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Abstract: Accurate information on cropland changes is critical for food production and security,
sustainable cropland management, and global change studies. The common change detection
methods bi-temporal based, using remotely sensed imagery easily generate pseudo changes due
to phenological or seasonal differences. Cropland exhibits a distinctive phenological trajectory that
has strong periodic characteristics and seasonal paths. This paper proposes the use of phenological
trajectory similarity to search for the overall changes between two time-series images instead of single
change events between two dates of imagery. Due to the complex spectral–temporal characteristic
of cropland, a phenological trajectory was constructed using a multi-harmonic model for capturing
intra-annual variations. Then, phenological trajectory similarity was measured using coefficient
vector difference (CVD), and used for detecting change/no-change areas when considering both the
amplitude and phase difference. Finally, instead of the traditional classification method based on
original images, we used the coefficient ratio vector (CRV) as the input for change type discrimination.
The distance between the coefficient ratio vector (CRV) of the change pixel and of the reference
change type was calculated to identify the exactly changed types. The performance of this proposed
approach was tested using two sets of Landsat time-series images from 2010 and 2015. Moreover,
the change area detection results of three other methods, namely, the continuous change detection
and classification (CCDC), change vector analysis (CVA), and post-classification comparison (PCC),
were also calculated for comparison and analysis. The results indicated that the proposed approach
acquired the highest accuracy with an overall accuracy of 98.58% and a kappa coefficient of 0.82,
which demonstrated that the method provides the capacity to detect real changes and estimate
pseudo changes caused by season differences.

Keywords: cropland; change detection; phenological trajectory similarity; multi-harmonic model;
vegetation index (VI) time series

1. Introduction

Cropland is the basic resource and condition of human existence, and its quantity and quality
are an important basis for ensuring global food production security [1]. Cropland changes not only
directly threaten the survival and development of mankind, food production, and security, but also
affect the biogeochemical cycles, global warming, and lead to environmental problems [2–4]. However,
large areas of cropland have been shrinking over the past decades due to rapid urbanization and forest
plantations [5]. Therefore, timely, accurate, and cost-effective cropland change detection is critical for
more effective policy making, yield estimation, and sustainable cropland management practices [6–9].

Remote sensing has proven to be useful for mapping and characterizing cropland information [10,11].
A variety of change detection methods utilizing remote sensing data have been developed for detecting
changes [12–14]. The widely used methods including image differencing, change vector analysis (CVA),
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and post-classification comparison (PCC), are based on a bi-temporal strategy, which is quite simple
and straightforward [15–17]. However, since cropland changes dramatically with the season shifts,
pseudo changes caused by phenological differences are more likely to be produced [18,19]. Recently,
time series analysis has been proven to be superior to the bi-temporal methods for capturing land cover
change, since it significantly reduces the impacts of seasonal differences and interference noises [20–22].
Accordingly, many algorithms based on time-series analysis have been proposed for assessing change.
For example, the Landsat-based Detection of Trends in Disturbance and Recovery (Landtrendr)
proposed by Kennedy et al., (2010) detected an abrupt forest disturbance using a temporal segmentation
algorithm [23]. The Breaks for Additive Seasonal and Trend (BFAST) algorithm developed by Verbesselt
et al., (2010) is capable of capturing multiple breakpoint changes by estimating time and magnitude
of changes occurring within the seasonal or trend components [24–26]. The Continuous Change
Detection and Classification (CCDC) estimated the trend of the time-series by using harmonic models
and utilized this trend to characterize multiple changes, including abrupt [27].

Although these approaches are very effective in identifying abrupt or gradual changes, they only
focused on the detection of forest disturbance and urban expansion, while neglecting agricultural or
cropland variations [28,29]. This is mainly due to the fact that the cropland may possess not only more
complicated spectral features but also more dynamic temporal characteristics due to the discrepancies
between categories, phenology, and growth stage [30,31]. Therefore, the existing methods may be
invalid for cropland change detection. To fully capture cropland changes, it is necessary to excavate
more temporal information (e.g., phenological information).

Fortunately, cropland phenology is a temporal feature that describes the seasonal growth and
dynamic development of cropland, which is primarily featured by the obvious time phases of sowing,
emergence, growing, ripening, and harvesting. A growing number of studies have focused on utilizing
remote sensing data to extract phenology information [32–34]. However, most of them mainly focused
on the extraction of key phenological parameters, such as the start of the growing season and the end
of the season without considering the overall change of phenological characteristics, namely changes in
phenology trajectory. Generally, phenological trajectory can be derived from the function model fitting
time-series data [35,36]. However, most mathematical models (e.g., logistic model, Gaussian model,
and the simple harmonic model) for fitting phenological trajectory have mainly focused on a single
growth or senescence cycle that natural vegetation types possess [37,38]. In fact, cropland may present
a more complex phenology cycle than natural vegetation, such as double- or triple-crop patterns within
a year. Therefore, the existing models fail to fully describe and capture the phenological trajectory
of cropland.

In this paper, we propose a new method based on phenological trajectory similarity to solve the
issue of pseudo changes caused by phenological differences. The basic idea of the proposed method
is that we search for the overall changes between two phenological trajectories instead of exploiting
single change events between two dates of imagery. Our method relies on a multi-harmonic model
that remarkably matches VI time series due to its periodic changes and season paths. Although most
studies mainly utilize the Normalized Difference Vegetation Index (NDVI) time series to capture
phenological changes [39,40], the Enhanced Vegetation Index (EVI) still has a higher sensitivity than
the NDVI in dense vegetation areas. For this study, we define ‘phenological trajectory’ as the fitted
curve through the EVI time series of one year. The objectives of this study are thus (1) to establish
a multi-harmonic model to fully capture phenological changes under different cropping patterns,
and (2) to test the robustness and performance of the proposed method using Landsat time-series data
of Shandong Province, China.

2. Methodology

The core of our approach is that we designate finding comprehensive changes between two
time-series trajectories rather than searching for the single change events between two dates of
imagery. However, image preprocessing is prerequisite for change detection. In this paper, the Landsat
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Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm was used for converting
DN to surface reflectance [41], and the Function of mask (Fmask) was use for detecting cloud and
cloud shadows. The detailed preprocessing procedure is described in Section 3 [42]. The main body
of the proposed method can be split into three parts (Figure 1). First, a multi-harmonic model is
established to describe phenological changes for different cropping patterns. Second, based on the
phenological trajectory of the pixels, the model coefficient vector difference (CVD) is designed to
measure similarity in order to detect change/no-change areas. Third, the coefficient ratio vector (CRV)
of reference changed types and of changed pixels is calculated, respectively. Then the change type is
discriminated by the minimum distance of the CRV .
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2.1. Phenological Trajectory Description Using the Multi-Harmonic Model

Numerous models have been applied to fit vegetation index (VI) time series for land cover change
analysis, such as the local asymmetric Gaussian function (AG), the double logistic (DL), and the
harmonic model [43]. Recently, de Beurs and Henebry (2010) presented 12 existing spatio-temporal
methods to estimate phenological parameters, and Atkinson et al., (2012) surveyed four time-series
models to smooth time-series vegetation index data [44,45]. However, each model has its own
advantages and disadvantages, and the choice of model needs to be based on the land cover type.
Figure 2 presents the fitting results from three models, the AG, DL, and harmonic model. However,
AG and DL are unable to accurately match different waveforms and capture growing season variations
as they are always adapted to the upper envelope of the time series. Because the annual phenology
of cropland has periodic changes and season paths, the harmonic model remarkably matches the
intra-annual VI time series. Moreover, the harmonic model is capable of decomposing a noise-affected
time series into periodic signals in the frequency domain, each defined by unique amplitude and phase
values [46].
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phenological trajectory description therefore requires high frequency terms for full fitting. Figure 3 
shows the phenological trajectory of cropland collected from the Landsat OLI time-series image in 
2015, and illustrates the fitting results by including different components of the harmonic model. 
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Figure 2. The three models fitted to time-series from homogeneous pixels of cropland derived from
the Landsat Operational Land Imager (OLI) time-series image in 2015. The three models are the local
asymmetric Gaussian function (AG), the double logistic (DL), and the harmonic model respectively.

Recently, the continuous change detection and classification (CCDC) algorithm proposed by Zhu
and Woodcock (2014) applied simple harmonic model (first order) to predict all land cover types by
using all available Landsat images. The simple harmonic model is often not satisfactory for the complex
shape of phenological dynamics that has more intra-annual variation, and phenological trajectory
description therefore requires high frequency terms for full fitting. Figure 3 shows the phenological
trajectory of cropland collected from the Landsat OLI time-series image in 2015, and illustrates the
fitting results by including different components of the harmonic model.
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Figure 3. The phenological trajectory of cropland collected from Landsat OLI time-series image in 2015,
and the fitting results by including different components of the harmonic model (1st harmonic model
and 1st + 2nd harmonic model).

In this paper, the multi-harmonic model including the first- and second-order harmonic, was used
for describing phenological trajectory. The second harmonic is capable of capturing the detailed
phenology of the biannual signal. Moreover, the harmonic model separates components of the time
series into different frequency domains. Therefore, the lower-order harmonics (mainly refer to first
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and second harmonics) accounts for the majority of the VI time series variance while the higher-order
components include substantial noise. The multi-harmonic model we adopted is described as follows:

V̂I(t) = a0 + a1 cos
(

2π
T

t
)
+ b1 sin

(
2π
T

t
)
+ a2 cos

(
2π

0.5T
t
)
+ b2 sin

(
2π

0.5T
t
)

(1)

where

a0 is the coefficient of the overall value for the vegetation index;
a1 and b1 capture intra-annual change for the vegetation index;
a2 and b2 indicate intra-annual bimodal change for the vegetation index;
V̂I(t) is the index value for the vegetation index at the Julian dates.

For each pixel, five coefficients of the multi-harmonic model can be estimated by using MPFIT,
an implementation of the iterative Levenberg–Marquardt technique to solve the least-squares problem.
The MPFIT was selected because of its improved robustness and higher computational efficiency
than the ordinary least square (OLS) [47]. The initial estimates of the coefficient values were input
into MPFIT. The fitness between observation and fitted value was estimated using the coefficient of
determination (R2). If the R2 value was less than 0.6, observations with maximum residual error were
removed, which returned the adjusted coefficients set that best fitted the phenological trajectory.

2.2. Change Areas Detection Using Phenological Trajectory Similarity

Generally, the phenological trajectory is characterized by baseline, amplitude, timing and shape.
Across different years, the changing of land cover (e.g., natural or anthropogenic disturbances) causes
the variation in amplitude, timing and shape of the phenological trajectories. For the pixel that changes
from cropland to urban built-up, the trajectory of the EVI shows the biggest difference. Figure 4
shows the phenological trajectory of cropland based on the EVI time series derived from Landsat
Enhanced Thematic Mapper Plus (ETM+) images in 2010 and of urban built-up based on EVI time
series derived from Landsat OLI images in 2015. The examples illustrate that these changes could
be detected by examining changes in amplitude, timing, and shape. Following this assumption,
change detection is accomplished by measuring the similarity of the phenological trajectory of the
same pixel at different years.
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2.2.1. Phenological Trajectory Similarity Indicator

Once the phenological trajectory was generated, the coefficient vector CV = (a0, a1, b1, a2, b2,
RMSE)T was extracted to fully excavate phenology information embedded in the temporal trajectory.
The first five coefficients (a0, a1, b1, a2, and b2) in the multi-harmonic model have definite physical
significance associated with phenology. The zero-order coefficient a0 is the arithmetic mean of VI over
the time series and represents the overall productivity of cropland. The first-term amplitude values
a1 indicate the variability of productivity over the year. The first-term phase value b1 summarizes
the timing of the growth stage. The amplitude a2 and phase b2 of second-order harmonic mainly
describe the detailed phenological information of bimodal cropland activity (e.g., double or triple
cropping a year) [48]. The root mean square error (RMSE) is used for assessing the fitness that indicates
residual error. It is able to reflect the possibility of cropland change to some extent. For example,
when cropland is changed to urban built-up, RMSE may get bigger since the harmonic model is not
the most suitable for the urban area even though it can well fit the phenological trajectory of cropland.
Figure 5 illustrates the model coefficients vector for four different kinds of land cover classes. It is clear
that cropland shows quite different shapes in the plots of the six variables, especially a2 showing a
lower value.
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2.2.2. Change Detection Using Coefficient Vector Difference (CVD)

Directional cropland change, which results from natural and anthropogenic disturbances,
could be detectable using harmonic analysis of the phenological trajectory by examining changes
in CV . In the frequency domain, CV contains two components: a1, a2 represent the amplitude of
trajectory and b1, b2 represent the phase of trajectory. On the one hand, amplitude scaling can
cause intensity variations and occurs when the seasonal peak has been stretched or compressed in
the y-axis. These intensity variations could be related to changes in vegetation vigor or coverage.
Amplitude translation (i.e., when the time series has been shifted in the y-axis) is related to shifts in
the background reflectance. On the other hand, phase effects (i.e., changing the width of the seasonal
trajectory) could be related to changes in the length of the growing season due to an earlier or later onset
of the growing season. The shape or values change of the VI time series (referring to the phenological
trajectory here) can be the result of amplitude and phase effects. The shape of trajectory is important
for deriving cropland phenological features, and values are also indispensable to describe the growth
and change of the cropland. Therefore, both shape and value (i.e., amplitude and phase) differences
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are designed to quantitatively and qualitatively assessing changes of phenological trajectories of the
same pixel at different years.

The similarity measurement is based on exploiting the differences of coefficient vector by
considering amplitude and phase. Accordingly, it is assumed that the coefficient vectors of the
pixel at year t1 and year t2 are given by CVt1 and CVt2 , respectively, and the CVD is calculated as
change magnitude as follows:

CVD =
(
CVt1 , CVt2

)
=

√
∑2

k=0

(
at1

k − at2
k

)2
+

√
∑2

k=1

(
bt1

k − bt2
k

)2
+
∣∣RMSEt1 − RMSEt2

∣∣ (2)

where k is the order number of the harmonic, the first term of the formula is the amplitude difference
and the second term is the phase difference while the third term indicates the residual error of the
harmonic model.

Figure 6 shows the phenological trajectory of cropland collected from the Landsat ETM+
time-series image in 2010 and Landsat OLI time-series image in 2015. Figure 6a shows amplitude
effects occur due to different cropland types, which lead to the changing height peak of the EVI curve
(i.e., the seasonal peak has been stretched or compressed in the y-axis). Figure 6b shows phase effects
occur primarily due to a change of the rainy season, resulting in the time series being stretched or
compressed in time, thus changing the width of the phenological trajectory. EVI curves of cropland at
2010, urban built-up and water at 2015 are compared in Figure 6c, Figure 6d, respectively. Based on
the calculation of CVD, change magnitudes of the four pair EVI curves were computed. As shown
in Figure 6e, the CVD between different cropland types shows a relatively small variance. Similarly,
the CVD of cropland with different time location of the seasonal peak also has a small variance.
In contrast, the CVD of change type from cropland to urban built-up and water is much larger.
It means that the pseudo changes caused by differences of cropland type and influence of weather
events (change of rainy season resulting in an earlier or later onset of the growing season) can be
eliminated effectively based on CVD.
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Figure 6. Change magnitude of phenological trajectory (or EVI curve) between 2010 and 2015.
(a) phenological trajectory difference caused by different cropland type; (b) phenological trajectory
difference caused by time scaling due to change of the rainy season; (c) trajectory difference caused by
change from cropland to urban built-up; (d) trajectory difference caused by change from cropland to
water; (e) change magnitude of four pair curves based on CVD.

As for the magnitude of the change, a larger CVD indicates a greater possibility for
changing. Given the magnitude image of change, a self-adaptive threshold algorithm called
Expectation-Maximization (EM) can be used to detect the change/no-change areas. The EM algorithm
applies an unsupervised assessment of prior probability density functions to automatically select the
threshold to minimize the change-detection error probability. The pixels with greater magnitude than
the threshold were labelled as changed pixels.

2.3. Change Type Discrimination Using Coefficient Ratio Vector (CRV)

It is more important to acquire the detailed “from-to” change information after detecting change
areas [49]. However, for a pixel that has undergone a change from one class to another, the CV will
definitely show a bigger difference. Different land cover change type has different change patterns of
CV . Therefore, the coefficient ratio vector (CRV) was proposed here to determine change type both
qualitatively and quantitatively. Firstly, the reference CRV of typical change types could be constructed
based on the reference image. Then, the change type of the changed pixel could be determined based
on the minimum distance between reference CRV and target CRV .

2.3.1. Reference CRV Construction

To determine the change types of changed pixels, the reference CRV is required for determining
the change type of the changed pixel. In this study, we assume that the CRV differences between any
two land cover types on t1 are approximately equal to their CRV differences from t1 to t2. Therefore,
the reference of a changed CRV was calculated on the reference image at t1. First, a certain number of
samples for each class was selected based on a known classification map on t1, and the CV of each class
was derived from the harmonic model. Then, the mean value CVi of each class could be calculated.
Finally, the reference CRVref

ij between any two kinds of land cover types i and j were calculated based

on CVi and CVj. The reference CRVref
ij can be used for distance measuring, in order to discriminate

change types from t1 to t2.

CRVref
ij = CVi

/
CVj =

(
ai,0

aj,0
,

ai,1

aj,1
,

bi,1

bj,1
,

ai,2

aj,2
,

bi,2

bj,2
,

RMSEi

RMSEj

)T

(3)

Based on the calculation of CRV , the model coefficient of examples in Figure 5 was used to
acquire the coefficient ratio vector between different land cover types. Because different types of



Remote Sens. 2018, 10, 1020 9 of 20

land cover have distinctive coefficient vectors, certain change types between two land cover types
also have distinctive change patterns. Figure 7b shows the CRV between different cropland types,
and Figure 7c,d shows the coefficient ratio vector of two change types from cropland to urban built-up
and from cropland to water bodies respectively. As shown in Figure 7b, the CRV between different
cropland types have the same signs (positive). When the changes occur from cropland to other land
cover types (i.e., urban or water), the CRV signs are inconsistent and differ in different coefficients.
This finding implies that different land cover change types have different CRV . Moreover, the value
difference of CRV between the two land cover types shows much larger variance than between
different cropland types. Therefore, the reference CRV should be constructed according to different
signs (qualitatively) and values (quantitatively).

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 20 

 

variance than between different cropland types. Therefore, the reference CRV should be constructed 
according to different signs (qualitatively) and values (quantitatively). 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. The signs and value differences of the coefficient ratio vector (CRV) between different land 
cover types. (a) model coefficient difference caused by different cropland type; (b) CRV between 
different cropland type; (c) model coefficient difference caused by change from cropland to urban 
built-up; (d) CRV between cropland and urban built-up; (e) model coefficient difference caused by 
change from cropland to water bodies; (f) CRV between cropland and water bodies. 

2.3.2. Change Type Discrimination by CRV Distance 

After the change areas were identified, the changed pixel’s 𝑪𝑹𝑽  from t  to t  could also be 
computed: 

𝑪𝑹𝑽 = (
a ,

a ,

,
a ,

a ,

,
b ,

b ,

,
a ,

a ,

,
b ,

b ,

,
RMSE

RMSE
)  (4) 

Suppose the pixel belongs to cropland at t , the corresponding reference CRV from cropland to 
others can be selected. Then, the change type is be determined based on the minimum distance 
between the reference 𝑪𝑹𝑽  and the 𝑪𝑹𝑽  of the changed pixel. 
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built-up; (d) CRV between cropland and urban built-up; (e) model coefficient difference caused by
change from cropland to water bodies; (f) CRV between cropland and water bodies.
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2.3.2. Change Type Discrimination by CRV Distance

After the change areas were identified, the changed pixel’s CRV′t1t2
from t1 to t2 could also be

computed:

CRV′t1t2
=

(
a′t1,0

a′t2,0
,

a′t1,1

a′t2,1
,

b′t1,1

b′t2,1
,

a′t1,2

a′t2,2
,

b′t1,2

b′t2,2
,

RMSE′t1

RMSE′t2

)T

(4)

Suppose the pixel belongs to cropland at t1, the corresponding reference CRV from cropland
to others can be selected. Then, the change type is be determined based on the minimum distance
between the reference CRVref

ij and the CRV′t1t2
of the changed pixel.

D(CVR′t1t2
, CVRref

ij ) = min
{
∑
∣∣∣CVR′t1t2

− CVRref
12

∣∣∣, ∑∣∣∣CVR′t1t2
− CVRref

13

∣∣∣, · · ·∑∣∣∣CVR′t1t2
− CVRref

ij

∣∣∣} (5)

A smaller D value indicates a higher similarity, and the change type of the changed pixel is then
assigned to the class with the minimum D

(
CVR′t1t2

, CVRref
ij

)
.

3. Study Area and Data

Our study area belongs to the North China Plain located in central Shandong Province, China,
bound by 35◦39′ to 36◦12′N and 115◦55′ to 116◦23′E (Figure 8). Mean annual temperature is 12.9 ◦C
and mean annual precipitation is 687 mm 32% falling in July. There are some zones of mountainous
areas, but the region is dominated by agriculture. The main land cover types of the area are cropland,
water, urban built-up, forest, and barren. There are two types of cropping systems in our study area.
The dual cropping system is composed of winter wheat and summer corn, and the single cropping
system is mostly peanuts. Over the past few decades, rapid industrialization and urbanization have
greatly changed the agricultural land pattern in this study area.
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Figure 8. Location of the study area, showing the land cover classification from Globeland30 2010.

We used a series of Landsat sensors Thematic Mapper (TM), Enhanced Thematic Mapper Plus
(ETM+), and Operational Land Imager (OLI) image for Path 122, Row 35 for the years 2009, 2010, 2015,
2016 (Table 1) assuming no cropland change had occurred within neighboring two years. Two years
(2009 and 2010) of Landsat TM and ETM+ images (11 images) were selected as time-series data at
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t1 year, and another two years (2015 and 2016) of Landsat OLI images (12 images) were used as
time-series data at t2 year.

Table 1. Description of Landsat images (including Thematic Mapper (TM), Enhanced Thematic Mapper
Plus (ETM+), and Operational Land Imager (OLI) image) used in the analysis.

Number Date Sensor Number Date Type

1 10 January 2009 ETM 1 19 January 2015 OLI
2 10 March 2010 TM 2 4 February 2015 OLI
3 3 April 2010 ETM 3 24 March 2015 OLI
4 16 April 2009 ETM 4 25 April 2015 OLI
5 27 April 2010 TM 5 13 May 2016 OLI
6 3 June 2009 ETM 6 12 June 2015 OLI
7 22 June 2010 ETM 7 14 July 2015 OLI
8 17 August 2010 TM 8 1 August 2016 OLI
9 30 August 2009 TM 9 2 September 2016 OLI
10 10 September 2010 ETM 10 2 October 2015 OLI
11 17 October 2009 TM 11 3 November 2015 OLI

12 21 December 2015 OLI

Image preprocessing is critical to the change detection, facilitating comparison of time series
images. Image preprocessing mainly includes geo-referencing, atmospheric correction, and cloud and
cloud shadows detection. First, to convert all raw imagery from the DN to surface reflectance values,
we used the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) developed by the
United States Geological Survey (USGS) to perform automatic atmospheric correction. The LEDAPS
algorithm is a highly standardized preprocessing tool that ensures the compressibility of reflectance
values from different sensors. The algorithm also requires some ancillary data such as water vapor and
ozone concentration. LEDAPS source code and ancillary data can be downloaded from USGS. Second,
cloud, cloud shadows and snow were detected using the object-based Fmask algorithm. We used
Bands 1, 2, 3, 4, 5, 7 and Band 6 Brightness Temperature (BT) as input data. Fmask ulitizes rules
based on cloud physical properties and an object matching approach to extract cloud, cloud shadows,
and snow. Finally, relative radiometric normalization was performed using multivariate alteration
detection and calibration (MADCAL) algorithms [48]. After the cloud and cloud shadow masking
steps were completed for all images, pixels labelled as cloud or cloud shadows were not used in the
proposed method. One strategy to complete the integrity of the time-series was the linear-interpolation
technology: the masked pixels were given a value according to the trajectory of the clear observations.
Specifically, for each masked pixel in a particular day i, the temporally nearest clear observations
acquired before (b) and after (a) day i were used to drive its value as follows:

Ri = Rb + (i− b)× Ra − Rb
a− b

(6)

where a and b are before and after day i, respectively; and Ra, Rb, andRi are the reflectance values on a,
b, and i, respectively.

There are several non-cropland types in our study area, such as water bodies, barren land,
and artificial surfaces. To avoid confusion between cropland and other land cover types, we extracted
a cropland mask and only assessed these pixels for change. We detected cropland change from t1 year
to t2 year, and cropland mask was made only for images from the t1 year. That is to say, the changes
we detected are from cropland to other types. In our experiment, the Landsat images from 2010 were
selected as time-series data at t1 year. Therefore, the cropland mask of images at the t1 year was
produced using Globeland30 2010. Meanwhile high spatial resolution images from Google Earth were
used to help manual interpretation. If there was confusion in comparing the two Landsat images,
high spatial resolution images before and after 2010 (can be a few years apart) from Google Earth were
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used to help determine what was happening at the specific locations. The land cover of each reference
point was checked against the Google Earth image with sub-meters spatial resolution.

4. Results

4.1. Change Areas Detection

The proposed change detection method was used to estimate the change magnitude of the
phenological trajectory between the two years (t1 and t2). Generally, pixels having relatively large
magnitudes were labelled as changed areas, and those pixels with smaller magnitudes were classified
as unchanged areas. The EM algorithm was used to determine the threshold for change detection.
These images of change area were formatted as binary images and used as mask files for further change
type discrimination (Figure 9).
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Figure 9. Detected change areas based on phenological trajectory similarity (in black).

The results show signs of cropland change pattern, as indicated by the reduction in cropland area
(Figure 9). However, most of the reduction in cropland can be found geographically in the northwest
and southwest parts. These changes in the landscape of Tai’an are mainly the outcome of the continuous
urban sprawl of the urban district region over the past five years (2010–2015). Change detection results
only including change and no-change classes showed high performance for detection accuracy, with an
overall accuracy (OA) value of 98.58% and kappa coefficient of 0.82 (Table 2).

Table 2. Confusion matrix of change/no-change detection results.

Classified Changed (Pixels)
Reference Changed (Pixels)

No-Change Change Sum Commission Error

Nochange 48,130 715 48,845 1.46
Change 2 1672 1674 0.12

Sum 48,132 2387 50,519
Omission error 0.00 29.95

OA(%) = 98.58%, Kappa coefficient = 0.82

To evaluate the improvement and effectiveness of our method, the change areas detection results
of the three other methods, CCDC, CVA, and PCC, were calculated for comparison and analysis. In the
CCDC method, two years (2009 and 2010) of time-series images (11 images) were used as input data to
describe the trend, and predicted images value at 2015. Then, the differences between model predicted
and observed value were used to detect the change areas. CVA and PCC were separately conducted
based on several Landsat images acquired on 3 April 2010 and 2 October 2015. To visually inspect
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areas of change or no-change in detail, four subset areas of the change detection results were selected
(Figures 10 and 11).
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Figure 10. Change detection results for two subset areas: (a) Landsat images on 3 April 2010; (b)
Landsat images on 2 October 2015; (c) Google earth image at 2010; (d) Google earth image at 2015; and
change detection result of the proposed method (e), Continuous Change Detection and Classification
(CCDC) (f), change vector analysis (CVA) (g) and post-classification comparison (PCC) (h).
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Landsat images on 2 October 2015; (c) Google earth image at 2010; (d) Google earth image at 2015; and
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Figure 10 shows cropland related changes from cropland to urban built-up are the primary
changes that occurred between the two time periods for the subset-1 and subset-2 area. The area
inside the yellow polygon changed from 2010 to 2015 according to Google earth image with higher
resolution. In subset-1 area, the results show that changes associated with urban development are
correctly identified using the proposed method. Although the obvious changes were very well detected
in CCDC, the subtle changes were not well detected in this image. By contrast, CVA and PCC detected
many pseudo changes instead of true changes. This might be because the change magnitude of
cropland pseudo changes is greater than that of real change from cropland to urban built-up. Similarly,
for subset-2 area, although the CCDC also correctly identified real changes, it also produced a lot of
pseudo changes or pepper and salt noises. The achieved results indicate superiority of the proposed
method to other methods in detecting real changes.

As shown in Figure 11 (the subset-3 and subset-4 area, respectively), the two subset areas remained
unchanged from 2010 to 2015 according to the Google earth image. The result shows that pseudo
changes are not produced in the proposed method. It is clear that our method outperforms the
other three methods in the capacity of elimination of pseudo change caused by seasonal difference.
For cropland that likely has a large spectral change but not a real cover change, our method significantly
eliminated these changes by combining the difference of the phenological trajectories. However, CCDC,
CVA, and PCC captured these apparent spurious changes because of a larger change magnitude
resulting from crop rotation, irrigation, and seasonality.

The accuracy assessment with the same test samples is shown in Table 3. It is clear that the
proposed method acquired the highest accuracy with an overall accuracy of 98.58% and a kappa
coefficient of 0.82. The CCDC has a higher accuracy than the CVA and PCC method with the overall
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accuracy of 95.23% and a kappa coefficient of 0.79. By contrast, the CVA and PCC method with the
lower accuracy provided relatively less reliable results for cropland change detection.

Table 3. Accuracies of the four change detection methods.

The Proposed
Method

Continuous Change
Detection and

Classification (CCDC)

Change Vector
Analysis (CVA)

Post-Classification
Comparison (PCC)

Thresholds 1.5 1.0 82.57 78.14

OA (%) 98.58 95.23 93.96 93.42

Kappa coefficient 0.82 0.79 0.66 0.78

4.2. Change Type Discrimination

Once the change areas were identified, the change type could be discriminated based on CRV
distance. Globeland30 2010 was used as a baseline for acquiring training datasets from unchanged
pixels. The classification of the change type was performed by first calculating the difference between
the CRV of the change pixel and each reference pixel using Equation (5). The change type of pixel was
then assigned to the class with the minimum D.

The change type discrimination results by using the CRV distance are presented on Figure 12.
For comparison, the CCDC classification method was used for the same training data for image
classification. The CCDC uses the model coefficients as the inputs for land cover classification.
As an example, the results of change type discrimination by using both the CRV distance and CCDC
are presented on Figure 13. As shown in the subset-1 area, the apparent changes are from urban
developments that typically consume surrounding agricultural land. The region experiences apparent
cropland changes caused by both urban developments in suburban areas. Most landscape change was
related to urban development to meet the growing population in the region. Other obvious changes
are from cropland to water bodies (subset-2 and subset-3 areas). The changed areas may be seasonal
rivers. Cropland areas are actually the lake surface area that was dried before 2010. The expanded
water surface area may be due to an increase in rainfall.
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To evaluate the ability to discriminate change type and assess the accuracy of the proposed
method, we computed a confusion matrix and derived the overall accuracy and overall kappa index.
Tables 4 and 5 show the confusion matrixes for change areas classifications by CRV difference and
CCDC, respectively. The classification accuracy and kappa coefficient are 90.13%, and 0.71 by the CRV
distance, and 88.55% and 0.82 by the CCDC method. This indicates that the CRV distance exceeds the
CCDC method in overall accuracy.

Table 4. Confusion matrix of classification results from the proposed method.

Classified Data (%)
Reference Data (%)

User’s Accuracy
Cropland Forest Urban Water

Cropland 96.93 3.57 10.22 0.00 35.95
Forest 0.54 90.19 1.66 0.08 99.70
Urban 2.54 5.23 87.95 1.27 71.96
Water 0 1.01 0.17 98.65 47.14

Producer’s accuracy 96.93 90.19 87.95 98.65

OA(%) = 90.13%, Kappa coefficient = 0.71

Table 5. Confusion matrix of classification results from the CCDC method.

Classified Data (%)
Reference Data (%)

User’s Accuracy
Cropland Forest Urban Water

Cropland 74.82 1.83 2.68 0.30 97.21
Forest 17.74 96.85 5.49 0.21 40.02
Urban 7.44 1.33 91.65 4.80 74.02
Water 0.00 0.00 0.18 94.70 99.95

Producer’s accuracy 74.82 96.85 91.65 74.82

OA(%) = 88.55%, Kappa coefficient = 0.82
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5. Discussion

The experimental results (Table 3, Figures 10 and 11) indicate that the proposed method provides
the capacity to detect real changes and estimate pseudo changes caused by season differences.
The possible reasons are as follows. First, the proposed method effectively weakens the influence of
seasonal differences and noise because data are collected throughout the growing season. Although the
CCDC also makes full use of time-series images, the simple sinusoidal model used for CCDC fails
to fully describe the complex features of cropland. Second the multi-harmonic model was used for
describing the phenological trajectory, which widens the gap between cropland and other land cover
types to some extent. Finally, the proposed method is mainly based on the similarity between temporal
trajectories instead of direct comparison between the two points. Thus, the final change detection
result is equivalent to the comprehensive results from different season differences.

In addition, the proposed method discriminated change type by CRV distance instead of only
model coefficients as with the CCDC. The classification accuracy of the proposed method is better than
that of the CCDC (Figure 13, Tables 4 and 5). One possible explanation is that the large spectral variance
within the cropland class makes accurate classification difficult. In the CCDC, several variables from the
simple harmonic model are used as inputs for classification. However, cropland possesses complicated
spectral features and unique phenological characteristics. The simple sinusoidal model including
several variables is fully unable to discriminate cropland from other land cover type. The same land
cover type is still more likely to have different model variables. The CRV including six coefficients
is capable of maximizing the difference between cropland and other land cover types. Therefore,
the result indicates that the CRV distance is a more effective method for change type discrimination
compared with the CCDC method. However, we should note that since the result of the proposed
method depends on the study area and data, it is necessary that further analysis is conducted to
validate the extent to which the method holds true in other regions or with different resolutions.

This work indeed provided a novel method to detect changes but could be further improved and
enhanced. However, further research needs to be considered as follows.

(1) Our method focused on the intra-annual variations within the EVI time series. Further research is
necessary to study inter-annual variations related to plant phenology. However, the multi-harmonic
model including first and second order harmonics may not be sufficient to fully capture its
inter-annual trend. An advanced time-series model should be constructed to capture both
intra-annual and inter-annual trend.

(2) Future algorithm improvements may include the capacity to eliminate phenological changes
caused by change of cropland types or transformation of the farming system. In this study we
focused on the shape similarity of the phenological trajectory while neglecting the phenological
value difference. The main phenological parameters changes should be also considered as
part of the change magnitude. This illustrates that further work is needed to extract the key
phenological parameters.

(3) Although our method acquired higher accuracy on change type discrimination, reference CRV
only includes three change types (“from cropland to” changes). To identify the decrease and
increase of cropland, a knowledge base of reference CRV including all change types is necessary.

6. Conclusions

One of the major challenges in cropland change detection is how to detect true changes while
reducing false changes caused by seasonal differences and other interference factors. The change
detection method based on time series images effectively weakens the influence of seasonal differences
and noise because data are collected throughout the growing seasons. In this research, a new change
detection method based on phenological trajectory similarity was designed and implemented to
capture cropland changes. The core concept of the proposed method is detecting true cropland changes
based on the similarity between temporal trajectories instead of the direct comparison between the two
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images. Due to the complex spectral-temporal characteristic of cropland, the phenological trajectory
was constructed using a multi-harmonic model for capturing intra-annual variations. Then, to make
full use of the spectral–temporal–phenological information, the CVD was calculated to measure
similarity and identify change/no-changes areas. Moreover, it will be more important if we know
the detail “from cropland to” change information. Instead of the traditional classification method
based on original images, we used the coefficient ratio vectors (CRV) as the inputs for change type
discrimination. The proposed method integrates spectral information, phenological information,
and temporal characteristics to acquire a maximum possible change map with the goal of minimizing
pseudo changes caused by seasonal differences. Our method was applied to the EVI time series
derived from Landsat images for a cropland study area in eastern China. Results showed that the
proposed method has the highest accuracy of change detection (98.58%) and a lower commission error
than the other methods. The proposed method can avoid the strict requirement of CVA or PCC for
image acquisition in that two images acquired in different years should be from the same seasonal
period. In addition, this study presents a change type discrimination method based on the distance
between the CRV of the changed pixel and of the reference change type. The result of the change
type classification (OA of 90.13% and kappa index of 0.71) confirmed the efficiency of the method in
discriminating the main change types.
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