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Abstract: The thermal environment in residential areas is directly related to the living quality of
residents. Therefore, it is important to understand thermal heterogeneity and ways to regulate
temperature in residential neighborhoods. We investigated the spatial heterogeneity and temporal
dynamics of air temperatures in 20 residential neighborhoods within the 5th ring road of Beijing,
China. We further explored how the variations in air temperature were related to the patterns of
the surrounding greenspace at different scales. We found that: (1) large air temperature differences
existed among residential neighborhoods, with hourly maximum differences in air temperature
reaching 5.30 ◦C on hot summer days; (2) not only the percentage but also the spatial configuration
(e.g., edge density) of greenspace affected the local air temperature; and (3) the effects of spatial
greenspace patterns on air temperature were scale dependent and varied by season. For example,
increasing the proportion of greenspace in surrounding areas within a 100-m radius and increasing
the edge density within radii from 500 to 1000 m could lower air temperatures in summer but not
affect air temperatures in winter. In addition, decreasing the edge density of greenspaces within
a 100-m radius of the surrounding areas would lead to an increase in air temperature in winter
but not affect the air temperature in summer. These results extend our understanding of thermal
environments and their relationships with greenspace patterns at the microscale (i.e., residential
neighborhoods). They also provide useful information for urban planners to optimize greenspace
patterns under better thermal conditions at the neighborhood scale.

Keywords: urban heat island (UHI); urban greenspace; high-resolution remote sensing; edge density;
spatial configuration; scale; landscape design; thermal environment

1. Introduction

Urbanization has led to the phenomenon of urban heat islands (UHIs), which are defined
by air temperatures in urban areas that are higher than those in the surrounding rural areas [1,2].
Numerous studies have examined the spatial patterns and temporal variations in UHI and related
risk and mitigation strategies based on field observations, satellite data and modeling [3–5].
However, local cool islands also exist within urban areas, which are caused by different landscape
patterns [6]. Urban residential areas are defined as areas where urban residents live and spend much
of their time. Air temperatures in residential areas directly affect the health of urban dwellers and
energy use [7–9]. Although simulations have been conducted to model temperature and evaluate how
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green and cool roofs can mitigate UHI effects in urban areas [10,11], few field observations have been
conducted to reveal the spatial and temporal variations in air temperature in residential areas and
their associations with residential landscape patterns.

With the availability of a dense meteorological network and mobile monitoring facilities, there is an
increasing interest in measuring the intra-urban heterogeneity of air temperatures at fine scales [12–14].
These studies have reported that the maximum difference in air temperature could reach 9 ◦C in
urban areas, and the differences are larger in summer [14,15]. These studies have also found that air
temperatures vary by land use type. For example, central business districts are hotter than other land
use types [12]. However, fewer studies have been conducted for residential areas [16].

Urban greenspaces (UGSs) can effectively mitigate the UHI effect [17–22]. UGSs reduce
air temperatures mainly through two cooling functions: shading and evapotranspiration [23].
Shading reduces the input of solar radiation, while evapotranspiration converts sensible heat into
latent heat [24,25]. Both the amount of UGSs and their spatial configuration affect these two cooling
functions [20,26], which thereby affects the land surface temperature (LST) and air temperature [27,28].
A majority of previous studies have focused on how UGS patterns have affected LSTs [18,26,28,29],
but few have focused on air temperatures [30–34]. This lack of studies is partially because LSTs can be
directly derived from remotely sensed images, which provide spatially continuous data over large
geographical extents. However, air temperature is more directly related to human comfort and health
as opposed to LSTs and warrants more attention [7].

The overarching goal of this study is to understand the spatial variations and temporal
dynamics of air temperatures in residential neighborhoods and examine how these variations in
air temperature are related to spatial greenspace patterns in the surrounding areas at different scales.
Specifically, we aim to: (1) quantify the spatial heterogeneity of air temperature and its temporal
dynamics within residential areas; (2) explore the relationship between air temperature and pattern of
UGSs, including percent cover and configuration of UGS; and (3) examine how these relationships
vary by season and differ by scale. The results can expand our understanding of thermal environments
in urban residential areas and provide useful insights for urban planners and designers on how to
create a comfortable thermal microclimate by optimizing UGS patterns.

2. Materials and Methods

2.1. Study Area

Beijing is the capital of China and is located northeast of the North China Plain (longitude:
115◦25′–117◦30′E; latitude: 39◦28′–41◦25′N). It is located in a warm temperate zone and has a
monsoon-influenced continental climate. The average daytime air temperature of Beijing ranges
from 19 ◦C to 31 ◦C in summer and from −9 to 5 ◦C in winter. Studies have shown that the intensity of
UHI effects has increased over the last several decades [35,36].

We chose 20 neighborhoods as the study sites (Figure 1a), and the areas around those sites (within
a radius of 1 km) were used to study how UGSs influence air temperature. To minimize the influences
caused by differences in elevation and anthropogenic heat, we chose neighborhoods that were located
in highly developed areas, with elevations ranging from 41 m to 61 m (Figure 1a), and set the HOBO
loggers at least 5-m away from the roads. Thus, these neighborhoods were ideal for studying the
relationships between air temperature and the pattern of surrounding UGSs.
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Figure 1. Study area showing the: (a) spatial distribution of the 20 residential neighborhoods, with an elevation above sea level (EASL) ranging from 41 to 61 m, and 

the corresponding land cover map; (b) field air temperature measurements using HOBO loggers covered by solar radiation shields; and (c) circles with different 

radii around the monitoring sites. 

Figure 1. Study area showing the: (a) spatial distribution of the 20 residential neighborhoods, with an
elevation above sea level (EASL) ranging from 41 to 61 m, and the corresponding land cover map;
(b) field air temperature measurements using HOBO loggers covered by solar radiation shields; and (c)
circles with different radii around the monitoring sites.

2.2. Classification of Land Cover for the Study Area

We used an image from Google Maps TM to map the land cover of the 20 neighborhoods and their
surrounding areas (1-km radius). The date of acquisition for the satellite image from Google Maps TM
was 11 July 2015. The image utilized 3 bands and had a spatial resolution of 0.5 m, which was sufficient
for depicting fine-scale UGSs in urban residential areas. We identified three land cover types: UGSs
(i.e., vegetation cover), impervious surfaces and water surfaces. The main component of the UGSs
was trees, which had a small proportion of mixed shrubs and grasses. Impervious surfaces mainly
consisted of roads and building roofs. Water was rare in and around the selected neighborhoods,
and most of the water was in the park.

We mapped the land cover types using an object-based classification approach, which has been
widely used to classify high-spatial-resolution images [37,38]. We classified the surrounding areas
of each monitoring site within a 1-km radius. Specifically, we segmented the image into objects.
Here, we used the multiresolution segmentation approach embedded in the commercial software
Trimble eCognition. For multiresolution segmentation, the scale, shape and compactness parameters
were customized to define the size and shape of the segmented objects. Based on the trial and error
approach, we set the segmentation parameters of scale, color weight and compactness weight to 30,
0.9 and 0.5, respectively. Then, we conducted the classification using a support vector machine (SVM)
as the classifier. We chose the radial basis function (RBF) kernel of the SVM, which has been proven
to have good performance [39]. The RBF kernel has two parameters, cost (C) and gamma, which can
affect the overall classification accuracy. We set parameters C and gamma for the SVM as 106 and
10−5, respectively, as suggested in a previous study [38]. We randomly chose 200 training samples for
each class for the supervised classification. We applied the most commonly used spectrum features
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in the classification (Table 1). Finally, we applied a visual interpretation to improve the classification
accuracy. After classification, we selected 100 random samples for each class to conduct an accuracy
assessment. The final overall accuracy of the land cover map was 94.14%, and the kappa coefficient,
which evaluates the consistency between the results and references, was 0.92. In addition, the user
accuracy and product accuracy of the greenspace, which represent the commission and omission of
the greenspace, were 96.51% and 95.40%, respectively.

Table 1. Object features used for classification.

Object Features Description

Mean value a Mean value of a specific band of an image object
Standard deviation a Standard deviation of an image object

Brightness Mean value of the 3 bands
Maximum difference Maximum intensity difference of the 3 bands

a Object features were calculated for each of the 3 bands.

2.3. Air Temperature Measurements

We used the HOBO U23 Pro v2 temperature/relative humidity data logger covered with a
solar radiation shield to monitor air temperatures in the 20 neighborhoods. For each neighborhood,
we selected one HOBO logger to represent the overall air temperature of the neighborhood. To make
the monitoring results comparable, we set all HOBO loggers at the center of the UGS patches and
kept them at least 5-m away from roads and public grounds to avoid human interruptions. All HOBO
loggers were mounted on trees at a 1.5-m height (Figure 1b). We collected air temperatures from
17 August 2014 to 3 September 2014 in summer and from 1 December 2014 to 26 December 2014
in winter, with a sampling frequency of 10 min. By excluding days with rain, snow and extreme
weather, we finally obtained 13 summer days and 15 winter days as the study period for the air
temperature analysis.

2.4. Analysis of the Heterogeneity of Air Temperature in the Neighborhoods

We first plotted the daily variations in air temperature in the residential neighborhoods. Hourly air
temperatures were calculated to analyze the differences and their dynamics. For each neighborhood,
hourly temperatures were calculated in two steps. First, we summarized the mean temperature each
hour; and, second, we averaged the hourly mean temperature for all summer days and winter days.

We then used two indicators to quantify the heterogeneity of the air temperature among
the 20 neighborhoods during the day: the maximum difference in air temperature (MD) and the
standard deviation of air temperature (SD). MD represents the air temperature difference between the
hottest neighborhood and the coolest neighborhood. SD represents the standard deviation of the air
temperature for all neighborhoods. MD represents the maximum heterogeneity, while SD represents
the mean heterogeneity. Hourly MD and SD values were calculated to study the dynamics of air
temperature differences among the neighborhoods.

In addition, we calculated the diurnal temperature range (DTR) for each neighborhood. The DTR
represents the temperature difference between the highest temperature and lowest temperature during
a given day. The DTR represents the variation in air temperature in a neighborhood. For each
neighborhood, we first calculated the DTR for each day and averaged all DTRs for summer days and
winter days for analysis.

2.5. Analysis of the Relationship between UGSs and Air Temperature

We used 13 circles with different radii around each monitoring site as the analytical units to
evaluate the relationships between UGS and air temperature. These 13 circles were set with radii of
10 m, 20 m, 50 m, 100 m, 200 m, 300 m, 400 m, 500 m, 600 m, 700 m, 800 m, 900 m and 1000 m (Figure 1c).
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Within each unit, we calculated the percent cover (PC) and six other configuration metrics (i.e., mean
patch size (MPS), standard deviation of the patch size (SDPS), patch density (PD), edge density (ED),
mean shape index (MSI) and largest patch index (LPI)) of the UGS (Table 2) that could potentially
affect the air temperature [18,20,26,29]. For air temperature, we used the average temperature during
summer and winter days. We first examined the Pearson correlation between air temperature and
the seven metrics in each of the 13 units. Consequently, we calculated 91 Pearson coefficients in both
summer and winter. To analyze the significance of these relationships at different scales, we explored
effective radii for the effects of UGS on air temperature.

Because the configuration metrics are highly correlated with the proportion of greenspace,
the Pearson correlation analysis may obtain spurious relationships between air temperature and the
configuration metrics [26]. We further conducted a partial Pearson correlation analysis to investigate
the relationships between air temperature and the configuration metrics after controlling the effects of
the UGS proportion (i.e., using the PC as the controlled variable).

Table 2. Landscape metrics used in this study.

Metrics Description Equation

Percent cover (PC) Proportional abundance of greenspace in the landscape (%) 100
A ×

n
∑

i=1
ai

Mean patch size (MPS) Total patch area divided by patch number (ha) 1
10000×n ×

n
∑

i=1
ai

Standard deviation of the patch size (SDPS) Standard deviation of all patch sizes

√
1
n ×

n
∑

i=1
(ai − a)2

Mean patch shape index (MSI) Mean value of the shape index 1
n ×

n
∑

i=1

0.25×ei√
ai

Patch density (PD) Number of greenspace patches divided by the total
landscape area (n/km2)

n
A × 106

Edge density (ED) Total length of all edge segments in the greenspace per
hectare (m/ha)

10000
A ×

n
∑

i=1
ei

Largest patch index (LPI) The area (m2) of the largest patch in the landscape divided
by total landscape area (m2)

max(ai)
A × 100

ai represents the area of patch i, a represents the average area of all patches, ei represents the length of the edge
(or perimeter) of patch i, A represents the total area of the landscape, and n represents the total number of patches.

3. Results

3.1. Daily Variations in the Air Temperature of Residential Neighborhoods

The daily variations in the air temperature of the 20 neighborhoods were similar in both summer
and winter (Figures 2 and 3). Additionally, the daily variations recorded during summer and winter
were also quite similar. From 0:00 to 6:00, the air temperatures in most neighborhoods continued
decreasing; after 6:00, the temperatures started to increase, and they reached a maximum at 15:00.
The temperatures then started to decrease until 24:00.

The DTR in summer was larger than that in winter (Figure 4). The DTRs in the 20 neighborhoods
ranged from 7.1 to 9.4 ◦C in summer, with an average DTR of 8.1 ◦C. In winter, the DTRs ranged
from 4.1 to 5.3 ◦C, with an average DTR of 4.6 ◦C. In addition, the variation in DTR among the 20
neighborhoods was larger in summer (2.3 ◦C) than in winter (1.2 ◦C).
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3.2. The Heterogeneity of Air Temperature in Neighborhoods

In both summer and winter, the variations in MD and SD were similar, which indicated that the
largest heterogeneity and mean heterogeneity were consistent in residential areas. By comparing the
variations in MD and SD in summer and winter, we found opposite tendencies. In summer, the MD
and SD first increased and then decreased. In winter, the MD and SD decreased first and then increased
(Figures 5 and 6). In summer, from 0:00 to 14:00, the MD and SD increased from 1.02 to 1.90 ◦C and
from 0.26 to 0.52 ◦C, respectively. From 14:00 to 24:00, the MD and SD decreased to 1.35 and 0.32 ◦C,
respectively. In winter, from 0:00 to 16:00, the MD and SD decreased from 2.27 to 0.95 ◦C and from 0.58
to 0.25 ◦C, respectively. From 16:00 to 24:00, the MD and SD increased to 1.95 and 0.51 ◦C, respectively.
In addition, the maximum air temperature differences in winter were larger than those in summer.
In summer, the maximum MD and SD were 1.90 ◦C and 0.52 ◦C at 14:00, respectively, while, in winter,
the maximum MD and SD were 2.40 ◦C and 0.59 ◦C at 1:00, respectively.
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Figure 5. The hourly maximum differences in air temperature (MD) and the hourly standard deviation
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Figure 6. The hourly maximum differences in air temperature (MD) and the hourly standard deviation
of air temperature (SD) in winter.

3.3. Relationship between Air Temperature and Its Surrounding UGSs

In summer, the PC of UGSs within radii of 20 m, 50 m and 100 m showed significantly negative
correlations with air temperature (Table 3). The SDPS and LPI of the UGSs within radii of 50 m and
100 m showed significantly negative correlations with air temperature. The ED of the UGSs for radii
from 500 to 1000 m showed significantly negative correlations with air temperature. The MPS within a
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radius of 20 m showed significantly negative correlations with air temperature. Other metrics showed
no significant relationships with air temperature at any scale.

In winter, the PC of UGSs within radii of 200 m and between radii of 500 and 1000 m showed
significantly negative correlations with air temperature (Table 4). The PD of the UGSs within radii of
20 m and 50 m was significantly negatively correlated with air temperature. The ED of UGSs within
radii of 20 m, 50 m, and 100 m had significant negative relationships with air temperature. The LPI
had negative correlations with air temperature with radii from 900 to 1000 m. Other metrics showed
no significant relationships.

By comparing the impacts of seven metrics on air temperature in winter and summer, we found
that the MSI showed no significant relationships with air temperature in both summer and winter;
PC, ED and LPI affected air temperature in both seasons; and MPS and SDPS affected air temperature
only in summer.

Table 3. Pearson correlation between air temperature and landscape metrics in summer.

AU PC MPS SDPS MSI PD ED LPI

10 −0.436 −0.484 *
(R2 = 0.234) 0.166 0.270 0.166 −0.010 −0.436

20 −0.461 *
(R2 = 0.213) −0.228 −0.119 −0.070 −0.009 −0.141 −0.436

50 −0.624 **
(R2 = 0.389) −0.070 −0.553 *

(R2 = 0.306) 0.023 0.152 −0.177 −0.628 **
(R2 = 0.394)

100 −0.589 **
(R2 = 0.347) −0.442 −0.489 *

(R2 = 0.239) −0.160 0.370 −0.249 −0.589 **
(R2 = 0.347)

200 −0.264 −0.326 −0.422 −0.250 0.158 −0.220 −0.414

300 −0.238 −0.288 −0.375 −0.236 0.170 −0.296 −0.344

400 −0.170 −0.165 −0.315 −0.263 0.152 −0.362 −0.346

500 −0.108 −0.150 −0.290 −0.305 0.133 −0.452 *
(R2 = 0.204) −0.351

600 −0.022 −0.057 −0.142 −0.260 0.080 −0.454 *
(R2 = 0.206) −0.226

700 0.009 −0.063 −0.069 −0.289 0.087 −0.515 *
(R2 = 0.265) −0.137

800 0.044 0.005 0.027 −0.242 0.051 −0.501 *
(R2 = 0.251) −0.044

900 0.059 0.009 0.076 −0.251 0.041 −0.513 *
(R2 = 0.263) 0.007

1000 0.026 −0.011 0.077 −0.251 0.053 −0.516 *
(R2 = 0.266) 0.030

* significant at the 0.05 level; ** significant at the 0.01 level. AU: analytical unit; PC: percent cover; MPS: mean
patch size; SDPS: standard deviation of the patch size; MSI: mean shape index; PD: patch density; ED: edge density;
LPI: largest patch index.

Table 4. Pearson correlation coefficients between air temperature and landscape metrics in winter.

AU PC MPS SDPS MSI PD ED LPI

10 −0.072 0.107 −0.405 −0.189 −0.405 −0.428 −0.071

20 −0.041 0.267 −0.428 0.113 −0.507 *
(R2 = 0.257)

−0.527 *
(R2 = 0.278) −0.043

50 −0.087 0.219 0.137 0.378 −0.633 **
(R2 = 0.401)

−0.545 *
(R2 = 0.297) 0.143

100 −0.342 0.066 −0.022 0.351 −0.428 −0.503 *
(R2 = 0.253) −0.057

200 −0.537 *
(R2 = 0.288) −0.058 −0.122 0.243 −0.305 −0.339 −0.192
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Table 4. Cont.

AU PC MPS SDPS MSI PD ED LPI

300 −0.442 −0.013 −0.080 0.156 −0.364 −0.394 −0.149

400 −0.409 0.065 −0.070 0.240 −0.339 −0.336 −0.187

500 −0.450 *
(R2 = 0.203) 0.051 −0.123 0.231 −0.331 −0.304 −0.259

600 −0.515 *
(R2 = 0.265) 0.010 −0.139 0.268 −0.311 −0.278 −0.293

700 −0.507 *
(R2 = 0.257) 0.006 −0.162 0.260 −0.318 −0.240 −0.283

800 −0.530 *
(R2 = 0.281) −0.007 −0.266 0.252 −0.321 −0.256 −0.438

900 −0.558 *
(R2 = 0.311) −0.013 −0.328 0.245 −0.331 −0.274 −0.444 *

(R2 = 0.197)

1000 −0.534 *
(R2 = 0.285) 0.002 −0.323 0.253 −0.342 −0.256 −0.451 *

(R2 = 0.203)

* significant at the 0.05 level; ** significant at the 0.01 level. AU: analytical unit; PC: percent cover; MPS: mean
patch size; SDPS: standard deviation of the patch size; MSI: mean shape index; PD: patch density; ED: edge density;
LPI: largest patch index.

After controlling the effects of PC on UGSs, the relationship between air temperature and the
configuration metrics changed greatly (Tables 5 and 6). In summer, the MPS, SDPS, and LPI were
no longer significantly correlated with air temperature. However, ED still showed a significant
relationship with air temperature within radii from 500 to 1000 m.

Table 5. Partial Pearson correlations between air temperature and the configuration metrics after
controlling the effects of percent cover (PC) on UGS in summer.

AU MPS SDPS MSI PD ED LPI

10 −0.233 0.233 −0.050 0.233 0.126 −0.233

20 0.132 −0.156 −0.276 0.015 −0.071 0.439

50 0.332 −0.234 0.157 −0.015 0.149 −0.175

100 −0.130 −0.131 −0.160 0.329 0.085 −0.229

200 −0.231 −0.342 −0.268 0.162 −0.120 −0.338

300 −0.185 −0.303 −0.217 0.155 −0.197 −0.261

400 −0.078 −0.286 −0.245 0.143 −0.333 −0.372

500 −0.110 −0.314 −0.306 0.138 −0.481 *
(R2 = 0.231) −0.428

600 −0.053 −0.185 −0.261 0.080 −0.516 *
(R2 = 0.266) −0.314

700 −0.076 −0.113 −0.289 0.086 −0.600 **
(R2 = 0.360) −0.211

800 −0.016 −0.012 −0.240 0.045 −0.609 **
(R2 = 0.371) −0.119

900 −0.015 0.048 −0.247 0.031 −0.612 **
(R2 = 0.375) −0.061

1000 −0.022 0.099 −0.250 0.049 −0.597 **
(R2 = 0.356) 0.016

* significant at the 0.05 level; ** significant at the 0.01 level. AU: analytical unit; PC: percent cover; MPS: mean
patch size; SDPS: standard deviation of the patch size; MSI: mean shape index; PD: patch density; ED: edge density;
LPI: largest patch index.
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Table 6. Partial Pearson correlations between air temperature and the configuration metrics after
controlling the effects of percent cover (PC) on UGS in winter.

AU MPS SDPS MSI PD ED LPI

10 0.396 −0.396 −0.335 −0.396 −0.408 0.396

20 0.406 −0.444 0.102 −0.504 *
(R2 = 0.254)

−0.516 *
(R2 = 0.266) −0.045

50 0.313 0.269 0.406 −0.653 **
(R2 = 0.426)

−0.545 *
(R2 = 0.297)

0.586 **
(R2 = 0.343)

100 0.332 0.284 0.382 −0.492 *
(R2 = 0.242) −0.340 0.361

200 0.272 0.272 0.269 −0.352 −0.117 0.308

300 0.359 0.348 0.253 −0.454 −0.170 0.322

400 0.441 0.373 0.335 −0.409 −0.138 0.286

500 0.395 0.336 0.257 −0.360 −0.107 0.143

600 0.371 0.387 0.294 −0.353 −0.075 0.107

700 0.327 0.363 0.276 −0.327 −0.051 0.102

800 0.310 0.282 0.255 −0.311 −0.064 −0.075

900 0.284 0.239 0.217 −0.299 −0.103 −0.033

1000 0.276 0.245 0.223 −0.308 −0.103 −0.058

* significant at the 0.05 level; ** significant at the 0.01 level. AU: analytical unit; PC: percent cover; MPS: mean
patch size; SDPS: standard deviation of the patch size; MSI: mean shape index; PD: patch density; ED: edge density;
LPI: largest patch index.

In winter, PD, ED, and LPI still showed significant relationships with air temperature but for
different radii. PD showed a significant relationship with air temperature at radii of 20 m, 50 m
and 100 m. ED had a significant relationship with air temperature at radii of 50 m and 100 m.
LPI significantly affected air temperature at a radius of 50 m, which was quite different from the
Pearson correlations.

4. Discussion

We found large differences in air temperature among residential neighborhoods. During the
study period in summer, the average hourly MD reached 1.9 ◦C. On a hot day in summer, the hourly
MD could reach 5.3 ◦C, which meant that the coolest neighborhood had an air temperature of only
30.6 ◦C but the hottest neighborhood could reach 36 ◦C; this value is above the warning temperature
for China (35 ◦C) [40]. This difference has significant social and ecological implications. For example,
when the daily mean air temperature reached 25 ◦C, the risk of daily death due to respiratory diseases
largely increased in Beijing [7]. The large temperature difference also indicated that neighborhoods,
particularly hotter neighborhoods, have the greatest potential for lower air temperatures in summer.

The dynamics of average air temperature differences among neighborhoods, which were
represented by hourly MD and SD, were in accordance with temperature changes in summer,
which indicated that solar radiation played a dominant role in air temperature differences in summer;
thus, it is crucial to control the heating process (e.g., reduce solar radiation reaching the surface
by implementing tree shading) to mitigate UHI effects in neighborhoods. In contrast, in winter,
the dynamics of average air temperature differences were opposite those of temperature change,
which indicated that anthropogenic heating (i.e., the main energy input at night) affected the air
temperature. This pattern may be related to the heating supply for Beijing in winter.

Our results are consistent with previous studies in that the composition of UGSs could significantly
affect in situ air temperatures [41]. Additionally, our results demonstrated that the configuration of
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UGSs also matters, especially regarding the ED of UGSs. The ED was negatively correlated with air
temperature both in summer and winter at multiple scales, suggesting that increasing patch edges
could significantly lower the air temperature because more edges likely reduce the solar radiation
input by casting more shadows, which can thus decrease air temperatures. Because previous studies
have mostly focused on the effects of the configuration on LSTs (e.g., [18,26]), our study enhanced the
understanding of the cooling effects of UGSs on air temperature by adding evidence supporting the
relationship between the ED and air temperature at different scales.

Our results further revealed that the effective radii at which the UGS patterns affected air
temperature varied by season. In summer, the PC of UGSs in the immediate surrounding areas
(within a radius of 100 m) significantly influenced air temperature, while, in winter, UGSs in much
larger areas (radii larger than 500 m) affected temperature. Similarly, the effective radius at which the
ED of UGSs affected air temperature also varied by season. In contrast to the PC of UGSs, in winter,
the ED of UGSs in immediate surrounding areas significantly influenced air temperature, while,
in summer, the ED of UGSs in much larger areas affected temperature. This characteristic is likely
due to the weaker cooling functions, shading and evapotranspiration, of trees in winter because
of the combination of lower temperatures, reduced solar radiation, and leaves falling off of trees.
These results were different from a previous study that was conducted in Olympic Park, Beijing by
Yan [41], where no seasonal effective scales were found in the relationship between the PC of UGSs
and air temperature. However, this study only examined a maximum buffer of 300 m.

The differences in the effective radii of UGSs in summer and winter had important implications.
Our results showed that UGSs lower air temperatures not only in summer but also in winter.
While reducing air temperatures has positive effects in summer, it may have adverse impacts on
energy use and human comfort in winter [42]. The differences in the effective radii of UGSs in summer
and winter suggest that by changing the spatial pattern of UGSs at a certain radius, we can lower the
air temperature in summer but not in winter. For example, increasing the PC of UGSs in surrounding
areas within a 100-m radius and increasing the ED within radii from 500 to 1000 m could significantly
lower air temperatures in summer but not significantly affect those in winter. Similarly, decreasing the
ED of UGSs within a 100-m radius could increase air temperatures in winter but not affect those
in summer.

This study has some limitations. First, the temperature sensors were set within relatively large
UGS patches to avoid the interruption by human activities. Consequently, we found no significant
relationship between air temperature and UGSs in the immediate surrounding areas (10-m radius),
which was controversial in terms of understanding why UGSs closer to monitoring sites should have
stronger impacts on the air temperature than those that are farther away. This result, however, is
largely due to the percentage of UGSs within a 10-m radius, as all of the sites were similar (i.e., close to
100%), which did not contribute to the explanation of the variations in temperature. Second, this study
did not fully explore the mechanisms behind the effects of UGS configuration on air temperature,
which warrants more research in the future. Furthermore, we measured air temperature at a fixed
point in each neighborhood, which may not fully represent the thermal conditions of the whole
neighborhood. Future studies that consider the footprint of measured temperatures would be highly
desirable [43–45].

5. Conclusions

Thermal environments in residential areas are directly related to the health and energy use of
urban dwellers. We investigated the spatial patterns and temporal dynamics of the air temperature
in residential neighborhoods and their relationships with the surrounding greenspace. This study
compared the air temperature in residential neighborhoods within the 5th ring road of Beijing, China,
in summer and winter. We further explored how these variations in air temperature were related to
the spatial patterns of UGSs in surrounding areas by using different radii. The results showed
that large differences in air temperature existed in different residential neighborhoods within a
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city. While some neighborhoods suffered from extreme heat, other neighborhoods had relatively
comfortable thermal environments. Our results highlighted that not only the composition but also the
configuration of greenspaces, especially the ED, influenced air temperatures. These results suggested
that redesigning the spatial patterns of greenspaces within and near residential neighborhoods could
effectively regulate air temperatures. The effective radius of greenspaces was different in summer and
winter, which provided an opportunity to regulate air temperatures in one season while not affecting
the air temperatures in the other season. We found that adding the percentage of greenspace within
a radius of 100 m could significantly decrease the air temperature in summer without affecting the
air temperature in winter. Decreasing the ED of a greenspace within 100 m and increasing the ED
within radii from 500 to 1000 m could increase the local air temperature in winter while not decreasing
the summer air temperature. The results of this study expanded our understanding of residential
thermal environments and provided useful information for urban planners on how to decrease the air
temperature in summer and increase the air temperature in winter by optimizing greenspace patterns
within and near residential neighborhoods.
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