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Abstract: Multiple satellite-based earth observations and traditional station data along with the Soil &
Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River
Basin region’s hydrological decision support system. A nearest neighbor approximation methodology
was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement
mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement
Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision
support system. A software tool to access and format satellite-based earth observation systems of
precipitation and minimum and maximum air temperatures was developed and is presented. Our
results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was
able to capture the variability of the observed streamflow patterns in the Lower Mekong better than
model-simulated streamflow with in-situ precipitation station data. We also present satellite-based
and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower
Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation,
difficult access and incompleteness of the available in-situ precipitation data for the Mekong region
make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.

Keywords: Mekong River; water balance; remote sensing; SWAT; streamflow

1. Introduction

The complexity of managing water resource, e.g., the Mekong River, stems from the fact that
there are many competing interests, such as societal, cultural, economic, and environmental interests,
that all need to be synchronized to achieve the goal of prosperity and sustainability [1–6]. Sivapalan
and Blöschl [7] argued that the role of finer resolution remote sensing data and models that represent
catchments as complex systems and that link time scales, is the notion that is most common in the
current era (2010–2030) to address contemporary hydrological challenges. Growing populations,
sustaining socio-economic activities (e.g., fishery), ecological needs, the effects of climate change, and
energy security are some of the complex challenges experienced in the Mekong River Basin [8–13].

Remote Sens. 2018, 10, 885; doi:10.3390/rs10060885 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6542-319X
https://orcid.org/0000-0002-1101-9845
https://orcid.org/0000-0001-8375-6038
http://www.mdpi.com/2072-4292/10/6/885?type=check_update&version=1
http://dx.doi.org/10.3390/rs10060885
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 885 2 of 17

As a consequence, utilizing newly-developed remote sensing products and modeling to address the
Mekong River is vital.

This work integrates multiple satellite-based earth observation systems, in-situ station data
and spatial data with the Soil & Water Assessment Tool (SWAT) hydrologic model employed in the
Mekong River Basin region to improve the Lower Mekong River Basin region’s hydrological decision
support system, based on both hydrological flow and total water demand/use. The scarcity and the
incompleteness of the data observations from many stations make it imperative to use satellite-based
remote sensing data when modeling the hydrological fluxes in the Lower Mekong River Basin (LMRB).
This work has developed a comprehensive suite of hydrological data products that can be used to
improve water accounting and floodplain management using hydrological cycle variables such as
runoff, evapotranspiration, and precipitation in the LMRB. The main objective of this work is the
improvement of the hydrological decision support system for the Lower Mekong River Basin. This
work explores streamflow simulation for the Lower Mekong River by examining the usability of
satellite-based remote sensing data products, comparing them to the traditional in-situ station data.
Overall, our work aims to assess the value-added information from the simulation of hydrological
processes in the LMRB by using SWAT with climatological forcing data from satellite-based earth
observations as an alternative to scarce in-situ station data.

2. Materials and Methods

2.1. Study Area

The Mekong River originates in the high altitudes of the Tibetan Plateau in China and flows south
through five countries (Myanmar, Lao People’s Democratic Republic (PDR), Thailand, Cambodia, and
Vietnam) ending in a large delta before exiting to the South China Sea. The Mekong River Basin is
divided into upper and lower basins. The Lower Mekong River Basin begins when the Mekong River
leaves the Chinese province of Yunnan and enters the Golden Triangle, where the borders of Thailand,
Lao PDR, China and Myanmar come together (Figure 1).

2.2. Spatial Data

A digital elevation model (DEM) with 1” (one arcsec) grid resolution for the study area was
obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model (https://doi.org/10.5067/ASTER/ASTGTM.002). The DEM map with
90-m resolution was used to derive the slope and aspect grids for the LMRB model input. The slope
class of 2–8% covers about 40% of the watershed area. The LMRB topography ranges from 2838 m
above sea level in the Annamese Cordillera mountains range, Laos (the Mekong River and the South
China Sea are boundaries) to 89 m below sea level (outlet) with a mean elevation over the basin of
479 m.

https://doi.org/10.5067/ASTER/ASTGTM.002
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Figure 1. The Lower Mekong River Basin. Streamflow gauges (described in Table 1) follow the Lower 
Mekong River Basin subareas, as presented by Rossi et al. [14]. Cities with population classes obtained 
from the Environmental Systems Research Institute, Inc. (ESRI) World Populated Places layer 
(https://www.arcgis.com/home, accessed on 25 May 2018) are depicted in red (greater than 5 million), 
orange (1-5 million), and light green (0.5–1 million).   

Figure 1. The Lower Mekong River Basin. Streamflow gauges (described in Table 1) follow the
Lower Mekong River Basin subareas, as presented by Rossi et al. [14]. Cities with population classes
obtained from the Environmental Systems Research Institute, Inc. (ESRI) World Populated Places layer
(https://www.arcgis.com/home, accessed on 25 May 2018) are depicted in red (greater than 5 million),
orange (1–5 million), and light green (0.5–1 million).

The study area soil information data was obtained from the Harmonized World Soil Database
(HWSD) [15]. The LMRB soil texture is mainly sandy clay loam and covers approximately 42% of
the basin.

The land use/land cover (LULC) data was obtained from a 2010 LULC map at a spatial resolution
of a 0.25 km for the Lower Mekong Basin using 2010 Moderate Resolution Imaging Spectroradiometer
(MODIS) monthly Normalized Difference Vegetation Index (NDVI) data as the primary data source [16].

https://www.arcgis.com/home
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The study watershed LULC areas are mainly forest and agricultural lands. Rice is farmed on about
26% of the watershed area, while forest land cover constitutes about 30% of the watershed area [16].

2.3. In-Situ Data

The discharge data for this work was obtained from the Mekong River Commission (MRC,
www.mrcmekong.org). Updated discharge data was interpolated from recent observed level data
obtained from the Asian Preparedness Disaster Center (ADPC, www.adpc.net). Data for existing
dams within the LMRB were obtained from the Greater Mekong Consultative Group for International
Agricultural Research (CGIAR) Research Program on Water, Land and Ecosystems [17]. In Figure 1,
we depict dams within the LMRB that are either already commissioned or still under construction
and have a maximum reservoir area greater than or equal to 280 km2, similar to the MRC Mekong
River model setup. The surface area of the reservoirs behind the various dams that we included in this
study as well as the geographic annotations for the in-situ stations depicted in Figure 1, are visualized
interactively with the compressed keyhole markup language files (KMZ) Supplementary Materials of
this manuscript.

Daily precipitation and minimum and maximum air temperature data was obtained from the
Mekong River Commission data respiratory. Figure 2 depicts the in-situ data availability in the Lower
Mekong Basin. We note that precipitation data are available for some sites since 1920 and started to
cover the whole basin around 1990s. Air temperature data (minimum and maximum) are available at
fewer sites than precipitation.
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Monteith method was used to simulate potential evapotranspiration for this work. The SWAT 
Calibration and Uncertainty Procedures (SWAT-CUP) software package with the Sequential 
Uncertainty Fitting (SUFI2) method [29] was used for model calibration. The watershed stream 
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Figure 2. (a) Precipitation (81 stations), and (b) air temperature (10 stations) in situ data availability at
the Lower Mekong Basin. The dark blue color (value of 0 or 0%) refers to a complete data record, while
the beige color (value of 1 or 100%) refers to a complete missing data records during a specific year for
a specific site.

2.4. Meteorological Data

Daily cumulative precipitation data was obtained from the Global Precipitation Measurement
mission (GPM) and the Tropical Rainfall Measurement Mission (TRMM) remote sensing data
and used as inputs for the LMRB model. The Integrated Multi-satellite Retrieval for the Global
Precipitation Measurement mission (IMERG) dataset used for this work was the GPM_3IMERGDF
(https://pmm.nasa.gov/data-access/downloads/gpm). Since IMERG data products are only available

www.mrcmekong.org
www.adpc.net
https://pmm.nasa.gov/data-access/downloads/gpm
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from 12 March 2014 to present, we used the TRMM rainfall data (3B42RT) for time periods earlier
than 12 March 2014. A nearest neighbor methodology was used to fill the IMERG data points with
the TRMM data points as an approximation during the 1 March 2000 to 11 March 2014 time period,
because the TRMM and IMERG data do not have the same spatial resolution (i.e., 0.25 and 0.1 degree
respectively). The Euclidean or great circle distance was calculated between the TRMM and IMERG
cell centroids to achieve filling data points. The minimum distance between the IMERG and TRMM
points was used for the filling assignment. A layout showing part of the IMERG and TRMM cell points
within the LMRB, labelled with identification numbers that reflect the assignment, is illustrated in
Figure 3.
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Figure 3. A schematic showing a layout of the Tropical Rainfall Measurement Mission (TRMM)
(rectangle in red color at a spatial resolution of 0.25 deg.) and the Integrated Multi-satellite Retrievals
for the Global Precipitation Measurement mission (IMERG) (circular in black color at a spatial
resolution of 0.1 deg.) grids labelled with numbers illustrating nearest neighbor connectivity. TRMM
data from March 2000 to March 2014 were used to fill the IMERG grids following the joining
methodology explained.

Minimum and maximum daily air temperature data was calculated from the air temperature
records obtained from the Global Land Data Assimilation System (GLDAS) simulation data
products [18]. For this work, we used the GLDAS_NOAH025_3H.2.1 data products retrieved from
https://disc.gsfc.nasa.gov/. The wind speed, relative humidity, and solar radiation data needed for
our modeling work was estimated using the global reanalysis weather data from the National Centers
for Environmental Prediction (NCEP, http://www.ncep.noaa.gov/), and the Climate Forecast System
Reanalysis (CFSR).

2.5. Hydrological Model—SWAT

The SWAT is a conceptual watershed-scale hydrological model designed to address challenges
related to water management, sediment, climate change, land use change, and agricultural chemical
yield [19–24]. The SWAT applications range from the field scale to the watershed scale [25] to the

https://disc.gsfc.nasa.gov/
http://www.ncep.noaa.gov/
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continental scale [26,27]. The SWAT model components are hydrology, weather, sedimentation, soil
temperature, crop growth, nutrients, pesticides, and agricultural management. The hierarchical
structure for modeling units in SWAT is set to be multiple sub-watersheds, which are then
further subdivided into hydrological response units (HRUs) that consist of homogeneous land
use, management, and soil characteristics. The SWAT simulates the overall hydrological balance
for each HRU and model output is available in daily, monthly, and annual time steps. SWAT
meteorological inputs include daily precipitation, maximum and minimum temperature, solar
radiation, humidity and wind speed. The version of SWAT used in this work was SWAT2012
rev. 635 [28]. The Penman–Monteith method was used to simulate potential evapotranspiration
for this work. The SWAT Calibration and Uncertainty Procedures (SWAT-CUP) software package
with the Sequential Uncertainty Fitting (SUFI2) method [29] was used for model calibration.
The watershed stream network and sub-basins were generated using the Arc SWAT software
(http://swat.tamu.edu/software/arcswat/) watershed analysis module (watershed delineator) with a
contributing area threshold of 253.5 km2, resulting in 1138 sub-basins. Applying the HRU module in
the Arc SWAT software with 10% land use percentage over the sub-basin area, 10% soil class percentage
over the land use area, and 10% slope class percentage over the soil area, we obtained 10,096 HRUs for
the LMRB model.

3. Results and Discussion

This study highlights the benefit of satellite-based earth observations data for hydrological
modeling in regions that experience poor spatial in-situ earth observations data representation. It has
been well established in literature that climate forcing data is the dominant contributor in determining
the hydrologic response. The ability of our developed hydrological model to represent the variability of
the observed discharge at multiple sites along the Lower Mekong River when driven by satellite-based
earth observation data corroborates the role of quality climate forcing as one of the main determinants
in hydrologic modeling.

We assessed the performance of satellite-based data products (TRMM and GPM) in estimating
precipitation and streamflow over the Lower Mekong River Basin. We noticed that the quality of
the satellite-based remote sensing precipitation data, especially in the southern part of the LMRB
(i.e., close to the delta) was better than elsewhere in the basin. This finding could be used for the
further refinement of satellite-based remote sensing products in the Lower Mekong region. It is worth
mentioning here that although our calibration and validation work (Cal/Val) was done for years before
the onset of GPM data, the simulated discharge results driven by the GPM precipitation data using the
precipitation adjustment parameters obtained by the Cal/Val work were promising and matched the
observed discharge values along the Lower Mekong River.

3.1. LMRB Water Balance

The average annual precipitation in the study watershed during 2001–2015 was 1.9 m
(satellite-based remote sensing data products). The average maximum annual air temperature in
the study watershed during 2001–2015 was 27 ◦C, while the average minimum annual air temperature
during 2001–2015 was 18 ◦C (GLDAS data products). We also note here there is about 2 ◦C difference
between air temperature estimates using GLDAS data products and in-situ station data products. We
believe that in-situ air temperature station data does not represent the entire watershed accurately,
since there is a bias attributed to location and availability. We summarize the precipitation and air
temperature annual information for the study watershed from 1985–2015 in Figure 4.

http://swat.tamu.edu/software/arcswat/
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Figure 4. The Lower Mekong River Basin time series data. Annual aggregated weighted average
precipitation in meters over the LMRB using satellite-based remote sensing (RS) and in-situ data. Mean
annual aggregated weighted air temperature pattern (maximum and minimum air temperatures) in
degrees Celsius using remote-sensing-calculated products and in-situ data.

Table 1 gives various statistical measures for the Lower Mekong River annual discharge using
calendar years at different gauges along the main stem river and upstream tributaries. The upper basin
inlet discharge record for the years 2008 and onward, required for our modeling work, were regressed
from the nearby station (Chiang Sean) discharge record. The Vientiane (Lao PDR) station # 011901,
which has the longest available monitoring record compared to the other stations studied (1913–2016),
has a mean annual discharge of 4476 m3/s. Minimum, maximum, different quantiles, standard
deviation, and coefficient of variation values for annual discharge at different stations are presented.
Discharge station skewness values suggest the location and the shape of the probability distribution
(i.e., positive or negative). In Table 1, we also provide the Hurst coefficient [30,31]. The Hurst coefficient
is an indicator of a serial correlation or dependence for the annual discharge time series studied. Across
the multiple discharge stations studied in the Lower Mekong, the Hurst coefficient for annual flow
was greater than 0.5, suggesting that high flow will most likely be followed by another high flow in
the future. Multiple works have presented various LMRB discharge statistics [14,32]. However, Table 1
adds new information—the coefficient of variation, skewness, and persistence and autocorrelation
explained by the Hurst coefficient for the Lower Mekong River. Discharge statistics at nine streamflow
gauges representing the outlets of eight sub-basins in the Lower Mekong River Basin, in addition to the
Upper Mekong River inlet, are provided in Table 1. The geographic locations of these nine streamflow
gauges are referenced in Figure 1 with a green filled circle symbol.
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Table 1. The Lower Mekong River annual discharge statistics. Discharge units are in m3/s. Country codes are: CN (China), TH (Thailand), LA (Lao People’s
Democratic Republic), and KH (Cambodia). The A column refers to the drainage area in square km. Qmin and Qmax refer to the minimum and the maximum annual
discharge over the record at each site. The Q1, Q2, and Q3 refer to the 25th, 50th (median), and 75th percentile of the mean annual discharge at each site. The µ refers to
the mean annual discharge over the record, σ is the unbiased standard deviation, CV is the coefficient of variation, γ is the skewness, H is the Hurst coefficient. The
coefficient of variation CV is equal to σ/µ.

Station Name Code Country LMRB Start Date End Date A Qmin Q1 Q2 Q3 Qmax µ σ CV γ H

Chinese border 010000 CN Upper basin inlet 1-Jan-1985 31-Dec-2007 — 1619 2010 2157 2459 2763 2221 303 0.14 0.03 0.35
Chiang Sean 010501 TH Sub-basin 1 outlet 1-Jan-1960 31-Dec-2016 191,055 1871 2304 2564 2929 4027 2618 427 0.16 0.60 0.72

Luang Prabang 011201 LA Sub-basin 2 outlet 1-Jan-1939 31-Dec-2016 273,838 1852 3410 3754 4177 5488 3777 707 0.19 −0.12 0.70
Vientiane 011901 LA Sub-basin 3 outlet 1-Jan-1913 31-Dec-2016 303,528 2677 3975 4455 4900 6111 4476 710 0.16 0.10 0.67

Mukdahan 013402 TH Sub-basin 4 outlet 1-Jan-1923 31-Dec-2016 394,134 5256 7246 8031 9012 10,496 8071 1168 0.14 −0.02 0.89
Pakse 013901 LA Sub-basin 5 outlet 1-Jan-1923 31-Dec-2016 550,955 6835 9095 10,050 11,165 12,918 10,066 1434 0.14 −0.08 0.68
Kratie 014901 KH Sub-basin 6 outlet 1-Jan-1924 31-Dec-2016 656,518 6599 11,891 13,527 15,077 19,562 13,411 2591 0.19 −0.41 0.77

Yasothom 370104 TH Sub-basin 7 outlet 1-Jan-1952 31-Dec-2003 46,805 77 171 240 287 602 242 102 0.42 1.21 0.60
Rasi Salai 380134 TH Sub-basin 8 outlet 1-Jan-1979 31-Dec-2003 43,878 5 95 154 223 447 177 107 0.60 0.79 0.94
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3.2. Calibration and Verification of the LMRB Model Using TRMM

SWAT uses many parameters to describe typical soil, plant growth, land cover, reservoir, and
agricultural management characteristics. In this work, the LMRB model was calibrated to the monthly
average discharge at the LMRB sub-basin outlets during the 2005 and 2006, with a few parameters
as outlined in Table 2. The reason for selecting 2005 and 2006 as the calibration years was based
on the fact that the precipitation amounts in these two years were close to the average annual
precipitation over the Lower Mekong River basin. The validation of the LMRB model was performed
at the LMRB sub-basin outlets during the time period 2001–2004, and in 2007. The validation time
period was picked so that a common time period for the available satellite-based remote sensing
and in-situ climate forcing data exists. The availability of remote-sensing, satellite-based and in-situ
air temperature and precipitation forcing data is depicted in Figure 4. The parameters used and
suggested range values for the LMRB model calibration were consulted and obtained from SWAT
developers (R. Srinivasan, personal communication) and the previous works of Neitsch et al. [33] and
Rossi et al. [14]. All other parameters in the LMRB model were left at their default values. In Table 2,
we provide parameter-calibrated values for the two models that we performed (model forced with
satellite-based remote sensing precipitation and in-situ precipitation). Three groups of parameters
related to precipitation, high flow, and base flow are presented in Table 2. The range of the correction
factor to grid precipitation shown in Table 2 are the values used in SWAT-CUP to adjust the forcing
precipitation data (i.e., increment). The calibrated values for the soil evaporation compensation factor
parameter (ESCO = 0.6 and 0.75) were found to be lower than the previous values reported by
Rossi et al. [14] for the LMRB. Generally, as the value for ESCO is reduced, the SWAT model is able
to extract more of the evaporative demand from lower soil layers. We argue here that the newer soil
data used in this work has influenced a newer ESCO value for the LMRB that is different from the
default value previously used (i.e., ESCO = 0.95). The parameters listed in Table 2 are among many
parameters that describe the SWAT soil physical characteristics and influence the movement of water
and air through the soil profile and shallow aquifer underneath it, thus they have a major impact on
the cycling of water within the SWAT modeling unit (HRU).

Our hydrological model showed higher sensitivity to parameters related to correction adjustment
factors for precipitation forcing inputs. Figure 5 provides the LMRB model precipitation forcing
adjustment factor layout for the in-situ and remote-sensing, satellite-based precipitation datasets.
This layout could be used to guide the correction of TRMM and GPM earth observations for
future applications in the region. Polygons with no change in precipitation forcing adjustment
(i.e., shown in white color) indicate the non-existence of rain stations or rain station exclusion due
to the incompleteness of data records (Figure 5a). This matches earlier observation seen in Figure 1
that there are a few number of rain stations over the LMRB. We note here that a sequential calibration
procedure was performed starting from sub-basin outlet 1 and going downstream till sub-basin
outlet 6 (sub-basins 7 and 8 are the western tributary outlets for the Mekong River and are draining to
sub-basin 5). This has resulted in the production of the correction adjustment factor layout in polygons
corresponding to sub-basin outlets. Figure 5 serves as a quality check for the precipitation forcing data
in the LMRB when applied in hydrological applications. Precipitation forcing data from satellite-based
remote sensing tend to be more skewed in the northern part of the LMRB in comparison with the
southern part. In general, we found that running our model without satellite-based remote sensing
precipitation data adjustments tended to overestimate the simulated discharge by about 13%.
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Table 2. Parameters and calibrated values used for the LMRB model simulations. The identifier code refers to replacement (V), addition (A), and multiplication (R).

Parameter Description Range Identifier
Code

Calibrated Value Calibrated Value

Remote Sensing Data In-Situ Data

Precipitation

PRECIPITATION Correction factor to grid precipitation record −1, +0.01 R −0.445 to +0.002 −0.983 to −0.007

High Flow

CN2 Initial SCS runoff curve number to moisture
condition II −0.1, +0.1 R −0.07 −0.0315

AWC Available water capacity of the soil layer −0.1, +0.1 R +0.07 +0.0525
ESCO Soil evaporation compensation factor +0.5, +0.9 V +0.6 +0.75

Base Flow

GWHT Initial groundwater height 0, +1.0 V +0.075 +0.425
GW_DELAY Groundwater delay time −30, +60 A −14.25 −14.25

GWQMN Threshold depth of water in the shallow aquifer −1000, +1000 A −450 −250
REVAPMN Percolation to the deep aquifer to occur −750, +750 A +262.5 +337.5
GW_REVAP Groundwater “revap” coefficient +0.02, +0.10 V +0.042 +0.098
RCHRG_DP Deep aquifer percolation fraction −0.05, +0.05 A +0.0375 −0.0225
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sensing (RS) model input. The precipitation data adjustment equals to 1+increment, as outlined in
Table 2.

Figure 6 depicts the LMRB model performance during the calibration years (2005, 2006), driven by
satellite-based remote sensing earth observations (blue rectangle) and in-situ (red circle) meteorological
data at six watershed outlets within the Lower Mekong Basin. The simulated discharge results obtained
from satellite-based remote sensing data were able to explain more than 91% of the variance observed
in the monthly discharge during the calibration years (i.e., the Nash–Sutcliffe Efficiency (NSE) varied
from 0.91 to 0.96 from sub-basin 1 to 6). The LMRB model performance when driven with in-situ data
was able to explain from 68% to 91% of the variance observed in the monthly discharge during the
calibration years. The LMRB model overestimated the monthly discharge by about 5% at sub-basin 5
and underestimated the monthly discharge by about 2% at sub-basin 6 during the calibration years
when driven by satellite-based remote sensing data. Table 3 provides the calibration metrics used
to assess the performance of the LMRB model when driven by satellite-based remote sensing and
in-situ data. The percent error (Qerr) between the monthly mean simulated and observed discharge
and the NSE performance metrics are tabulated for the LMRB model under satellite-based remote
sensing and in-situ data (Table 3). We note here that the results shown in Figure 6 and Table 3 suggest
that the simulated model discharges utilizing satellite-based remote sensing data inputs are able to
capture the variability of the observed streamflow patterns in the Lower Mekong better than simulated
model discharges forced with in-situ data. We also note that the Qerr at SB5 and SB6 (LMRB outlet)
were higher than other outlets examined in the LMRB calibration work (Table 3). We think that the
differences in Qerr among the sub-basins can be attributed to the sequential calibration method that we
used in this work, and the interaction of the dam release rules observed in the basin. In summary, our
LMRB model evaluation results are similar to previous attempts presented by Rossi et al. [14], who
reported Nash–Sutcliffe flow monthly efficiency values ranging between 0.8 and 1.0 at mainstream
monitoring stations.



Remote Sens. 2018, 10, 885 12 of 17
Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 17 

 

 
Figure 6. The LMRB model calibration. Monthly mean observed and simulated discharge in m3/s at 
six sub-basin watersheds in calibration of the LMRB model. The calibration time period is from 2005 
to 2006. The red circles are simulated discharge with satellite-based, remote-sensing precipitation data 
input, while the blue rectangles are simulated discharge with in-situ meteorological data input. Here 
SB stands for sub-basin.  

Table 3. The LMRB model calibration metric results. The percent error (Qerr) between the monthly 
mean simulated and observed discharge and the Nash–Sutcliffe Efficiency (NSE) performance metrics 
are depicted for each sub-basin corresponding to satellite-based remote sensing (RS) and in-situ data 
input, respectively. 

SUB-BASIN 
Qerr (%) NSE 

RS In-Situ RS In-Situ 
SB1 0.81 0.53 0.96 0.91 
SB2 −0.29 2.02 0.94 0.70 
SB3 0.88 −3.31 0.91 0.75 
SB4 0.79 −3.41 0.93 0.78 
SB5 4.76 5.74 0.94 0.68 
SB6 −1.90 −1.64 0.94 0.83 

Figure 7 provides monthly observed and simulated discharge for the study watershed for the 
validation of the LMRB model over five years (2001–2004, and 2007). Black circles and red rectangles 
were used to distinguish between the simulated discharges generated using satellite-based remote 
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Figure 6. The LMRB model calibration. Monthly mean observed and simulated discharge in m3/s at
six sub-basin watersheds in calibration of the LMRB model. The calibration time period is from 2005 to
2006. The red circles are simulated discharge with satellite-based, remote-sensing precipitation data
input, while the blue rectangles are simulated discharge with in-situ meteorological data input. Here
SB stands for sub-basin.

Table 3. The LMRB model calibration metric results. The percent error (Qerr) between the monthly
mean simulated and observed discharge and the Nash–Sutcliffe Efficiency (NSE) performance metrics
are depicted for each sub-basin corresponding to satellite-based remote sensing (RS) and in-situ data
input, respectively.

SUB-BASIN
Qerr (%) NSE

RS In-Situ RS In-Situ

SB1 0.81 0.53 0.96 0.91
SB2 −0.29 2.02 0.94 0.70
SB3 0.88 −3.31 0.91 0.75
SB4 0.79 −3.41 0.93 0.78
SB5 4.76 5.74 0.94 0.68
SB6 −1.90 −1.64 0.94 0.83

Figure 7 provides monthly observed and simulated discharge for the study watershed for the
validation of the LMRB model over five years (2001–2004, and 2007). Black circles and red rectangles
were used to distinguish between the simulated discharges generated using satellite-based remote
sensing and in-situ data as forcing inputs. In general, the model captured the timing of the onset and
end of seasonal discharge but was slightly off in some estimates of peak flow. The NSE metrics during
the validation time period for our model driven by satellite-based remote sensing climate data (RS)
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and in-situ climate data (In-Situ) are provided in Table 4. We note that the NSE performance metrics
for our model varied between 0.88 and 0.98 when driven by satellite-based remote sensing climate
data and between 0.75 to 0.97 when driven by in-situ climate data. The model had about 3.85% error
on average in estimating monthly flows during the validation time period.
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Figure 7. The LMRB model verification. Scatterplot of monthly observed and simulated discharge in
m3/s for the Lower Mekong River at six sub-basin watersheds in validation of the LMRB model for
2001–2004, and 2007. Black circles indicate simulated discharge with satellite-based remote sensing
meteorological data input, while red rectangles indicate simulated discharge with in-situ precipitation
and air temperature data input.

Table 4. The LMRB model validation metric results. The LMRB model Nash–Sutcliffe Efficiency (NSE)
performance metrics are depicted for each sub-basin corresponding to satellite-based remote sensing
(RS) and in-situ data input, respectively.

Sub-Basin
NSE

RS In-Situ

SB1 0.98 0.97
SB2 0.91 0.83
SB3 0.94 0.79
SB4 0.90 0.83
SB5 0.89 0.75
SB6 0.88 0.84
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3.3. Verification of the LMRB Model Using GPM

Figure 8 depicts the ability of the LMRB model to simulate discharge at various sub-basin outlets
using GPM-IMERG precipitation as the forcing climate data. The simulated discharge results in Figure 8
were able to explain between 71% to 96% of the variance observed in monthly discharge during the
year 2015 (sub-basin 1 to sub-basin 6). We note here that there is a slight difference in the LMRB model
performance results when we compare the LMRB model forced with GPM-IMERG and TRMM-3B42RT
(Figures 6 and 8). We attribute the model performance difference to the adjustments that we made to
the precipitation forcing data to calibrate the LMRB model. We think that the adjustments we made to
the TRMM-3B42RT forcing data during calibration years and verified in the verification years could be
also used reasonably by the LMRB model when forced with GPM-IMERG data.
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Figure 8. Monthly mean observed and simulated discharge in m3/s at six sub-basin watersheds with
the use of the LMRB model for 2015. The IMERG precipitation data used to drive the LMRB model.
The Nash–Sutcliffe Efficiency (NSE) performance metrics are depicted for each sub-basin. Here SB
stands for sub-basin.

3.4. Nasaaccess Tool

We developed a ‘nasaaccess’ package (version 1.2) within the R software framework [34] to
streamline the accessing and processing of the National Aeronautics and Space Administration (NASA)
earth observation data products (i.e., TRMM, GPM, and GLDAS). Our package incorporates the
methods we introduced (Figure 3) to address the spatial scale issues seen between TRMM and GPM.
The ‘nasaaccess’ package creates weather input definition tables as well as station data files in a format
readable by the SWAT model or any other rainfall/runoff model. The ‘nasaaccess’ package can be
expanded to include other earth observation data products needed in the future. For the time being,
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‘nasaaccess’ generates the daily rainfall and minimum and maximum air temperature gridded data
and gridded data definition files needed to serve as a setup to run any basic SWAT/other model. The
core functionality of the ‘nasaaccess’ package can be summarized by the following steps:

(i) Access the NASA Goddard Space Flight Center (GSFC) servers to download earth
observation data,

(ii) Clip needed grids based on a user study watershed input shapefile,
(iii) Handle temporal and spatial issues (e.g., the GLDAS product has 3-h temporal resolution),
(iv) Generate daily climate gridded data files and definition files compatible with SWAT/

other models.

In summary, the inputs needed for the various functions within the ‘nasaaccess’ package are: start
and end dates for the user’s required earth observation data, a shapefile for the study area of interest,
and a DEM grid for the area of interest. The ‘nasaaccess’ package was used effectively in this work to
process the meteorological input data for the LMRB model.

4. Conclusions and Recommendations

In this work, we showed that earth observation data enabled us to develop a regional hydrological
decision support system application for the Lower Mekong River Basin. The inconsistency, scarcity,
poor spatial representation, as well as difficult access and incompleteness of the available in situ data in
the Mekong region make it absolutely imperative to adopt earth observation data products to pursue
hydrological modeling for the Lower Mekong River Basin. We also introduced a smoothing technique
method to address the spatial scale issues observed in the TRMM and GPM earth observation data. We
also produced a software tool that can be used to access and process earth observation data products
on a global scale.

The use of satellite and field data has helped us to evaluate and improve a hydrological decision
support system model and parameterization for the Lower Mekong River Basin. For example, we
were able to report new parameter values needed to estimate evaporation in the SWAT modeling
environment (e.g., a soil evaporation compensation factor parameter or ESCO).

We think that our work can serve to improve weather, climate, and hydrological modeling and
prediction in the Mekong region. We here call for further research efforts in employing remotely-sensed,
satellite-based products for hydrological modeling experiments. Future research should emphasize
providing proper guidance for climate forcing data corrections. In addition, investigations into
high-resolution soil information data products as well as land use and land cover data are needed.

Supplementary Materials: (1) The ‘nasaaccess’ software package titled “Downloading and reformatting tool for
NASA Earth observation data products” tar file; and (2) The KMZ compressed files that contain the geographic
annotations for the various layers depicted in Figure 1 are supplements of this manuscript.
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