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Abstract: Aerosols can absorb and scatter surface solar radiation (SSR), which is called the aerosol
radiative forcing effect (ARF). Great efforts have been made for the estimation of the aerosol optical
depth (AOD), SSR and ARF using meteorological measurements and satellite observations. However,
the accuracy, and spatial and temporal resolutions of these existing AOD, SSR and ARF models
should be improved to meet the application requirements, due to the uncertainties and gaps of input
parameters. In this study, an optimized back propagation (BP) artificial neural network (Genetic_BP)
was developed for improving the estimation of the AOD values. The retrieved AOD values using
the Genetic_BP model and meteorological measurements at China Meteorological Administration
(CMA) stations were used to calculate SSR and bottom of the atmosphere (BOA) ARF (ARFB) using
Yang’s Hybrid model (YHM). The result show that the Genetic_BP could be used for estimating
AOD values with high accuracy (R = 0.866 for CASNET (China Aerosol Remote Sensing Network)
stations and R = 0.865 for AERONET (Aerosol Robotic Network) stations). The estimated SSR also
showed a good agreement with SSR measurements at 96 CMA radiation stations, with RMSE, MAE,
R and R2 of 29.27%, 23.77%, 0.948, and 0.899, respectively. The estimated ARFB values are also
highly correlated with the AERONET ARFB ones with RMSE, MAE, R and R2 of −35.47%, −25.33%,
0.843, and 0.711, respectively. Finally, the spatial and temporal variations of AOD, SSR, and ARFB
values over Mainland China were investigated. Both AOD and SSR values are generally higher
in summer than in other seasons. The ARFB are generally stronger in spring and summer than
in other seasons. The ranges for the monthly mean AOD, SSR and ARFB values over Mainland
China are 0.183–0.333, 10.218–24.196 MJ m−2day−1 and −2.986 to −1.244 MJ m−2day−1, respectively.
The Qinghai-Tibetan Plateau has always been an area with the highest SSR, the lowest AOD and
the weakest ARFB. In contrast, the Sichuan Basin has always been an area with low SSR, high AOD,
and strong ARFB. The newly proposed AOD model may be of vital importance for improving
the accuracy and computational efficiency of AOD, SSR and ARFB estimations for solar energy
applications, ecological modeling, and energy policy.
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1. Introduction

Solar radiation (SSR) is defined as the power per unit area received from the Sun in the form of
electromagnetic radiation [1]. SSR is composed of direct and diffuse solar radiation, which controls the
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sources and sinks of energy between the Earth surface and atmosphere [2]. It is also an indispensable
term in biological and physical processes such as evapotranspiration [3], chlorophyll synthesis [4],
and plant photosynthesis [5]. Solar radiation can be directly absorbed and scattered by aerosol, which is
called the aerosol radiative forcing effect (ARF) [6]. The aerosol optical depth (AOD) is the key aerosol
parameter, which would significantly affect the quality of ARF estimations. Many ground-based
remote sensing aerosol networks have been established around the world, for example the Aerosol
Robotic Network (AERONET) can provide continuous cloud-screened observations of spectral AOD
values around the world [7]. In China, AOD values are routinely measured at about 50 sites of
the China Aerosol Remote Sensing Network (CARSNET) over Mainland China [8]. However, the
sites of AERONET and CARSNET are relatively sparse for AOD applications requiring high spatial
resolutions. Remote sensing provides an efficient way to retrieve spatiotemporally continuous AOD
values at regional and global scales. The Total Ozone Mapping Spectrometer (TOMS) aboard Nimbus-7
(1976–1992) and Earth Probe Satellite (1996 to present) can provide long-term AOD records around
the world [9]. Torres et al. [9] found that the AOD values for UV-absorbing conditions derived from
TOMS are within 30% of the AERONET observations, while the AOD values for non-absorbing
conditions are within 20% of the AERONET observations. Nevertheless, the nadir spatial resolutions
(about 50 km × 50 km) of TOMS are relatively coarse for AOD applications. The Advanced Along
Track Scanning Radiometer (AATSR) aboard Envisat can also provide AOD products with high
nadir spatial resolution (1 km × 1 km) [10]. Meanwhile, the Seaviewing Wide Field-of-view Sensor
(SEAWIFS) aboard GeoEye’s OrbView-2 can provide AOD data on global ocean with spatial resolution
of 9 km×9 km [11]. Long term daily and monthly AOD records (1981–2017) can also be obtained from
the Advanced Very High Resolution Radiometer (AVHRR) aboard on TIROS-N and NOAA series
with nadir spatial resolution of 1.1 km × 1.1 km [12]. Among all AOD products, the standard AOD
products from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra and Aqua
are the most widely used AOD products for the estimation of AOD, with spatial resolutions of 3 km
and 10 km, respectively. However, the accuracies, the spatial and temporal continuities, and the spatial
and temporal resolutions of these above AOD products should be improved.

Numerous models have been developed for estimating AOD values using meteorological
measurements and satellite observations. Empirical models assume that AOD is a synergy consequence
of meteorological parameters such as sunshine duration, air temperature, relative humidity, visibility,
cloud fraction and elevation [13–19]. However, empirical models are inflexible to the natural
environment, due to ignoring the physical processes and terrain effects. Moreover, these models are
subject to the meteorological network is quite dense worldwide in contrast to the solar radiation one.
Satellite observations provide an efficient way to retrieve spatiotemporally continuous AOD values at
regional and global scales [20–24]. Both geostationary satellites and polar orbiting satellites can provide
essential atmospheric and land surface information with different spatial and temporal resolutions.
Numerous models have been developed for estimating AOD using satellite observations [23,25–31].
Despite the effectiveness and superiority of satellite-based AOD models, the accuracy of satellite
retrievals is subject to many uncertainties such as calibration, cloud screening, aerosol model and
surface reflection. Meanwhile, artificial intelligence (AI) is a new and promising approach for retrieving
AOD with high accuracy. Many artificial neural network (ANN) models have been developed to
retrieve AOD in regional and global scales [32–34]. Lanzaco et al. [35] integrated ANN and support
vector machine (SVM) to obtain AOD values. The result showed that the estimated AOD values
showed better accuracy than MODIS AOD products. However, this model was subjected to the
short time series of MODIS products (starting 2001). Huttunen et al. [36] made a comparative study
on the model accuracy of transfer-based look-up table, non-linear regression and machine learning
algorithms for predicting AOD values. The result indicated that the estimated AOD values by ANN
and SVM showed good agreement with AERONET measurements. More meteorological parameters
such as wind speed, visibility and relative humidity which were highly correlated with AOD could
be incorporated into AI models to improve the accuracy of AI models. Furthermore, some intrinsic
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drawbacks of AI models such as the slow convergence speed and the intrinsic disadvantages of
revealing the relative significance of input parameters would degrade the accuracy of AI methods.
Many optimization models such as Genetic algorithm [37] could be used to optimize the weights and
the thresholds of the BP neural network for the estimation of AOD values.

Strong ARF was observed around the world, and it varies regionally as a result of precipitation,
humidification, and other hydrological processes [38]. The ARF has become one of the most uncertain
factors affecting global climate change, and one hot topic in the global climate change research [39].
Kirkevagand Iversen [40] calculated the global aerosol radiation effect during 2000–2100 using
the Community Climate Model (CCM3.2) based on the climate scenario (2000–2100) proposed by
Intergovernmental Panel on Climate Change (IPCC). The results indicated that the global ARF caused
by black carbon aerosol in 2000 and 2100 were about −0.11 Wm−2 and 0.11 Wm−2, respectively.
Ma et al. [41] reconstructed global ARF values at the top of the atmosphere (ARF_TOA) using
GEOS-Chem-APM climate models, the results showed that the global ARF_TOA is about−0.41 Wm−2.
Myhre et al. [42] made a comparative study on the model performances of 16 climate models for
the estimation of global ARF. The results indicated that the global ARF is about −0.27 Wm−2

(−0.58 to −0.02 Wm−2). According to the sources of aerosol particles, the ARF could be roughly
divided into the natural ARF and the anthropogenic one [43]. Dust is the main source to the natural
aerosol particles in the atmosphere, especially in desert and arid areas. Li et al. [44] reconstructed
the ARF of the Sahara Desert using the aerosol and solar radiation observations of the MODIS
satellite products and CERES (Clouds and Earth’s Radiant Energy). The results indicated that the
monthly mean ARF_TOA in summer was 26 ± 3 Wm−2, which was significantly stronger than
that in other months. Sea salt particulates are the main causes of the global marine ARF, and exert
great cooling effect on the global ocean [45]. Lee et al. [46] proposed a model for estimating aerosol
optical properties and aerosol radiative forcing effect using satellite data. The spatial and temporal
variations of the ARF_TOA in the global ocean were analyzed. The results showed that the ARF_TOA
and ARFB over the global ocean were −5.2 ± 0.5 and 8.3 Wm−2, respectively. Since the industrial
revolution, the anthropogenic aerosol emissions have shown an explosive growth trend, resulting
in significant radiation forcing effects on solar radiation [43]. The black carbon aerosol particles,
the organic carbon aerosol particles and the sulfate aerosol particles are the main anthropogenic
aerosol particles [47]. Many climate model including the Beijing Climate Center atmospheric general
circulation model (BCC_AGCM2.0.1) and the Canadian Aerosol Module (CAM) [48], ACCMIP
(Atmospheric Chemistry & Climate Model Intercomparison Project), EDGAR-HTAP (Emission
Database for Global Atmospheric Research for Hemispheric Transport of Air Pollution), and EDGAR
Version 4.2, and one regional INTEX-B (Intercontinental Chemical Transport Experiment—Phase B)
inventory [49], Coupled Model Intercomparison Project (CMIP5/CMIP6) [50], chemistry-transport
model (CTM) [51], The European Monitoring and Evaluation Programme (EMEP) [52], global chemical
transport model (GEOS-Chem) [53–55], GFDL AM2 GCM [56], Goddard Global Ozone Chemistry
Aerosol Radiation and Transport (GOCART) [57], Laboratoire de Météorologie Dynamique General
Circulation Model (LMDZ) [58], Modtran (MODerate resolution atmospheric TRANsmission) [59],
the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) [60], SBDART (Santa Barbara DISORT
Atmospheric Radiative Transfer) [61], SPRINTARS (Spectral Radiation-Transport Model for Aerosol
Species) [62], and WRF (Weather Research and Forecasting) [63] have been applied for analyzing the
anthropogenic ARF in regional and global scales. However, the computational efficiency of these
climate models needs further improvement.

Great efforts have been made for estimating AOD and ARF throughout China. Zhang et al. [64]
analyzed the spatial and temporal variations of AOD values during 1973–2014 using the KM-Elterman
method. The results showed that the estimated AOD values were in good agreement with the AOD
values derived from MODIS products (R = 0.942). The North China Plain, the Yangtze River Delta,
central China, the Sichuan Basin, and the Pearl River Delta were the areas with rapidly increasing
trend of AOD values; the southwest China was found to be an area with significant decreasing trend
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of AOD values. Xu et al. [65] reconstructed the AOD values during 1993–2012 throughout China using
a broadband extinction model, which showed good agreement with AERONET AOD values with
RMSE, MAE and R of 0.101, 0.029 and 0.848, respectively. Guo et al. [66] revealed the spatial and
temporal characteristics of the AOD values during 1980–2008 over Mainland China using TOMS AOD
(1980–2001) and MODIS AOD products (2000–2008). Meanwhile, many studies have been conducted at
regional scale in China using meteorological measurements and satellite observations [67–71]. China is
a big country with severe anthropogenic aerosol emissions, which has posed great uncertainties on the
global climate change. Many studies have been conducted on the spatial and temporal variations of
the aerosol radiative effect in China. These studies were mainly focused on the area with intensive
population and air pollution, for example Central-East China [72], the Pearl River Delta [73], and the
Yangtze River Delta [8]. However, few studies have been made for analyzing the AOD and ARF
values in different climate zones and terrain features over Mainland China, due to the relative sparse
AOD and SSR measurements in China. Further studies should be made on the spatial and temporal
variations of AOD and the ARF on SSR over Mainland China.

This study attempted: (1) to explore a new simplified model (Genetic_BP) for improving the
estimation of AOD, SSR and ARFB values, based on the Genetic algorithm, back propagation
neural network (BP) and an SSR estimation model (hereafter, YHM) developed by Yang et al. [74];
(2) to evaluate the retrieved AOD values by the Genetic_BP model and the retrieved SSR and ARF
values by YHM in various climate zones throughout China using daily AOD, SSR, ARF measurements;
and (3) to reveal the spatial and temporal variations of AOD, SSR and ARFB values in different climate
zones and terrains over Mainland China.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Observation Data

Daily AOD (550 nm) records during 2002–2014 at CARSNET and AERONET stations throughout
China were used for the estimation and validation of AOD values. Then, these AOD retrievals
together with daily meteorological measurements including air temperature (T), relative humidity
(RH), surface pressure (P), and sunshine duration (SH) at 839 CMA stations were used to retrieve
SSR and ARFB over Mainland China using the YHM model. Finally, daily SSR measurements at
96 CMA stations (2002–2014) and the aerosol radiative effect (bottom of atmosphere) data at AERONET
observations (2002–2014) were used for validating the accuracy of the SSR and ARFB retrievals by
the YHM model, respectively. Figure 1 shows the spatial distribution of these CARSNET stations,
AERONET stations, SSR stations, CMA meteorological stations and AERONET stations. Table 1
shows the statistical indicators representing the geographical and climate patterns of these CARSNET,
AERONET, SSR and CMA stations. These stations cover most areas of China with various and
complicated geomorphology and terrain features.

Figure 2 shows the monthly variations of T, RH, P, and SH for CARSNET, AERONET, SSR and
CMA stations. T was generally higher in summer and lower in winter. The highest monthly mean
T for CARSNET, AERONET, SSR and CMA were 24.91 ◦C, 26.08 ◦C, 24.43 ◦C and 23.72 ◦C in
July, respectively. The lowest monthly mean T for CARSNET, AERONET, SSR and CMA were
−4.78 ◦C, −3.52 ◦C, −3.27 ◦C and −3.41 ◦C in January, respectively. The P for CARSNET, AERONET,
SSR, and CMA were generally higher in winter and lower in summer. The highest monthly mean
P for CARSNET (930.91 hPa), AERONET (930.91 hPa), SSR (926.62 hPa), and CMA (918.26 hPa) were
in January; and the lowest monthly mean P for CARSNET (913.91hPa), AERONET (913.91 hPa),
SSR (911.04 hPa), and CMA (903.99 hPa) were in July. The highest monthly mean RH for CARSNET
(65.51%), AERONET (67.51%), SSR (67.47%) and CMA (69.40%) were in September; and the lowest
monthly mean RH for CARSNET (45.99%), AERONET (40.55%), SSR (52.78%) and CMA (55.65%)
were in April. The SH were generally higher in spring and summer and lower in winter. The longest
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monthly mean SH for CARSNET (7.94 h), AERONET (10.25 h), SSR (7.27 h) and CMA (7.04 h) were
in June, May, May, and August, respectively; and the shortest monthly mean SH for CARSNET
(5.36 h), AERONET (6.89 h), SSR (5.13 h) and CMA (5.15 h) were in February, December, January and
January, respectively.Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 27 
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Figure 1. Spatial distribution of the CARSNET, AERONET, SSR and CMA stations used in this study.

Table 1. Geographical and annual mean meteorological data at CARSNET, AERONET, SSR and
CMA stations.

Network of Stations Statistics Lat (deg) Lon (deg) A (m) P (hpa) RH SH (h) T (◦C)

CARSNET

max 47.73◦N 126.77◦E 3648.9 1042.1 1.00 14.60 35.70
min 22.63◦N 79.93◦E 2.5 638.9 0.05 0.00 −33.10

mean - - 856.9 922.7 0.56 6.59 11.49
std - - 956.7 99.1 0.21 4.11 12.06

AERONET

max 42.68◦N 122.70◦E 4276.0 1046.2 0.97 14.00 34.60
min 22.21◦ N 86.95◦E 0 592.4 0.08 0.00 −20.80

mean 827.4 958.7 0.52 8.52 9.95
std 1194.4 113.3 0.17 2.66 11.38

SSR

max 52.97◦N 130.3◦E 4507.0 1048.7 1.00 15.70 38.90
min 18.22◦N 75.98◦E 2.5 573.5 0.05 0.00 −39.80

mean - - 900.7 919.0 0.61 6.29 11.94
std - - 1111.8 111.4 0.20 4.11 12.46

CMA

max 52.58◦N 132.58◦E 4507.0 1048.7 1.00 15.70 38.90
min 16.50◦N 75.14◦E 1.3 558.4 0.04 0.00 −44.60

mean - - 979.2 911.3 0.63 6.14 11.47
std - - 1116.7 117.4 0.20 4.07 12.47

Lat is latitude, Lon is longitude, A is altitude above sea level, P is surface pressure, RH is relative humidity (100%),
SH is sunshine duration, T is air temperature.

2.1.2. MODIS Products and MERRA2 Datasets

The AOD values derived from MODIS level-2 products (MOD04/MYD04) and level-3 products
(MOD08/MYD08) during 2002–2014 were validated at CARSNET and AERONET stations in
this study. Meanwhile, the daily mean AOD values derived from MERRA2 (The Modern Era
Retrospective-Analysis for Research and Applications) during 1980–2015 were also evaluated using
AOD measurements from CARNET and AERONET stations.
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2.1.3. Climatic Zones and Terrain Features

The Shuttle Radar Topography Mission (SRTM) 90m digital elevation model (DEM) data were
used to derive surface elevation (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp). The climate
and terrain regionalization data were provided by Resource and environment science data center of
the Chinese Academy of Sciences (http://www.resdc.cn). Figure 3 shows the terrain features in China.
There are 50 topographic zones over Mainland China.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 27 
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2.2. Optimized Back Propagation Neural Network Based on Genetic Algorithm

The back propagation (BP) neural network is the most widely used AI models for numerical
fitting problems with strong learning ability and high accuracy [75]. The basic idea of BP is to find a
function that best maps a set of input parameters to the correct output values using gradient descent
optimization algorithm, which minimizes the mean square error between the network’s actual output
value and the expected output value [76]. In this study, nine parameters (RH, T, P, SD, A, day number
(D), visibility (VIS) and cloud fraction (TCP), and MERRA2 AOD) that were closely correlated with
AOD values were set as input parameters for the BP model; daily AOD measurements at the CARSNET
and AERONET stations were set as the model output parameter for the BP model. A total of 70% of
the databases during the whole study period were used to train the BP model, and 30% of them were
used for testing the model. The AOD values could be calculated using the following equation:

Fg = Z

(
N

∑
i=1

wi(t)xi(t) + b

)
(1)

where Fg is the estimated AOD; Z (w, x, b) means the hidden transfer function; wi (t) is the weight;
xi(t) is the input parameter indiscrete time space; and b is the neuronal bias. The basic schematic
architecture of the BP neural network in this study is illustrated in Figure 4.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 27 
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Figure 4. The basic schematic architecture of the BP neural network used in this study.

Then, the Genetic algorithm was introduced to optimize the weights and the thresholds of the
BP neural network for the estimation of AOD values. It is a meta-heuristic algorithm proposed by
Holland [37] inspired by the process of natural selection that belongs to the larger class of evolutionary
algorithms, which is commonly used to generate high-quality solutions to optimization and search
problems. The Genetic_BP model for improving the estimation of AOD values could be conducted as
the following steps (Figure 5):

(1) Initialize random population. The basic structure of the BP neural network in this study is
9-10-1 (Figure 4) with 9 input layers, 10 hidden layers and 1 output layer. Thus, the number
of weights is 9 × 10 + 10 × 1 = 100; the number of thresholds is 10 + 1 = 11. Thus, the encoding
length is 100 + 11 = 111.

(2) Selection operation. The new individuals with high fitness values would be selected from
old individuals using roulette selection method. The selection probability for individuals was
calculated as following equation:

gi = a/Si (2)

Pi = gi/
n

∑
j=1

gi (3)

where Pi is the selection probability; and gi is the fitness value, which could be calculated
as follows:
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Si = b(
N

∑
j=1

abs(yi − oi)) (4)

where N is the number of the input layers of BP neural network (6); yi is the i-th expected output
value; oi is the i-th predicted output values; and b is a constant value.

(3) Crossover operation. The crossover operation was conducted using arithmetic crossover algorithm:

acj = acj(1− b) + adjb
adj = adj(1− b) + acjb

}
(5)

where acj and adj are the c-th and d-th chromosome at j position; and b is a constant within 0–1.

(4) Mutation operation. The mutation operation was conducted using following equations:

aij =

{
aij +

(
aij − amax

)
∗ f (g)r > 0.5

aij +
(
amin − aij

)
∗ f (g)r ≤ 0.5

(6)

f (g) = r2(1− g/Gmax)
2 (7)

where amax and amin are the maximum and minimum value for aij; r is a random number [0–1];
r2 is also random number; g is the number of iterations; and Gmax is maximum evolution times.
Detailed information about the Genetic_BP model can be found in [77].
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2.3. Yang’s Hybrid Model

Yang’s Hybrid model (YHM) is a physically-based broadband model for estimating solar
radiation, taking into account of five main radiation-damping processes, including Rayleigh scattering,
aerosol extinction, ozone absorption, water vapor absorption and gas absorption. YHM was first
developed by Yang et al. [78], then improved by Yang and Koike [79] for hydrological applications,
and further improved by Yang et al. [74] by importing global data sets. YHM is recognized as one of
the best SSR models [80,81], which could be expressed as follows:

Hall = τc Hclr (8)

where Hall means the daily surface solar radiation (MJ m−2day−1) for all-sky conditions. The cloud
effect on daily SSR is corrected using a cloud transmittance parameter τc, which is a function of the
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actual sunshine durations (SH) and the maximum possible sunshine durations (N). Detail description
on Yang’s Hybrid model could be found in Appendix A.

2.4. Aerosol Radiative Forcing Effect on SSR

The ARF is defined here as [82]:

ARF = SSRNA − SSRWA (9)

where SSRWA is the estimated SSR without the presence of aerosols in the atmosphere; and SSRNA
denotes the estimated SSR with aerosols in the atmosphere.

2.5. Model Performance

The following statistical indicators including the correlation coefficient (R), the determination
coefficient (R2), the mean absolute bias error (MAE, %), the root mean square error (RMSE, %), and the
root mean square error value (RMSEE, MJ m−2day−1) were used to evaluate the model accuracy for
the Genetic_BP model and the YHM solar radiation model:

R =
∑n

i=1 (Gest,i − Gest,i)(Gobs,i − Gobs,i)√
∑n

i=1 (Gobs,i − Gobs,i)
2
√

∑n
i=1 (Gest,i − Gest,i)

2
(10)

R2 =

 ∑n
i=1 (Gest,i − Gest,i)(Gobs,i − Gobs,i)√

∑n
i=1 (Gobs,i − Gobs,i)

2
√

∑n
i=1 (Gest,i − Gest,i)

2

2

(11)

RMSE = 100/M×
√
(∑n

i=1 (Gobs,i − Gest,i)
2)/n (12)

MAE = 100/M× (∑n
i=1

∣∣Gobs,i − Gest,i
∣∣)/n (13)

RMSEE =
√
(∑n

i=1 (Gobs,i − Gest,i)
2)/n (14)

where n means the number of data points; Gest,i and Gobs,i are the estimated and observed
AOD/ARF/SSR, respectively; Gest,i and Gobs,i represent the mean of the estimated AOD/ARF/SSR
and observed AOD/ARF/SSR, respectively; and M means the mean of the observed
AOD/ARF/SSR values.

3. Results and Discussion

3.1. Validation of Estimated AOD

The AOD values retrieved by the Genetic_BP model were directly compared with measured
AOD values at the CARSNET and AERONET stations. Figure 6a shows the scatter plot of AOD
values from the CARSNET stations and AOD values calculated by Genetic_BP. Figure 6b shows the
scatter plot of AOD values from the AERONET stations and AOD values calculated by the Genetic_BP.
The results show that estimated AOD values by the Genetic_BP model have comparable accuracy.
A very strong positive correlation between the estimated AOD values and CASNET/AERONET AOD
ones is observed with small estimation errors. The RMSE, MAE, R and R2 for the estimated AOD
values at the CARSNET stations are 41.46%, 27.51%, 0.866 and 0.749, respectively. The RMSE, MAE,
R and R2 for the estimated AOD values at the AERONET stations are 44.98%, 29.23%, 0.865 and
0.747, respectively.

Figure 7 shows the monthly variations of the statistical indicators representing the model accuracy
of the Genetic_BP models at the CARSNET stations and AERONET stations, respectively. The results
show that the model deviations for Genetic_BP model were relatively large in summer than that



Remote Sens. 2018, 10, 1022 10 of 25

in spring and winter, due to the effect of cloudy and rainy weather in summer on the ground
meteorological measurements. The largest RMSE (45.56%) and MAE (29.94%) for the estimated
AOD values at CARSNET stations were found in September; the smallest RMSE (34.74%) and MAE
(24.49%) were found in December; the smallest R (0.847) and R2 (0.718) were in December; and the
largest R (0.887) and R2 (0.787) in September. The largest RMSE (59.76%) and MAE (39.66%) for the
estimated AOD values at the AERONET stations were found in July; the smallest RMSE (44.80%) and
MAE (29.82%) were found in October; the smallest R (0.801) and R2 (0.642) were in May; and the
largest R (0.875) and R2 (0.766) were in December.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 27 
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The AOD retrievals by the Genetic_BP model were also compared with the AOD observations and
estimations from MODIS and MERRA2 atthe CARSNET stations. Figure 8 illustrates the performance
of the AOD values derived from five MODIS AOD products including MOD08/MYD08 Deep
Blue algorithm (MODIS08DB), MOD08/MYD08 Combined Deep Blue and Dark Target algorithm
(MODIS08DTBC), MOD08/MYD08 Mean values (MODIS08MEAN), MOD04/MYD04 Deep Blue
algorithm (MODIS04DB), MOD04/MYD04 Dark Target algorithm (MODISDT). Figure 8f presents
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the scatter plot between the AOD values derived from MERRA2 AOD datasets and CARSNET
AOD values. The AOD retrievals using the Genetic_BP model performs superior to the MODIS
AOD and MERRA2 AOD products. The RMSE for MODIS08DB, MODIS08DTBC, MODIS08MEAN,
MODIS04DB, MODIS04DT and MERRA-2 AOD were 73.85%, 74.34%, 82.16%, 69.15%, 68.20% and
61.89%, respectively; the MAE values were50.84%, 50.35%, 55.48%, 47.28%, 46.82% and 39.36%,
respectively; the R were 0.666, 0.679, 0.697, 0.706, 0.758 and 0.705, respectively; and the R2 were 0.444,
0.461, 0.486, 0.499, 0.575 and 0.497 respectively. Overall, the accuracy of the AOD values derived from
MODIS and MERRA2 is relatively poor. Therefore, the Genetic_BP model can be used for estimating
AOD values over Mainland China with high accuracy.
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3.2. Validation of the Estimated SSR

Daily AOD values retrieved by the Genetic_BP model and meteorological measurements at
96 CMA radiation stations over Mainland China were used for the estimation of SSR using YHM.
Figure 9 shows the validation result of the estimated SSR values by YHM at 96 CMA radiation stations.
The results show that the YHM can estimate the SSR values with high accuracy, with RMSE, MAE,
R and R2 of 29.27%, 23.77%, 0.948 and 0.899, respectively. Figure 10 illustrates the spatial distributions
of RMSE and MAE for YHM throughout China, respectively. It is clear that the YHM shows comparable
performance over Mainland China, especially in the Plateau zones due to its strict theoretical basis
on the radiation dumping processes in the atmosphere; for example, the RMSE for Ganzi, Germu,
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Gangcha and Lhasa were 8.36%, 8.51%, 9.63% and 9.65%, respectively; and the MAE were 6.74%,
7.00%, 7.66% and 7.88%, respectively. The model accuracy in northern China is generally higher than
that in southern China, due to the dry air conditions there; for example, the RMSE for Erenhot, Ejinaqi
and Urat in Inner Mongolia were 8.90%, 9.18% and 9.88%, respectively; and the MAE were 5.91%,
6.45% and 6.88%, respectively. Relatively larger estimation errors mainly distributed in southern China,
owing to the abundant precipitable water vapor, changing weather and frequent cloud occurrence
there; for example, the RMSE for Jishou in Hunan province, Ganzhou in Jinagxi province and Changsha
in Hunan province were 30.55%, 29.25% and 27.52%, respectively; the MAE are 25.36%, 23.25% and
23.18%, respectively. The largest estimation errors were found in Chongqing in the Sichuan Basin,
with RMSE and MAE of 35.95% and 30.11%, respectively, while the smallest estimation errors were
found in Gaer in the Tibetan Plateau, with RMSE and MAE of 6.87% and 5.16%, respectively.
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Figure 11 shows the monthly variation of the RMSE, MAE, R and R2 for YHM over Mainland
China. The results show that the YHM performs superior in autumn and winter than that in summer
and spring, owing to the relatively larger estimation error of the AOD retrievals in spring and the
frequent cloudy and rainy days and changing weather in summer. The largest RMSE (29.02%) and
MAE (25.13%) for YHM are found in September and August, respectively, while the smallest RMSE
(25.06%) and MAE (20.12%) in December. The smallest R (0.909) and R2 (0.827) were in April, while the
largest R (0.934) and R2 (0.873) were in January.
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The SSR retrievals by the YHM model were compared with other SSR estimates from previous
studies. Yang et al. [78] developed a hybrid model (YHM) for estimating SSR, and validated at
the Germu station in Qinghai-Tibetan Plateau with RMSEE and R of 2.86 MJm−2day−1 and 0.96,
respectively. Yang et al. [78] also evaluated the performance of the calibrated Angstrom model at
the Germu station with RMSEE and R of 2.99 MJm−2day−1 and 0.96, respectively. Our retrievals
from the Germu station in this study perform superior than the estimated SSR values using YHM
in previous studies with RMSEE and R of 2.77 MJm−2day−1 and 0.96, respectively. Qin et al. [83]
made a comparative study of the performance of four SSR models over Mainland China, including the
YHM, EPP, an hourly solar radiation model (HSRM) and an artificial neutral network model (ANNM).
The results show that the YHM has better performances than EPP, HSRM, and ANNM. The RMSEE
for YHM, EPP, HSRM, and ANNM were 2.40 MJm−2day−1, 2.41 MJm−2day−1, 2.53 MJm−2day−1,
3.64 MJm−2day−1, and 2.85 MJm−2day−1, respectively; the R for YHM, EPP, HSRM, and ANNM were
0.94, 0.91, 0.91, 0.81, and 0.88, respectively. Qin et al. [84] evaluated the accuracy of three SSR products
including ISCCP-FD, GEWEX-SRB, and GLASS products over Mainland China. The results indicated
that the SSR retrievals by YHM were more accurate than those from the ISCCP-FD, GEWEX-SRB,
and GLASS products. The RMSEE for ISCCP-FD, GEWEX-SRB, and GLASS were 2.40 MJm−2day−1,
3.09 MJm−2day−1, 2.95 MJm−2day−1, and 2.95 MJm−2day−1, respectively; the R for ISCCP-FD,
GEWEX-SRB, and GLASS was 0.94, 0.91, 0.93, and 0.93, respectively. Overall, YHM using the
estimated AOD values by Genetic model could be used for the estimation of SSR with high accuracy
and robustness.

3.3. Validation of Estimated ARFB

Daily AOD values retrieved by the Genetic_BP model and daily meteorological measurements
at the CMA stations were used for estimating SSR values (with or without aerosols) using
YHM. Then, the ARFB values at 27 AERONET stations were calculated using formula (14).
Finally, the estimated ARFB values were validated at 27 AERONET stations. Figure 12 shows the
scatter plot between the estimated ARFB values and AERONET ARFB ones. It is obvious that the
estimated ARFB values are in good agreement with AERONET ARFB values with RMSE, MAE, R and
R2 of −35.47%, −25.33%, 0.843, and 0.711, respectively. Figure 13 illustrates the monthly variations of
the statistical indicators representing the model accuracy of the estimated ARFB values at AERONET
stations. The results indicate that relatively larger model deviations are observed in summer than in
spring and winter, due to the strong effect of cloudy and rainy weather at the sites of the meteorological
stations, and high human activity in summer. The largest RMSE (45.08%) and MAE (29.16%) for the
estimated ARFB values at AERONET stations were found in August, whilethe smallest RMSE (34.55%)
and MAE (24.74%) in December. The smallest R (0.819) and R2 (0.671) occurred in December, while the
largest R (0.886) and R2 (0.785) in September.
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3.4. Spatial and Temporal Variation of AOD-SSR-ARFB in China

3.4.1. Annual Variation of AOD-SSR-ARFB in China

Daily meteorological measurements at 716 CMA stations were used to calculate the daily and
monthly mean AOD values over Mainland China using the Genetic_BP model. Then, the daily
and monthly mean SSR and ARFB throughout China were calculated using YHM and formula (14).
Figure 14 shows the annual mean values of AOD, SSR and ARFB during 1980–2015 over Mainland
China. It was obvious that AOD, SSR and ARFB are closely correlated. The R between the annual mean
AOD and SSR values was0.715; the R between the annual mean AOD and ARFB values was−0.919;
and the R between the annual mean AOD and SSR values was−0.793.

In the beginning of the 1980s, the annual mean AOD values over Mainland China were relatively
lower than those in other periods during 1980–2015, due to low anthropogenic aerosol emissions in
the beginning of the 1980s. Thus, the ARFB and SSR values in that period were higher than those in
other periods. However, the AOD values dramatically fluctuated after 1982, owing to two giant volcano
eruptions in 1982 (ALCH Joan volcanic Eruption) and 1992 (Pinatubo Volcanic Eruption). The annual
mean AOD value reached the highest ever level (0.321) in 1992 during 1980–2015 over Mainland
China. The aerosol radiative effect also reached the strongest level in 1992 (−2.853 MJ m−2day−1)
during 1980–2015, because of the extremely dense aerosols in the air. Meanwhile, the SSR values
degraded in that period owing to the strong aerosol radiative effect. After 1992, the annual mean
AOD values gradually decreased. The annual mean AOD values during 1993–2000 were under the
level of 0.230. The SSR and ARFB values rose again in that period. In the beginning of 21st century,
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with the rapid development of economy and population growth in China, the anthropogenic aerosol
emissions dramatically rose, thus the AOD values gradually increased in that period. The annual
mean AOD values rose from 0.209 (in 2001) to 0.312 (in 2007). The aerosol radiative effect on solar
radiation gradually enhanced owing to the rising AOD values. The ranges for the annual mean SSR and
ARFB values during 2001–2007 are −2.173 to −2.537 MJ m−2day−1 and 15.764 to 15.177 MJ m−2day−1,
respectively. Since 2008, the anthropogenic aerosol emissions decreased, owing to the formulation and
implementation of many environmental protection policies for reducing carbon and aerosol emissions
in China. Therefore, the annual mean AOD values in China have gradually decreased since 2008.
The ranges of the annual mean AOD, SSR and ARFB values during 2008–2015 were 0.249–0.313,
−2.595 to −2.285 MJ m−2day−1 and 15.104–16.319 MJ m−2day−1, respectively.

Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 27 

 

 
Figure 14. Annual mean values of AOD, SSR and ARFB values during 1980–2015 over Mainland China. 

In the beginning of the 1980s, the annual mean AOD values over Mainland China were relatively 
lower than those in other periods during 1980–2015, due to low anthropogenic aerosol emissions in 
the beginning of the 1980s. Thus, the ARFB and SSR values in that period were higher than those in 
other periods. However, the AOD values dramatically fluctuated after 1982, owing to two giant 
volcano eruptions in 1982 (ALCH Joan volcanic Eruption) and 1992 (Pinatubo Volcanic Eruption). 
The annual mean AOD value reached the highest ever level (0.321) in 1992 during 1980–2015 over 
Mainland China. The aerosol radiative effect also reached the strongest level in 1992 (−2.853 MJ 
m−2day−1) during 1980–2015, because of the extremely dense aerosols in the air. Meanwhile, the SSR 
values degraded in that period owing to the strong aerosol radiative effect. After 1992, the annual 
mean AOD values gradually decreased. The annual mean AOD values during 1993–2000 were under 
the level of 0.230. The SSR and ARFB values rose again in that period. In the beginning of 21st century, 
with the rapid development of economy and population growth in China, the anthropogenic aerosol 
emissions dramatically rose, thus the AOD values gradually increased in that period. The annual 
mean AOD values rose from 0.209 (in 2001) to 0.312 (in 2007). The aerosol radiative effect on solar 
radiation gradually enhanced owing to the rising AOD values. The ranges for the annual mean SSR 
and ARFB values during 2001–2007 are −2.173 to −2.537 MJ m−2day−1 and 15.764 to 15.177 MJ m−2day−1, 
respectively. Since 2008, the anthropogenic aerosol emissions decreased, owing to the formulation 
and implementation of many environmental protection policies for reducing carbon and aerosol 
emissions in China. Therefore, the annual mean AOD values in China have gradually decreased since 
2008. The ranges of the annual mean AOD, SSR and ARFB values during 2008–2015 were0.249–0.313, 
−2.595 to −2.285 MJ m−2day−1 and 15.104–16.319 MJ m−2day−1, respectively. 

3.4.2. Spatial and Temporal Variations of AOD-SSR-ARFB in China 

Figures 15 and 16 illustrate the spatial and temporal variations of AOD values over Mainland 
China. The result show that the AOD values were generally higher in spring than in other seasons, 
due to the dense aerosol generated by the frequent sandstorms in northern China and the straw 
combustion in southern China. The monthly mean AOD values from January to December were 
0.197, 0.239, 0.299, 0.333, 0.320, 0.287, 0.257, 0.259, 0.237, 0.223, 0.195 and 0.183, respectively. The 
Sichuan Basin has always been an area with high AOD values, due to the high human activity and 
the basin topography (hindering aerosol diffusion in the air). The annual mean AOD value during 
1980–2015 in the Sichuan Basin was 0.699. The AOD range for the Sichuan Basin from January to 
December was0.365–0.711. The AOD values in North China Plain and the South Yangtze River were 
also high, because of intense human activity and favorable humid weather conditions for the 
formation of haze in the atmosphere; for example the annual mean AOD values in the Huainan and 
the plain of the middle and lower reaches of the Yangtze River, the North China Plain, the hilly areas 

Figure 14. Annual mean values of AOD, SSR and ARFB values during 1980–2015 over Mainland China.

3.4.2. Spatial and Temporal Variations of AOD-SSR-ARFB in China

Figures 15 and 16 illustrate the spatial and temporal variations of AOD values over Mainland
China. The result show that the AOD values were generally higher in spring than in other seasons,
due to the dense aerosol generated by the frequent sandstorms in northern China and the straw
combustion in southern China. The monthly mean AOD values from January to December were 0.197,
0.239, 0.299, 0.333, 0.320, 0.287, 0.257, 0.259, 0.237, 0.223, 0.195 and 0.183, respectively. The Sichuan
Basin has always been an area with high AOD values, due to the high human activity and the basin
topography (hindering aerosol diffusion in the air). The annual mean AOD value during 1980–2015
in the Sichuan Basin was 0.699. The AOD range for the Sichuan Basin from January to December
was0.365–0.711. The AOD values in North China Plain and the South Yangtze River were also high,
because of intense human activity and favorable humid weather conditions for the formation of haze
in the atmosphere; for example the annual mean AOD values in the Huainan and the plain of the
middle and lower reaches of the Yangtze River, the North China Plain, the hilly areas of the south of
the Yangtze River, the hills and hilly areas in the middle of the Shandong Province were 0.523, 0.513,
0.481, 0.476 and 0.442, respectively. The Tarim and Turpan Basin are also areas with high AOD values,
especially in summer owing to frequent dusty weather. The monthly mean AOD values for Tarim
and Turpan basin from January to December were 0.179, 0.271, 0.256, 0.187, 0.249, 0.317, 0.407, 0.451,
0.411, 0.334, 0.372 and 0.335, respectively. In contrast, northwestern China has always been an area
with low AOD values, due to relatively lower human activity and clear air conditions, for example the
ranges for the monthly mean AOD values in Alashan and Hexi Corridor, the western Inner Mongolia
high plain, and the eastern Inner Mongolia high plains were 0.151–0.312, 0.149–0.298, and 0.133–0.298,
respectively. The Qinghai Tibetan Plateau has always been an area with the lowest annual mean AOD
values and monthly mean AOD values, due to the clear atmosphere there, for example, the ranges of
the monthly mean AOD values in the Nagqu Plateau and the Ali mountains were 0.0120–0.082 and
0.044–0.106, respectively.
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Daily meteorological measurements including surface pressure, surface temperature,
relative humidity and sunshine duration at 716 CMA meteorological stations and retrieved AOD
values using Genetic_BP model were used to reveal the spatial and temporal variations of SSR over
Mainland China. Figures 17 and 18 illustrate these variations. The results show that the monthly
mean SSR values gradually increased from January to May and decreased from June to December,
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owing to the variations of the annual cycle of solar zenith and the maximum sunshine duration in
China. The monthly mean SSR for January, February, March, April, May, June, July, August, September,
October, November, and December were10.604, 13.349, 17.221, 21.420, 23.998, 24.196, 24.580, 23.250,
19.674, 15.843, 12.207 and 10.218 MJ m−2day−1, respectively. The Qinghai Tibetan Plateau has always
been an area with the highest SSR values, because of the weaker radiation extinction processes and
clear sky conditions; for example, the annual mean SSR for the Zangnan mountain area, the Qiangtang
Plateau Lake Basin, the Qaidam Basin and the Southern Qinghai Plateau Gully were22.714, 22.256,
20.175, 20.796 MJ m−2day−1, respectively. In contrast, the Sichuan Basin has always been an area
with the lowest SSR values, owing to the relatively abundant precipitable water vapor and strong
aerosol radiative effect. The annual mean SSR values for Sichuan Basin was 11.721 MJ m−2day−1.
Northeastern China was also an area with low SSR values, owing to the short sunshine duration in
winter and the relatively abundant precipitable water vapor in summer; for example, the annual mean
SSR values for Greater Khingan Range was13.624 MJ m−2day−1. The SSR values are generally higher
in northern China than in southern China in spring and summer, due to the relatively longer sunshine
durations and drier air conditions in northern China than that in southern China. However, the SSR
values are generally lower in northern China than in southern China in autumn and winter, owing to
the relatively shorter sunshine duration in northern China than those in southern China.
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Figure 17. Distribution of the annual mean SSR values over Mainland China during 1980–2015.

Figures 19 and 20 illustrate the spatial and temporal variation of ARFB over Mainland China
in different climate zones. The higher the SSR and AOD values are, the lower the ARFB value is.
The ARFB are generally stronger in spring and summer than in other seasons, due to the high AOD
and SSR values in spring and summer. The monthly mean ARFB values over Mainland China from
January to December were−1.353, −1.798, −2.434, −2.978, −2.986, −2.750, −2.636, −2.671, −2.262,
−1.890, −1.454 and −1.244 MJ m−2day−1, respectively. Eastern China has always been an area with
strong ARF, because of the strong human activity intensity and anthropogenic aerosol emissions there;
for example, the annual mean ARFB values for North China Plain, the Shandong hilly, the hills in
Jiaodong and Liaodong, the Huainan and the middle and lower reaches of the Yangtze River, and the
Jiangnan and Nanling Mountains were−3.108, −3.087, −3.006,−2.899 and −2.530 MJ m−2day−1,
respectively. The Tarim and Turpan Basins are also areas with low ARFB values, owing to the dusty
air conditions and high AOD values there. The annual mean ARFB value for Tarim and Turpan
Basinswas−2.736 MJ m−2day−1. In contrast, the Qinghai Tibet Plateau has always been an area with
weak ARF due to the relatively lower AOD values than other climatic zones; for example, the ARFB
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values for the Alishan Mountain, the Southern Qinghai Plateau Gully, the Qiangtang Plateau Lake Basin
and the Zangnan Mountain area were−1.188, −1.115, −1.086 and −0.955 MJ m−2day−1, respectively.
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4. Conclusions

The applicability of a new AOD retrieval algorithm (Genetic_BP) for estimating daily AOD values
over Mainland China was investigated. The estimated AOD values were validated at the CARSNET
and AERONET stations. Then, the retrieved AOD values by the Genetic_BP model were used for
improving the estimation of SSR and ARFB based on Yang’s hybrid model. The estimated SSR values
and ARFB values were evaluated using SSR (CMA) and ARFB (AERONET) measurements. Finally,
the spatial and temporal variations of AOD, SSR and ARFB over Mainland China were investigated.

The results show that the Genetic_BP model could be used for estimating AOD values over
Mainland China with comparable accuracy. The RMSE, MAE, R and R2 for the estimated AOD
values at the CARSNET stations were 41.46%, 27.51%, 0.866 and 0.749, respectively. The RMSE,
MAE, R and R2 for the estimated AOD values at the AERONET stations were 44.98%, 29.23%,
0.865 and 0.747, respectively. The validation results of the estimated SSR and ARFB values also showed
good agreement with SSR and ARFB measurements. The RMSE, MAE, R and R2 for the estimated
SSR values at the CMA stations were 29.27%, 23.77%, 0.948 and 0.899, respectively. The RMSE, MAE,
R and R2 for the estimated ARFB values at the AERONET stations were −35.47%, −25.33%, 0.843,
and 0.711, respectively. Using meteorological measurements from 716 CMA stations, the spatial
and temporal variations of AOD, SSR and ARFB values over Mainland China were investigated.
The AOD, SSR and ARFB values fluctuated greatly in the beginning of the 1980s over Mainland China,
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due to two great volcano eruptions: ALCH Joan volcanic Eruption (1982) and Pinatubo Volcanic
Eruption (1992). The highest annual mean AOD value (0.321) during 1980–2015 was observed in
1992. Affected by the extremely dense aerosol in the air, the ARF also reached the strongest level
in 1992 (−2.853 MJ m−2day−1). After 1992, the annual mean AOD values gradually decreased.
The annual mean AOD values during 1993–2000 were under 0.230. In the beginning of the21st century,
the AOD values gradually increased, because of the increasing anthropogenic aerosol emissions in
China in that period. The annual mean AOD values had rose from 0.209 (in 2001) to 0.312 (in 2007).
The ARF on SSR also gradually enhanced owing to the rising AOD values. The ranges for the
annual mean SSR and ARFB values during 2001–2007 were −2.173 to −2.537 MJ m−2day−1 and
15.764–15.177 MJ m−2day−1, respectively. Since 2008, many environmental protection policies for
reducing carbon and aerosol emissions have been formulated and implemented in China, decreasing
anthropogenic aerosol emissions. Thus, the annual mean AOD values in China gradually decreased.
The ranges of the annual mean AOD, SSR and ARFB values during 2008–2015 were 0.249–0.313,
−2.595 to −2.285 MJ m−2day−1 and 15.104–16.319 MJ m−2day−1, respectively.

The AOD values were higher in spring than that in other seasons. The largest monthly mean
AOD value (0.229) was found in March, while the smallest monthly mean AOD value (0.183) was in
December. Relatively larger AOD values were mainly observed in the Sichuan Basin, while smaller
AOD values were mainly observed in the Qinghai Tibetan Plateau. The SSR values were generally
higher in summer than in other seasons, because of the relatively higher solar zenith and the greater
sunshine duration in summer than in other seasons. The SSR values gradually increased from January
(6.697 MJ m−2day−1) to June (14.028 MJ m−2day−1) and decreased from July (13.601 MJ m−2day−1) to
December (6.140 MJ m−2day−1). The Qinghai Tibetan Plateau has always been an area with the highest
SSR values, while the Sichuan Basin has always been an area with the lowest SSR values. The ARFB
values were closely correlated with AOD and SSR values. The monthly mean ARFB values gradually
decreased from January (−1.353 MJ m−2day−1) to June (−2.750 MJ m−2day−1) and increased from
July (−2.636 MJ m−2day−1) to December (−1.244 MJ m−2day−1), owing the relatively higher AOD
values and SSR values in summer than that in other seasons. Eastern China has always been an
area with strong aerosol radiative effect, because of the strong human activity and anthropogenic
aerosol emissions. The Tarim and Turpan Basin are also areas with strong ARF, owing to the dusty air
conditions and high AOD values. In contrast, the Qinghai Tibetan Plateau has always been an area
with weak ARF, due to the relatively lower AOD values than in other climate zones.

Certainly, this new approach for improving the estimation of AOD, SSR and ARFB should be
further applied and validated in other climatic zones and ecosystems around the world. More attention
should be paid to the quantitative correlations among AOD, SSR and ARFB in different climatic zones
and ecosystems.
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Appendix A

The cloud transmittance parameter τc for YHM can be calculated as follows:

τc = 0.2495 + 1.1415(SH/N) + 0.3910(SH/N)2 (A1)
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Hclr is the daily surface solar radiation (MJ m−2day−1) for clear sky conditions. It is expressed
as follows:

Hclr = R0

(
τclr

b + τclr
d

)
(A2)

where R0 is the SSR on a horizontal surface at the extraterrestrial level; and τclr
b and τclr

d are the
beam and diffuse transmittance for clear sky conditions, respectively. τclr

b and τclr
d can be calculated

as follows:
τclr

b ≈ max(0, ToTwTgTrTa − 0.013) (A3)

τclr
d ≈ 0.5(TaTwTg + 0.013) (A4)

Tg = exp(−0.0117m′0.3139
) (A5)

Tw = min[1, 0.909− 0.036 ln(mw)] (A6)

To = exp
[
−0.0365(ml)0.7136

]
(A7)

Ta = exp
{
−mβ

[
0.6777 + 0.1464mβ− 0.00626(mβ)2

]−1.3
}

(A8)

Tr = exp

[
−0.008735m′(0.547 + 0.014m′

−0.00038m′2 + 4.6× 10−6m′3)−4.08

]
(A9)

β = 0.51.3δ0.5 (A10)

where Ta, To, Tr, Tg and Tw are the transmittances for aerosol, ozone, Rayleigh scattering, mixed gases,
and water vapor, respectively; m and m′ are the relative air mass and the pressure-corrected air mass,
respectively; l is the ozone amount; w is the precipitable water vapor; β is the Angstrom turbidity
coefficient [85]; and δ0.5 is the AOD value at 0.5 µm. In this study, δ0.5 was calculated by δ0.55 using the
Angstrom equation [86,87]:

δ0.5 = δ0.55 × (0.50/0.55)−1.224 (A11)
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