A 7 m× 7 m (height×width) examination region is defined around the transmission line and
the number of laser returns automatically classified as signal from the transmission line within it are
counted. These points are then compared with the number of manually classified transmission points.
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Figure 5. Satellite image and filtered SPL point clouds for the Easton study area: satellite image (A);
VSAES result (B); AES only result (C); and DCC result (D). Detailed view of a portion of a powerline
(E–G) corresponding to (B–D). The extents are labeled in (B) with a white square. The filtered results
are colored by elevation.

Figure 6. Vertical profile of the transmission line from manually selected raw data and filtered results
using the VSAES, AES and DCC methods.

In Table 1, the proposed method retains 89.1% of the power line points with only a few incorrectly
classified noise returns. For comparison, AES keeps only 25.9% of the transmission line points and the
DCC method retains only 13.4%. In Figure 6, the transmission line points retained in the VSAES results
discriminate the three separate cables clearly even though a few noise points remain misclassified
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close to the wires. For the AES result, the upper two lines are well defined, but the extraction of the
third line is not complete with a large number of gaps appearing. For the DCC result, clear gaps can
be found in all three cables and more noise points appear close to the transmission lines. An optical
image of the transmission lines is displayed in Figure 7. Both a qualitative visual check of the profile
views in Figure 6 and the statistical analysis presented in Table 1 show that the extraction of weak
signal points is significantly improved by combining the temporally spaced lidar observations and
using the adaptive VSAES filtering approach.

Table 1. Statistical results for the automated extraction of transmission lines with the three filtering
methods. The detection rate is calculated by dividing the number of correctly identified points with
the number of manually classified signal points in the examination region. The false alarm rate is
calculated by dividing the number of misclassified points with the total number of extracted points in
the examination region.

# Correctly Identified Detection Rate # Misclassified False Alarm Rate

Raw data 57,185 N/A N/A N/A
VSAES 50,925 89.1% 2884 5.4%

AES 14,802 25.9% 799 5.1%
DCC 7666 13.4% 2016 20.8%

Figure 7. Ground view image of the Easton study area. The red line depicts the transmission lines and
the black line shows the distribution lines. The north arrow shows an approximate north direction.

Next, the results for a distribution line whose wires have an even smaller diameter than the
transmission line are analyzed. As before, the signal points for the distribution line were manually
extracted. One thing to note is that because of the low laser energy returned from distribution lines,
even manual extraction is very hard and its accuracy is likely lower than that for larger transmission
lines. Again, an examination region with the same size, 7 m × 7 m (height × width) was defined to
evaluate the performance of the three filters; the statistics for distribution line extraction are given in
Table 2 and vertical profiles are shown in Figure 8.

For the extraction of distribution lines, the proposed VSAES method detects only 60% of the line
points, but this is still significantly more than the 29.3% for the AES method and 11.1% for the DCC
method. In Figure 8, the lowest wire in the VSAES profile is well detected with only a small gap.
The top line has more gaps but there are still enough return points to accurately depict the distribution
wire geometry. Results for the middle wire are the worst, with larger areas containing gaps. However,
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the results are still markedly better than for the other two filtering methods, and appear to contain
enough points to adequately model all of the distribution lines. An optical image of the distribution
lines is also displayed in Figure 7.

Table 2. Statistical results for the automated extraction of distribution lines with the three filtering
methods. The detection rate is calculated by dividing the number of correctly identified points with
the number of manually classified signal points in the examination region. The false alarm rate is
calculated by dividing the number of misclassified points with the total number of extracted points in
the examination region.

# Correctly Identified Detection Rate # Misclassified False Alarm Rate

Raw data 20,793 N/A N/A N/A
VSAES 12,265 60.0% 1042 7.8%

AES 6089 29.3% 594 8.9%
DCC 2305 11.1% 639 41.6%

Figure 8. Vertical profile of the distribution lines from manually selected raw data and filtered result
using the VSAES , AES and DCC methods.

Finally, the performance for an additional power line captured in the Lufkin experimental dataset
is examined. The filtered results using VSAES, AES, and DCC are displayed in Figure 9. The detailed
sub figures (E, F and G) in Figure 9 show a region at an intersection of two distribution lines. Results
from the proposed method retain both lines and clearly shows two lines. Only one line can be seen
clearly from the AES results while the other is difficult to see. For the DCC results, no linear features
are visible. Vertical profiles and statistical analysis for the three filtered results on the Lufkin dataset
are given in Figure 10 and Table 3.

Table 3. Statistical results for the automated extraction of distribution lines using three filtering
methods. The detection rate is calculated by dividing the number of correctly identified points with
the number of manually classified signal points in the examination region. The false alarm rate is
calculated by dividing the number of mis-classified points with the total number of extracted points in
the examination region.

# Correctly Identified Detection Rate # Misclassified False Alarm Rate

Raw data 104,542 N/A N/A N/A
VSAES 89,836 85.9% 5250 5.5%

AES 39,367 37.9% 2622 6.2%
DCC 6370 6.1% 980 13.3%
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Figure 9. Satellite image and filtered single photon lidar results for the Lufkin area: satellite image of
study area (A); VSAES result (B); AES only result (C); and DCC result (D). Detailed view of a portion
of the powerline (E–G) corresponding to (B–D). The extents are labeled in (B) with a white square.
The filtered results are colored by elevation.

Figure 10. Vertical profile of the transmission lines for Lufkin study area from manually classified raw
data and filtered results using VSAES, AES and DCC methods.

The proposed method significantly outperformed both the AES and DCC methods by correctly
classifying 85.9% of distribution line points versus 37.9% and 6.1%, respectively, for the other methods.
The top wire in the VSAES result is well extracted, while a few gaps can be found on the middle and
bottom wires. By visual inspection of an oblique street view image (Figure 11), it can be seen that there
are three top wires and one wire at the middle and bottom levels, respectively. Thus, the top line in the
vertical profile is composed of signal returns from three power lines, resulting in a clear line with no
gaps in the profile figure.
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Figure 11. Ground view image of the Lufkin study area. The north arrow shows an approximate
north direction.

3.2. Discussion

From the comparison of filtered results from the three sets of powerlines, significant
improvement in automatically extracting powerline points can be seen by using the proposed method.
The improvements seen in the VSAES results are primarily because of two factors: the adaptive
consideration of the local point cloud geometry during filtering and the combination of overlapping
flight lines before filtering. Due to the high linearity of the powerlines points, the calculated three
dimensional point density for each wire point is relatively small. The DCC method filters SPL data
using the resolution of a one dimensional range bin and retains all the points in the data bin as signal
points if the query data bin satisfies the filtering criteria. This 1D filtering mechanism makes DCC
have limited efficiency for weak signal returns such as those from powerlines. However, if the linearity
of the powerline is considered (adapting to the local point cloud geometry), then VSAES can more
effectively extract power line points compared to methods that do not consider the local geometrical
characteristics of the point cloud.

In addition, due to the small cross-section of the laser footprints on the powerlines, there are
only a small number of signal photons bounced back to the SPL detector. Because of the statistical
nature of the sensor (i.e., relatively low photon detection efficiency), even fewer photons are recorded
by the system, making them difficult to distinguish from noise within a single flightline. In these
circumstances, even considering the local geometric information with the AES method is not sufficient
to effectively retain enough powerline points; all observations from all overlapping flightlines need to
be considered simultaneously, and the proposed VSAES method can fully utilize data from different
observations and even different flightline collections by adaptively estimating local noise density.
The powerlines are illuminated from different directions and the probability that the sensor receives
photons from each part of the powerline is therefore increased, which enhances the spatial correlation
of the powerline points and helps to improve the filtered results.

An additional advantage of VSAES over AES is the mathematical robustness of the former
method. Even though both VSAES and AES consider local geometric information through a PCA,
they utilize different measures to differentiate signal from noise. In AES, several neighbors for a query
point within a sphere and then an ellipsoid determined by PCA are counted; the difference between
these two numbers of neighbors is used as the decision measure and compared to an empirically
determined threshold. The performance of the filtered results relies on a proper selection of this
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threshold. By contrast, the proposed VSAES method utilizes a filtering criteria based on a hypothesis
test and the selection of a statistical 95% confidence threshold instead of an empirically determined
threshold, therefore the VSAES is a more robust method.

One last thing to note is that even considering the enhanced spatial correlation and local geometry
distribution from overlapping flight observations, there are still a number of powerline points
missing; for example, the results for the distribution line in the Easton study area (shown in Figure 8).
By checking the corresponding optical image (shown in Figure 11), it is observed that the top and
middle lines are of smaller diameter than the bottom one and this likely explains the higher number of
missing points for them. For a direct comparison a laser scanning dataset for the same distribution
line collected with a linear-mode airborne Lidar system was also examined. The data were collected
on 14 June 2016 using a Leica ALS 80 sensor operated at ∼1.3 km AGL and a nominal point density
of ∼25 points/m2. The top view and vertical profile of the distribution line from the linear-mode
data are shown in Figure 12. From the vertical profile, it can be seen that, even though the bottom
wire is well defined, the top and middle lines are missing in the linear-mode data. The energy of
the return signal is too low for the linear-mode system to detect, and would require an even lower
flight height to capture these lines. However, in the SPL point cloud (flown at ∼2 km AGL), the top
and middle lines are defined with enough points to model them. This also indicates that SPL has an
advantage over LML for powerline mapping because the data can be collected from a higher flight
altitude, which would greatly improve collection efficiency.

Figure 12. Plan and profile view of the Lufkin study area distribution line captured using a Leica
ALS-80 linear mode lidar system.

4. Conclusions

In this study, an improved VSAES algorithm was proposed to extract weak signal points from SPL
point clouds, and the methodology was tested using examples from powerlines. The proposed method
first reorganizes the combined data by tiling them into data blocks, during which the spatial correlation
of the signal points is improved. The VS model is then used to estimate the expected number of
noise points in each voxel and adaptively compensates for uneven noise density while also balancing
computational load. Finally, an improved AES method, based on a hypothesis test, is used to filter the
data. The combined VSAES method is used on a complete SPL dataset (instead of on a flightline by
flightline basis) and makes a significant improvement for the extraction of weak signal returns from
powerlines. In the first experimental area in Easton, MD, 89% of the transmission line points were
correctly extracted versus 25.9% for the AES method and 13.4% for the DCC method. For a distribution
line, whose return signals are even weaker (due to smaller wire diameter), the proposed VSAES
method extracted 60% of the signal points versus 29.3% for AES and 11.1% for DCC. For the second
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Lufkin dataset, the VSAES extraction results had 85.9% correctly classified versus 37.9% and 6.1% for
AES and DCC respectively. It was also demonstrated with coincident LML data that points from thin
powerlines, which are not recorded in the LML data, can be detected from SPL data, even though
the SPL system was flown at a higher AGL and with a wider swath coverage. The high quantum
sensitivity and high data collection efficiency of the SPL system shows great potential for wide area
powerline mapping and monitoring.
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