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Abstract: Aerial imaging provides a landscape view of crop fields that can be utilized to monitor
plant diseases. Phymatotrichopsis root rot (PRR) is a serious root rot disease affecting several
dicotyledonous hosts, including the perennial forage crop alfalfa. PRR disease causes stand loss
by spreading as circular to irregular diseased areas that increase over time, but disease progression
in alfalfa fields is poorly understood. The objectives of this study were to develop a workflow
to produce PRR disease maps from sets of high-resolution red, green and blue (RGB) images
acquired from two different platforms and to assess the feasibility of using these PRR disease maps
to monitor disease progression in alfalfa fields. Aerial RGB images, two from unmanned aircraft
systems (UAS) and four images from a manned aircraft platform were acquired at different time
points during the 2014–2015 growing seasons from a center-pivot irrigated, PRR-infested alfalfa
field near Burneyville, OK. Supervised classification of images acquired from both platforms were
performed using three spectral signatures: image-specific, UAS-platform-specific and manned-aircraft
platform-specific. Our results showed that the UAS-platform-specific spectral signature was most
efficient for classifying images acquired with the UAS, with accuracy ranging from 90 to 96%.
In contrast, manned-aircraft-acquired images classified using image-specific spectral signatures
yielded 95 to 100% accuracy. The effect of hue, saturation and value color space transformations
(HSV and Hrot60SV) on classification accuracy was determined, but the accuracy estimates showed
no improvement in their efficiency compared to the RGB color space. Finally, the data showed that
the classification of the bare ground increased by 74% during the study period, indicating the extent
of alfalfa stand loss caused by PRR disease. Thus, this study showed the utility of high-resolution
RGB aerial images for monitoring PRR disease spread in alfalfa.
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1. Introduction

The bird’s-eye view perspective that aerial imagery provides of target areas offers an objective
assessment and cost-effective method to monitor large areas compared to ground-based scouting [1].
With recent technological advances, high resolution aerial images can be acquired by coupling different
kinds of sensors [2,3] to a variety of platforms, including satellites, manned aircrafts and unmanned
aircraft systems. Several studies have utilized aerial images to monitor plant health in agricultural
and forest lands [1,4,5]. While the aerial images obtained from sensors differ with sensor type and
resolution, they all are derived using a variable wavelength of light energy that is distinctly recorded
by the sensor aboard a platform. Furthermore, the utility of various imaging platforms also largely
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depends on the sensor’s capabilities, the question the user intends to address, and whether the
platform–sensor combination is economical. Of course, the value of the answer depends on its accuracy
and there is often a tradeoff between accuracy and cost. The optimal platform–sensor combination will
balance the spatial, spectral, radiometric, and temporal resolution requirements along with processing
requirements to maximize accuracy and minimize costs.

Alfalfa (Medicago sativa L.) is an important perennial forage legume with high nutritive values,
making it an ideal choice for cattle feed, especially dairy cattle. Of the 86.7 million tons of hay and
haylage produced in the US in 2017, alfalfa accounted for 51% of the total production [6]. However,
alfalfa production in southern Oklahoma is severely limited due to Phymatotrichopsis root rot (PRR)
disease (also referred to as cotton root rot, Texas root rot, Phymatotrichum root rot or Ozonium root
rot), which is caused by Phymatotrichopsis omnivora, a soil-borne ascomycete fungus. In addition to
alfalfa, the pathogen has a very broad host range affecting dicotyledonous hosts (including cotton), but
not monocotyledonous plants [7]. Symptoms of PRR disease are visible during mid-to-late summer,
when diseased plants begin to wilt and then rapidly die. The leaves remain firmly attached to the plant
but they turn brown, leaving a clear outline of dead plants at the disease front. In the field, the disease
manifests as numerous circular infested areas spreading in a centrifugal fashion, gradually coalescing
and enlarging during the growing season [8,9]. As the disease circles expand, the increasing area of
bare ground provides an opportunity for the encroachment of weeds. Some alfalfa plants inside the
circle recover from the disease and these survivors reestablish by developing a large number of lateral
roots below the crown [10].

Monitoring PRR disease movement and assessing the extent of alfalfa stand loss at the ground
level pose challenges to producers due to the increasing number of disease circles combined with
the emergence of survivors and weeds in the resulting bare ground. Aerial imaging provides the
ability to make landscape-scale assessments and is therefore an effective method to monitor and
map PRR-diseased areas. In fact, aerial photography taken from an aircraft for visualizing PRR
disease in cotton dates back to 1929, and likely represents the first of such report of the study of plant
diseases [11,12]. This was later followed by the documentation of PRR-infested areas utilizing color
infrared photography and multispectral video imagery, but these images were not further analyzed
due to lack of sophisticated image processing techniques [13–15].

During the past decade, with the availability of the latest high-end sensors and image analysis
software, considerable research has been done to detect and map PRR-infested areas in cotton
fields. For example, a manned aircraft that acquired multispectral and hyperspectral images with
more than one-meter resolution was successfully utilized to distinguish PRR-infested areas from
non-infested areas [15]. Likewise, the utility of six supervised and two unsupervised classification
techniques for the accurate classification of multispectral images of PRR-infested cotton fields was
also explored [16]. Further, Yang et al. [17] compared multispectral images of PRR-infested cotton
fields taken at 10-year intervals and showed how historical images can be used to make site-specific
management recommendations. The current literature shows extensive usage of multispectral images
acquired using manned aircrafts to study PRR disease progression in cotton fields. However, there is
no knowledge of PRR disease progression or mapping available for a perennial forage crop system
such as alfalfa. Aerial imaging in alfalfa provides an additional opportunity to not only monitor
PRR disease within a growing season, but also across years, spanning different alfalfa stand ages.
This enables the tracking of disease initiation and cessation across multiple growing seasons.

The applications for unmanned aircraft systems (UAS) in agriculture have been increasing,
with studies such as mapping weed infestations, nutrient and drought stress, to sampling plant
pathogen spores from the lower atmosphere [18–21]. High-resolution multispectral aerial images
obtained from UAS were also shown to successfully detect diseases such as Huanglongbing in a citrus
orchard and powdery-mildew-affected opium poppy plants [22,23]. Similar research involving the use
of UAS has not been reported for the study of PRR disease in alfalfa, thereby presenting an opportunity
for further investigation.
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In the current study, high-resolution red/green/blue (RGB) aerial images of a PRR-infested
alfalfa field were obtained at different times during two crop growing seasons using either manned
or unmanned aircraft platforms with the following objectives: (1) develop a workflow to produce
PRR disease maps from sets of high-resolution RGB images acquired from two different platforms;
and (2) assess the feasibility of using these PRR disease maps to monitor disease progression in
alfalfa fields.

2. Materials and Methods

2.1. Study Site

The study was conducted on a PRR-infested 24.8 ha semi-circular alfalfa commercial hay
production field under a center-pivot irrigation system located at the Noble Research Institute’s Red
River Farm, Burneyville, Oklahoma (Figure 1; 33◦52′35′ ′ N, 97◦15′28′ ′ W, 210 m elevation). The study
site was previously a pecan orchard that was converted in 2005 into a production field. Soybeans, rye,
wheat, triticale and oats were grown on this site before planting with America’s Alfalfa Alfagraze
600 RR in the autumn of 2011. During May and June of 2015, this location received 856 mm of rainfall
(nearly 90% of the average annual precipitation) and the Red River escaped its banks flooding portions
of the study site, which resulted in a loss of 3.6 ha of alfalfa from the field.
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Figure 1. Location of the study area.

2.2. Data Collection and Processing

Two different imaging platforms (Supplementary Figure S1) were utilized to acquire a total of six
aerial images from the study site at different solar times during the growing seasons of 2014 and 2015
(Table 1). A Vireo fixed-wing unmanned aircraft system (UAS) with a 10 megapixel (MP) RGB camera
was flown in June and August 2014 by the Farm Intelligence Company (USA). The flights occurred at
an altitude of 120 m above ground level (AGL) between 11:00 to 15:00 (local time) and the conditions
were sunny to mostly sunny.
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Table 1. List of image datasets acquired by manned and unmanned aircraft systems (UAS) from a
Phymatotrichopsis root-rot-infested alfalfa field near Burneyville, OK, 2014–2015.

Platform Image (Acquisition Date) Ground Sampling
Distance (m)

Flight Time (Hours,
Central Standard Time)

UAS June 2014 (23 June 2014) 0.018 13:23 to 14:13
UAS August 2014 (5 August 2014) 0.024 11:49 to 12:35

Manned aircraft October 2014 (29 October 2014) 0.046 10:23 to 11:35
Manned aircraft June 2015 (29 June 2015) 0.040 13:23 to 14:13
Manned aircraft September 2015 (17 September 2015) 0.064 8:02 to 9:00
Manned aircraft October 2015 (15 October 2015) 0.063 8:37 to 9:22

In October 2014 and during the 2015 growing season, aerial imagery was obtained by CloudStreet
AirBorne Survey (USA) using a 22 MP Canon EOS 5D Mark III mounted on a piloted Dragonfly sport
utility aircraft flown at 300 m AGL. An aerial survey system (Track’ Air, Hengelo, The Netherlands)
was used to automatically trigger the camera as the pilot maneuvered the aircraft over each point in the
flight plan grid. A laser range finder used as an altimeter recorded the aircraft’s altitude AGL at high
frequency. A geographic positioning system (GPS) receiver recorded the coordinates of the aircraft.
Time stamps logged from the altimeter and GPS were matched with the trigger time logged by the
camera to determine the altitude and location of the aircraft at the time the image was captured [24–26].

Images acquired from the manned aircraft platform were converted from the RAW file format
to the TIFF file format. The UAS images were collected in JPEG format and were not converted.
Irrespective of the image source, the images were loaded into the Agisoft PhotoScan software.
The images underwent a series of workflow steps that included image alignment, building dense
cloud, developing mesh and creating an orthomosaic, as described in the software’s user manual.
The final orthomosaic images were brought into the ArcMap software package 10.3.1 for additional
computation. A minimum of 24 white reflective 0.09 m2 metal square plates were fixed on the ground
at known locations around and within the field. These plates could be manually identified in the
aerial images and served as ground control points for image registration. In order to maintain the
map projection and accuracy, the images were geo-rectified with a spline transformation and projected
to the Universal Transverse Mercator (UTM), World Geodetic Survey 1984 (WGS-84), Zone 14 North
coordinate system. The polygon selection tool was then used to delineate the flooded section and field
boundary from all six aerial images.

The RGB images collected using manned and unmanned aircrafts had a ground sample distance
that ranged from 0.018 m to 0.064 m (Table 1). To ensure standardization while analyzing images
across different time intervals, all the images were resampled to a coarser resolution of 0.10 m.
Image resampling was performed with the ‘resample’ tool using the nearest neighbor assignment
resampling technique.

2.3. Image Classification

PRR has a distinctive disease pattern that is discernible from the damage caused by other pests
and abiotic factors [9,16]. Multispectral or hyperspectral images make it possible to detect the condition
of diseased plants that are not visible to the human eye and also capable of identifying plant stress
or the severity of damage. However, our datasets include only the visible light bands R, G, and B in
images that could not differentiate those nuanced differences, as our objective was to monitor PRR
disease spread rather than disease identification. Ground truthing revealed PRR as the dominant
factor contributing to alfalfa stand loss at the study site during the 2014–2015 period. The study site
was therefore categorized into two classes: alfalfa and bare ground (treated as a ‘soil’ class while
performing supervised image classification). However, during the course of the study, weeds emerged
in some of the bare portions of the diseased areas. Hence, weed was also included as a third class in
the image classification process (Figure 2).
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Figure 2. RGB (Red, green, blue) aerial image acquired from an alfalfa field infested with
Phymatotrichopsis root rot disease located near Burneyville, OK in August 2014. Training and
validation data points were generated from alfalfa, bare ground and weed areas. Alfalfa and weeds
could be distinguished as they were different shades of green.

The non-availability of ground reference data limited our ability to generate training and
validation data sets, which were required to perform supervised classification. As an alternative
approach, a researcher experienced with field knowledge of PRR disease at this site visually inspected
the georectified resampled image to generate training and validation data. In silico identification
of one hundred polygons encompassing all three classes (alfalfa (40), soil (40), and weed (20)) that
were uniformly spread throughout the study area were selected for each image (Figure 3). Of these,
60 (alfalfa (25), soil (25), and weed (10)) were randomly selected as training datasets and the remaining
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40 (alfalfa (15), soil (15), and weed (10)) served for validation purposes. This ensured that the training
and validation datasets are independent of each other. The total number of pixels utilized to generate
the training and validation datasets are enumerated in Table 2. Each image (except the August 2014 and
September 2015 images) was classified using one of three spectral signatures from the training samples
that are specific to: (a) the image; (b) the UAS platform; and (c) the manned aircraft platform. The UAS
platform-specific and manned aircraft platform-specific spectral signatures were developed based on
the August 2014 and September 2015 RGB images, respectively. Therefore, for the August 2014 image,
the image-specific and UAS platform-specific spectral signatures were the same. Similarly for the
September 2015 image, the image-specific and manned-aircraft-platform-specific spectral signatures
were identical. Our choice of selecting these particular RGB images to develop platform-specific
images was based on the fact that they were taken during the mid-growing season, a time period when
PRR disease symptoms are pronounced in the field.
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Figure 3. RGB (Red, green, blue) aerial images acquired during the 2014-15 growing season (A–F)
from an alfalfa field infested with Phymatotrichopsis root rot disease located near Burneyville, OK,
2014–2015 (33◦52′35′ ′ N, 97◦15′28′ ′ W). Training data points are represented in yellow and validation
data points are represented in red. The solid light blue color represents the flooded area due to intense
rain storms in the spring of 2015, which was masked in the 2014 images for consistency between years.

Table 2. Number of training and validation pixels assigned to perform supervised image classification.

Image
Training Pixels Validation Pixels

Alfalfa Soil Weed Alfalfa Soil Weed

June 2014 1865 2057 204 1241 1406 192
August 2014 1587 1667 569 898 957 591
October 2014 1428 1505 568 822 819 513

June 2015 984 1029 502 613 636 577
September 2015 1436 1529 472 987 956 576

October 2015 1515 1412 356 888 893 416

A color model conversion function was employed in the ArcMap software to convert the aerial
images from RGB to hue, saturation and value (HSV) color space. Unlike RGB, the HSV color space
channels are less correlated with each other. This conversion sets the hue, saturation, and value channel
values between 0 and 240, 0 and 255, and 0 and 255, respectively. Analysis of the spectral signatures
generated with HSV images revealed that the hue channel provided greater contrast between the
three classes in the study, but with higher variation than the saturation and value channels. Since hue
is expressed as a polar dimension with a red hue mapped to values near 240 and 0, we rotated the
hue values 60 units to produce a new Hrot60SV image by adding 60 units to the hue channel values
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less than 180 and subtracting 180 from values between 240 and 180 (e.g., 0 and 240 becomes 60
and 180 becomes 0). This conversion was performed in the R software version 3.4.2 using a raster
package. Thus, for each aerial image we had three variants to evaluate: RGB, HSV and Hrot60SV
(Figure 4). Based on the spectral signatures unique to each variant image, maximum likelihood
supervised classification was performed, categorizing each image into three classes (alfalfa, soil and
weed). The maximum likelihood classification algorithm assigned a pixel to a user-defined class based
on Bayes’ theorem of decision-making.

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 17 

 
Figure 4. RGB (red, green, blue), HSV (hue, saturation, value) and Hrot60SV (hue values rotated 60 units, 
saturation, value) transformations of the September 2015 aerial image obtained from an alfalfa field infested 
with Phymatotrichopsis root rot disease located near Burneyville, OK (33°52′35″N, 97°15′28″W). The solid 
light blue color masks the flooded area due to intense rain storms in the spring of 2015. 

2.4. Model Accuracy 

An accuracy assessment of all the classified images was performed using 40 validation polygons that 
were generated for each image, as mentioned above. One pixel was randomly selected from each validation 
polygon and compared with the corresponding pixel class in the classified image. This iterative process was 
performed 1000 times to compute the mean overall accuracy and balanced accuracy values for the alfalfa, 
soil and weed pixel classes. As the weed class was underrepresented compared to the alfalfa and soil classes, 
balanced accuracy values were estimated for each class, thus accounting for imbalance datasets. All analyses 
were performed in the R software, version 3.4.2, using the raster and caret packages [27,28]. 

2.5. Agreement between Two Classified Images 

Comparison of the classified images generated for an RGB aerial image using two different spectral 
signatures was performed by pairing all pixels in the three classes from both images, thereby creating nine 
classes (alfalfa–alfalfa, soil–soil, weed–weed, alfalfa–soil, alfalfa–weed, soil–alfalfa, soil–weed, weed–alfalfa 
and weed–soil). The consistent class pairs where both classified pixels agreed (alfalfa–alfalfa, soil–soil, 
weed–weed) were not considered for further analysis. To estimate the true accuracy of the other six 
inconsistent class pairs in the remaining set of pixels, 20 random pixels were sampled in a stratified random 
manner from each class pair, and we visually inspected the pixels in the RGB image to manually classify 
the pixel. All analyses were performed in the R software, version 3.4.2, using the raster package. 

2.6. Post-Processing of Classified Images 

The visual observation of the classified images showed many misclassified isolated pixels. To remove 
this noise, the images underwent a series of post-classification processing steps: filtering to remove isolated 
pixels from the classified images, smoothing class boundaries and reclassifying small isolated regions (pixel 
count less than 100) to the closest surrounding cell values. All these steps were accomplished using 

Figure 4. RGB (red, green, blue), HSV (hue, saturation, value) and Hrot60SV (hue values rotated
60 units, saturation, value) transformations of the September 2015 aerial image obtained from an alfalfa
field infested with Phymatotrichopsis root rot disease located near Burneyville, OK (33◦52′35′ ′ N,
97◦15′28′ ′ W). The solid light blue color masks the flooded area due to intense rain storms in the spring
of 2015.

2.4. Model Accuracy

An accuracy assessment of all the classified images was performed using 40 validation polygons
that were generated for each image, as mentioned above. One pixel was randomly selected from
each validation polygon and compared with the corresponding pixel class in the classified image.
This iterative process was performed 1000 times to compute the mean overall accuracy and balanced
accuracy values for the alfalfa, soil and weed pixel classes. As the weed class was underrepresented
compared to the alfalfa and soil classes, balanced accuracy values were estimated for each class, thus
accounting for imbalance datasets. All analyses were performed in the R software, version 3.4.2, using
the raster and caret packages [27,28].

2.5. Agreement between Two Classified Images

Comparison of the classified images generated for an RGB aerial image using two different
spectral signatures was performed by pairing all pixels in the three classes from both images, thereby
creating nine classes (alfalfa–alfalfa, soil–soil, weed–weed, alfalfa–soil, alfalfa–weed, soil–alfalfa,
soil–weed, weed–alfalfa and weed–soil). The consistent class pairs where both classified pixels agreed
(alfalfa–alfalfa, soil–soil, weed–weed) were not considered for further analysis. To estimate the true
accuracy of the other six inconsistent class pairs in the remaining set of pixels, 20 random pixels were
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sampled in a stratified random manner from each class pair, and we visually inspected the pixels in the
RGB image to manually classify the pixel. All analyses were performed in the R software, version 3.4.2,
using the raster package.

2.6. Post-Processing of Classified Images

The visual observation of the classified images showed many misclassified isolated pixels.
To remove this noise, the images underwent a series of post-classification processing steps: filtering
to remove isolated pixels from the classified images, smoothing class boundaries and reclassifying
small isolated regions (pixel count less than 100) to the closest surrounding cell values. All these steps
were accomplished using generalization tools (majority filter, boundary clean, region group, set null
and nibble tools) listed in the ArcMap software package 10.3.1. After performing post-classification
processing, the number of pixels that belonged to each class was calculated for each image to assess
the area of alfalfa stand loss that occurred due to PRR disease.

3. Results

In total, two (June 2014 and August 2014) and four (October 2014, June 2015, September 2015
and October 2015) RGB datasets were collected using UAS and manned aircraft, respectively, from
the study area during the 2014–2015 growing seasons (Table 1). As the ground sample distance for
images acquired from both platforms were different, all the images were resampled to 10 cm resolution
ensuring consistent comparison among the images. Visual inspection of the aerial images showed
expanding circular to irregular PRR disease circles with asymptomatic plants outside the circle along
with survivors and in some instances weeds occupying the bare ground areas inside the disease circle.

3.1. UAS-Acquired Images

The accuracy assessment estimates for the supervised classification of the June 2014 and
August 2014 RGB images using different spectral signatures are summarized in Table 3. The overall
accuracy for the June 2014 classified image acquired using the UAS platform ranged from 0.508 for
the manned aircraft platform-specific spectral signature to 0.968 for the image-specific spectral
signature. It is interesting to note that the UAS platform-specific spectral signature (developed
based on the August 2014 image) when applied to the June 2014 image yielded an accuracy of 0.901,
comparable to the accuracy values developed with the image-specific spectral signature. Likewise,
the overall accuracy for the August 2014 RGB image classified with the UAS platform-specific
spectral signature (which happens also to be image-specific) and the manned-aircraft-platform-specific
spectral signature was 0.896 and 0.584, respectively. Balanced accuracy assessments estimated for the
soil class showed accuracy values higher than 0.86 regardless of the spectral signature for both
the June and August 2014 images (Table 3). However, classification with the manned aircraft
platform-specific spectral signature resulted in only a small number of pixels being assigned to
the alfalfa class. This resulted in lower accuracy values of 0.50 for the alfalfa class for both UAS
platform-acquired images. Similar trends were observed with the HSV and Hrot60SV variants of the
June and August 2014 images (Supplementary Tables S1 and S2). The data clearly indicated that the
manned aircraft platform-specific spectral signature cannot be employed to classify images acquired
using the UAS platform.
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Table 3. Accuracy assessment values of RGB (red, green, blue) images using different spectral signatures.

Image Image Acquired Platform Spectral Signature Y
Balanced Accuracy Z

Overall Mean Accuracy Z
Alfalfa Soil Weed

June 2014 UAS
Image specific 0.968 ± 0.02 0.999 ± 0 0.899 ± 0.08 0.968 ± 0.04

UAS platform specific 0.9 ± 0.03 0.998 ± 0.01 0.841 ± 0.10 0.901 ± 0.03
Manned aircraft platform specific 0.5 ± 0 0.971 ± 0.02 0.736 ± 0.03 0.508 ± 0.01

August 2014 W UAS
UAS platform specific 0.871 ± 0.05 1 ± 0 0.905 ± 0.04 0.896 ± 0.04

Manned aircraft platform specific 0.5 ± 0 0.864 ± 0.03 0.770 ± 0.04 0.584 ± 0.03

October 2014 Manned aircraft
Image specific 0.986 ± 0.02 0.962 ± 0.03 0.967 ± 0.03 0.959 ± 0.03

UAS platform specific 0.731 ± 0.06 0.659 ± 0.04 0.509 ± 0.02 0.560 ± 0.05
Manned aircraft platform specific 0.684 ± 0.06 0.934 ± 0.03 0.686 ± 0.07 0.687 ± 0.06

June 2015 Manned aircraft
Image specific 0.976 ± 0.02 1 ± 0 0.983 ± 0.02 0.981 ± 0.02

UAS platform specific 0.559 ± 0.06 0.777 ± 0.04 0.507 ± 0.02 0.535 ± 0.04
Manned aircraft platform specific 0.718 ± 0.05 0.988 ± 0.02 0.846 ± 0.04 0.781 ± 0.04

September 2015 X Manned aircraft
UAS platform specific 0.516 ± 0.04 0.547 ± 0.03 0.5 ± 0 0.405 ± 0.02

Image specific 0.928 ± 0.04 0.978 ± 0.02 0.887 ± 0.06 0.915 ± 0.04

October 2015 Manned aircraft
Image specific 0.954 ± 0.03 0.981 ± 0.02 0.897 ± 0.06 0.940 ± 0.03

UAS platform specific 0.564 ± 0.04 0.543 ± 0.03 0.5 ± 0 0.457 ± 0.03
Manned aircraft platform specific 0.946 ± 0.04 0.956 ± 0.03 0.812 ± 0.08 0.903 ± 0.04

W The Unmanned aircraft system (UAS) platform-specific spectral signature was developed based on the August 2014 RGB image. Hence, the image-specific and UAS platform-specific
spectral signatures are the same for the August 2014 image; X The manned-aircraft-specific spectral signature was developed based on the September 2015 RGB image. Hence,
the image-specific and manned-aircraft-specific spectral signatures are same for the September 2015 image; Y The best spectral signature for each image is formatted in bold; Z Values
presented after the ± sign represent the standard deviation of the mean.
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We further analyzed the congruency between the June 2014 RGB image classified using the
image-specific spectral signature and the UAS platform-specific spectral signature (the overall mean
accuracies were 0.968 and 0.901, respectively). For this purpose, we compared the class assigned to
each pixel from both classified images, which resulted in the generation of nine class pairs, as described
in Table 4. About 76% of the pixels from both classified images had assigned all three classes (alfalfa,
soil and weed) the same. The remaining 24% of pixels did not match between the classified images.
A weight factor was calculated for each inconsistent class pair based on the percentage of pixels
(Tables 4 and 5). We then randomly selected 20 pixels from the set of pixels in each inconsistent
class pair (alfalfa–soil, alfalfa–weed, soil–alfalfa, soil–weed, weed–alfalfa, weed–soil), and manually
classified the pixel by visually evaluating the corresponding pixel in the June 2014 RGB image.
The results are presented as a percentage of pixels within each pair classified as alfalfa, soil, or weed
(Table 5). Overall congruency was determined by multiplying the percentage matching the manual
classification by the weight factor and summing over the classes. The results in Table 5 indicate
that the image classified using the UAS platform-specific spectral signature had more class pairs
(classes alfalfa–soil, soil–alfalfa, weed–alfalfa, weed–soil) closely representing the manually classified
RGB image, compared to the image classified using the image-specific spectral signature (classes
alfalfa–weed and soil–weed).

Table 4. Agreement between the June 2014 RGB (red, green, blue) image classified using the
image-specific spectral signature and the June 2014 RGB image classified using UAS platform-specific
spectral signature.

Class Pair (Image Specific–UAS Platform Specific) Percentage of Pixels Weight Factor Z

Alfalfa–Alfalfa 57.65 -
Soil–Soil 17.92 -

Weed–Weed 0.70 -
Alfalfa–Soil 3.08 0.130

Alfalfa–Weed 7.38 0.311
Soil–Alfalfa 0.03 0.001
Soil–Weed 0.01 0.001

Weed–Alfalfa 6.77 0.285
Weed–Soil 6.46 0.272

Z The weight factor was calculated for each inconsistent class pair based on the percentage of pixels.

Table 5. Validation of the June 2014 image classified using the image-specific and UAS platform-specific
spectral signatures by comparison with the corresponding pixels from the original June 2014
RGB image.

Class Pair (Image Specific–UAS
Platform Specific)

Weight
Factor X

Manual Classification
(Percentage of Pixels) Y

Image Specific
Correct Z

UAS Platform
Specific correct Z

Neither
Correct Z

Alfalfa Soil Weed

Alfalfa–Soil 0.130 45 55 0 5.85 7.15 0.00
Alfalfa–Weed 0.311 100 0 0 31.10 0.00 0.00
Soil–Alfalfa 0.001 70 30 0 0.03 0.07 0.00
Soil–Weed 0.001 60 40 0 0.04 0.00 0.06

Weed–Alfalfa 0.285 80 20 0 0.00 22.80 5.70
Weed–Soil 0.272 20 65 15 4.08 17.68 5.44

41.10 47.70 11.20
X Weight factor values for each class pair were obtained from Table 4. Y The percentage of pixels was calculated by
randomly selecting 20 pixels from the set of pixels in each class pair, which were manually classified by visually
evaluating the corresponding pixel in the June 2014 RGB (red, green, blue) image. Z The overall congruency was
determined by multiplying the percentage matching the manual classification by the weight factor and summing
over the classes.

Further, the sum across classes of their correct weight-factor-adjusted percentage was 47.70 and
41.10, respectively. These data suggest that although the overall accuracy for the image classified using
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the image-specific spectral signature (0.968, Table 3) was higher than the image classified using the
UAS platform-specific spectral signature (0.901, Table 3), the pixels from the latter classified image
more closely resembled the manually classified pixels when the supervised classification disagreed.
Therefore, the best spectral signature for classifying the June 2014 RGB image was with the UAS
platform-specific signature.

3.2. Manned-Aircraft-Acquired Images

Accuracy assessment estimates for the supervised classified images from October, 2014, June,
September and October, 2015 RGB images acquired by a manned aircraft using different spectral
signatures are presented in Table 3. The overall accuracy for these four classified images using
image-specific spectral signatures ranged from 0.915 for September, 2015 to 0.981 for the June,
2015 image. The spectral signatures developed based on the UAS platform were not able to classify any
of the images taken by manned aircraft, as evidenced by accuracy estimates ranging from 0.405 to 0.56.
With regards to the classification based on the manned-aircraft-platform-specific spectral signature,
the overall mean accuracy estimates ranged from 0.687 to 0.903, indicating that the utility of the
manned-aircraft-specific spectral signature is image specific.

Balanced accuracy assessments for soil class for all four images classified using the image-specific
and manned-aircraft-platform-specific spectral signatures showed accuracy values higher than
0.93 (Table 3). In contrast, balanced accuracy estimates for the alfalfa and weed classes were lower
(ranging between 0.5 and 0.731) for all four images when classified using the UAS platform-specific
spectral signature. Similar trends were also observed for the HSV and Hrot60SV variants for all four
images acquired by manned aircraft (Supplementary Tables S1 and S2), indicating that the spectral
signature developed based on the UAS-acquired images cannot be employed to classify images
acquired using manned aircraft. In addition, image-specific spectral signatures provided the greatest
accuracy for the classification of images acquired by manned aircraft.

3.3. Effects of Post-Processing on Image Accuracy

Our data showed a minimal effect of HSV and Hrot60SV transformation on improving the
classification accuracy of the images. Therefore, we continued our analysis with RGB images, thereby
reducing the time and resources spent during the image transformation process. The best spectral
signatures for classifying RGB aerial images were determined to be as follows: UAS platform-specific
spectral signature for images acquired by UAS, and the image-specific spectral signature for
manned-aircraft-acquired images. However, upon visual observation these classified images
showed many misclassified isolated pixels, creating a speckled appearance. We then performed
post-classification processing steps to diminish this effect and estimated the accuracy values of the
images, as outlined in Table 6. Apart from the June 2014 image, post-classification processing either
maintained or improved the overall accuracy estimates for all the datasets. With respect to the June 2014
image, the overall accuracy slightly dropped from 0.901 (Table 3) to 0.898 (Table 6). The June and
September 2015 post-processing classified images resulted in 100 percent accuracy.

3.4. Effect of PRR Disease on Alfalfa Stand

We have further determined the effect of PRR disease on alfalfa stands from the post-processing
classified images. Based on the classified image datasets from Table 6, the area covered by the alfalfa,
soil and weed classes was determined and the results are presented in Figure 5. The area under the
alfalfa, soil and weed classes from the June 2014 image were estimated to be 13.7, 5.8, and 1.7 ha,
respectively. Although, it has to be noted that the accuracy of the alfalfa, soil and weed areas was
89.7%, 99.8% and 78% for each class, respectively (Table 6). Intuitively, as the season progresses one
might expect a reduction in the alfalfa stand and a corresponding increase in bare ground due to PRR
disease. By the end of crop season in October 2015, the areas under alfalfa and soil have changed
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dramatically. PRR disease caused a reduction of 31.4% in the alfalfa stand between June 2014 and
October 2015, with the bare ground increasing by 74% during this period (Figure 5).
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Table 6. Accuracy assessment estimates of post-processing RGB (red, green, blue) images for an alfalfa
field infested with Phymatotrichopsis root rot disease located near Burneyville, OK, 2014–2015.

Image Image Acquisition
Platform/Spectral Signature

Balanced Accuracy Z Overall Mean
Accuracy Z

Alfalfa Soil Weed

June 2014 UAS/UAS platform specific 0.897 ± 0 0.998 ± 0.01 0.78 ± 0.04 0.898 ± 0.01
August 2014 UAS/UAS platform specific 0.951 ± 0.03 1 ± 0 0.975 ± 0.01 0.963 ± 0.02
October 2014 Manned aircraft/Image specific 1 ± 0 0.951 ± 0.03 0.935 ± 0.01 0.953 ± 0.02

June 2015 Manned aircraft/Image specific 1 ± 0 1 ± 0 1 ± 0 1 ± 0
September 2015 Manned aircraft/Image specific 1 ± 0 1 ± 0 1 ± 0 1 ± 0

October 2015 Manned aircraft/Image specific 1 ± 0 0.998 ± 0.01 0.994 ± 0.02 0.998 ± 0.01
Z Values presented after the ±sign represent the standard deviation of the mean.

4. Discussion

We applied an aerial imaging approach to better understand PRR disease spread and map
PRR-infested areas in an alfalfa field. Earlier research on PRR disease has focused on multispectral or
hyperspectral aerial images acquired using a manned aircraft platform; these studies were conducted
in cotton, another important host for P. omnivora [15,17,29]. To our knowledge, this is the first study
that used multiple aerial high-resolution RGB images of a PRR-infested alfalfa field, spanning a
period of two growing seasons (2014–2015). Unlike cotton, alfalfa is a perennial forage crop and is cut
several times within a growing season, thereby providing a unique opportunity to study PRR disease
progression under such intense management practices. In addition, continuous host availability
over different years influences pathogen movement and survival, thereby affecting stand yields.
We therefore used RGB images, as we were interested in monitoring PRR disease spread rather than
PRR detection, in which case we would have resorted to using multi- or hyper-spectral sensors capable
of capturing different spectra not perceived by the human eye. The major focus of this study was to
develop a workflow for analyzing RGB images collected using UAS and manned aircraft platforms,
and to discern the utility of these data for the study of PRR disease progression in alfalfa.

Regardless of the platform, remote sensing images are subject to optical and perspective
distortions that arise during the process of image acquisition and representing a three-dimensional
image into a two-dimensional format. Previous research has indicated that the usage of small focal
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length sensors (28 mm) produces more such distortions and that these distortions may have to be
corrected during processing in order to measure geometric quantities correctly [30]. In the current
study, the UAS image dataset was developed using vendor-generated proprietary jpeg images without
any change. For the images acquired with the manned aircraft platform, we used the Unidentified
Flying Raw (UFRaw) application to convert the RAW file format to the TIFF file format, with the
camera white balance option selected for color corrections. As earlier research has indicated higher
perspective distortion with small focal length (50 mm) sensors compared to 85 or 105 mm sensors,
the current study’s image dataset collected with the manned aircraft used an 85 mm focal length lens
to yield minimum optical and perspective distortions [31].

Initially, we examined the possibility of developing a single spectral signature to classify all the
images that would reduce the processing time and computing resources. Our data indicated that a
single spectral signature is not applicable for the analysis of images collected from the UAS and manned
aircraft platforms. Hence, each image was classified using three spectral signatures: (a) image-specific;
(b) UAS platform-specific; and (c) manned aircraft platform-specific. We identified that the UAS
platform-specific spectral signature can be used to classify images acquired from a UAS platform,
yielding higher accuracy results (Table 3, Supplementary Tables S1 and S2). However, the same model
does not hold for manned aircraft images. The data from Table 3 and Supplementary Tables S1 and S2
indicated increased accuracy estimates when the manned aircraft images were classified using
image-specific spectral signatures.

The acquisition of RGB images using different sensors at various flight times (Table 1) might
be some of the reasons that a single spectral signature could not be utilized for images from both
platforms. The images obtained also had different spectral resolutions; to balance this effect, all images
were resampled to a coarser resolution (0.10 m), ensuring uniform comparison. The flights for both
platforms occurred at different times during the day resulting in images with varying degrees of
lighting in addition to shadowing effects. To account for differences in luminance between the images
and to accurately segment pixels into the classes alfalfa, soil and weed, we investigated the utility of
color space conversion for our dataset.

The images from our study were converted to the traditional RGB (red, green, blue channels)
color space. Several studies have shown a better separation of the image features by weighting each
channel differently during the process of transforming the RGB color space. Such changes are expected
to yield diverse color distributions in each model, as most of the transformations are non-linear [32,33].
For example, in a study where 11 different color spaces (RGB, normalized rgb, XYZ, L*a*b*, L*u*v*,
HSV, HLS, YCrCb, YUV, I1I2I3 and TSL) were compared to segment lettuce plants and soil from a set of
images, the L*a*b* color space was shown to achieve superior classification, with 99.2% accuracy [34].
While there is no single optimum color space for any image classification, we chose to transform our
RGB dataset into an HSV color model, as this model has been shown to be robust to illumination
variations and removing shadow effects [35–37]. After performing HSV transformation, we observed
high variation in the pixel values of the hue channel, especially for the soil class, since the soils have a
reddish hue with values just above 0 and just below 240. To minimize this variation, the hue channel
pixel values were rotated by 60 units to yield a Hrot60SV transformation.

We expected improved classification accuracies with the HSV and Hrot60SV color spaces
compared to the RGB color space (Table 3, Supplementary Tables S1 and S2), but failed to find
support for this hypothesis in the data and subsequently rejected this hypothesis. Although the
balanced accuracy estimates for the soil class were more than 92% for the RGB color space images
classified using different spectral signatures (the UAS-platform-based signature for UAS-acquired
images and the image-specific spectral signature for manned-aircraft-acquired images), a major factor
contributing to the differences in the overall accuracy estimates appears to be the alfalfa and weed
classes. In addition to color space conversions, we investigated the effect of the spectral angle mapper
(SAM) algorithm when performing supervised classification on a subset of our dataset. Unlike the
maximum likelihood classification algorithm that was used to perform supervised classification in this
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study, SAM does not require any assumptions regarding the statistical distribution of the data and is
not affected by solar illumination and shading effects [38]. However, the SAM classification resulted in
accuracies of less than 85% compared to the maximum likelihood classification algorithm (data not
shown). This is in contrast to Yang et al. [16], who detected PRR in cotton fields using SAM with more
than 95% accuracy, but their dataset was comprised of multispectral images, unlike the RGB images
that were used in the current study. While it is a recognized challenge to accurately segment crops
from weeds, other studies have mitigated this hurdle by using artificial neural network algorithms
and other machine-learning-based approaches; assessing their utility for our dataset is beyond the
scope of this study [39,40].

Post-classification processing steps were performed to minimize the speckled effect in the image,
i.e., for removing misclassified isolated pixels and small regions less than 100 pixels. This process either
maintained or improved the overall accuracy for five of the six images analyzed (Table 6). For June 2014,
the overall mean accuracy decreased from 0.901 to 0.898. This is also the image for which we determined
that using the UAS-platform-specific spectral signature was better than the image-specific spectral
signature. We estimated the congruency between the classified images generated by both spectral
signatures, compared with the manually classified RGB pixels and determined UAS-platform-specific
signature to be more accurate than the image-specific spectral signature. We observed lower balanced
accuracy values for the weed class for this image. This is the result of significantly fewer weeds,
leading to the generation of smaller training and validation datasets (Table 2). We hypothesize that
fewer training pixels might have an influence on the misclassification of some of the pixels as falling in
the weed class instead of the alfalfa class or vice-versa.

The classified RGB aerial images estimating the extent of alfalfa stand loss due to PRR showed
wide fluctuations in the area under the three classes, especially the soil class. More weeds occupied
the new empty soil areas created by the PRR disease, leading to a reduction in the area under soil.
However, by the end of the study period (October 2015), about 10 ha of area was recorded for the soil
class, compared to 5.8 ha at the start of the study period (June 2014). This can be attributed to the
formation of new diseased areas as well as the increase in existing diseased areas. Similar effects of PRR
have been observed in one cotton growing season using multispectral images, where the percentage of
root-rot-infected areas increased from 5.4% to 13.2% and 21.6% to 26.8% in two fields in Edroy, TX and
from 27.0% to 37.8% and 21.4% to 50.6% in two fields in San Angelo, TX [29].

5. Conclusions

To summarize, Phymatotrichopsis root rot disease severely limits alfalfa production in southern
Oklahoma. Alfalfa fields infested with P. omnivora often reduce stand life and productivity. The extent
of disease spread occurring in a growing season greatly affects alfalfa stand longevity, butlittle is
understood about this phenomenon. Hence, through this study we provide a framework for obtaining
high-resolution RGB aerial images from either UAS or manned aircraft platforms and the subsequent
workflow to deduce the extent of PRR disease spread. Understanding the loss of alfalfa stand areas
reported from aerial images could help a producer make informed management choices such as
replanting or site-specific fungicide application to slow down the spread of the disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/6/917/s1,
Figure S1: Aerial imaging platforms used for data collection from a Phymatotrichopsis root-rot-infested alfalfa
hay production field during 2014 and 2015. (A) Vireo unmanned aerial vehicle, (B) Dragonfly sport utility
piloted aircraft; Table S1: Accuracy assessment values of HSV images using different spectral signatures; Table S2:
Accuracy assessment values of Hrot60SV images using different spectral signatures.
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