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Abstract: Landsat-based fire severity datasets are an invaluable resource for monitoring and research
purposes. These gridded fire severity datasets are generally produced with pre- and post-fire
imagery to estimate the degree of fire-induced ecological change. Here, we introduce methods to
produce three Landsat-based fire severity metrics using the Google Earth Engine (GEE) platform:
The delta normalized burn ratio (dNBR), the relativized delta normalized burn ratio (RdNBR),
and the relativized burn ratio (RBR). Our methods do not rely on time-consuming a priori scene
selection but instead use a mean compositing approach in which all valid pixels (e.g., cloud-free) over
a pre-specified date range (pre- and post-fire) are stacked and the mean value for each pixel over each
stack is used to produce the resulting fire severity datasets. This approach demonstrates that fire
severity datasets can be produced with relative ease and speed compared to the standard approach
in which one pre-fire and one post-fire scene are judiciously identified and used to produce fire
severity datasets. We also validate the GEE-derived fire severity metrics using field-based fire severity
plots for 18 fires in the western United States. These validations are compared to Landsat-based fire
severity datasets produced using only one pre- and post-fire scene, which has been the standard
approach in producing such datasets since their inception. Results indicate that the GEE-derived
fire severity datasets generally show improved validation statistics compared to parallel versions in
which only one pre-fire and one post-fire scene are used, though some of the improvements in some
validations are more or less negligible. We provide code and a sample geospatial fire history layer to
produce dNBR, RdNBR, and RBR for the 18 fires we evaluated. Although our approach requires that
a geospatial fire history layer (i.e., fire perimeters) be produced independently and prior to applying
our methods, we suggest that our GEE methodology can reasonably be implemented on hundreds to
thousands of fires, thereby increasing opportunities for fire severity monitoring and research across
the globe.

Keywords: burn severity; change detection; Landsat; dNBR; RdNBR; RBR; composite burn index (CBI); MTBS

1. Introduction

The degree of fire-induced ecological change, or fire severity, has been the focus of countless
studies across the globe [1–5]. These studies often rely on gridded metrics that use pre- and post-fire
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imagery to estimate the amount of fire-induced change; the most common metrics are the delta
normalized burn ratio (dNBR) [6], the relativized delta normalized burn ratio (RdNBR) [7], and the
relativized burn ratio (RBR) [8]. These metrics generally have a high correspondence (r2 ≥ 0.65) to
field-based measures of fire severity [9–12], making them an attractive alternative to expensive and
time-consuming collection of post-fire field data. These satellite-inferred fire severity metrics are
often produced using Landsat Thematic Mapper (TM), Enhanced Thematic mapper Plus (ETM+),
and Operational Land Imager (OLI) imagery due to their combined temporal depth (1984-present) and
global coverage, although they can be produced from other sensors such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) [13] and Sentinal2A [14].

However, producing satellite-inferred fire severity datasets can be challenging, particularly
if severity data are needed for a large number of fires (>~20) or over broad spatial extents.
For example, expertise in remote sensing technologies and software is necessary, indicating the
need for a remote-sensing specialist or a substantial investment of time to learn such technologies and
software. Furthermore, fire severity datasets have traditionally been produced using one pre-fire and
one post-fire Landsat image [15,16], which requires careful attention to scene selection. Image selection
can be time consuming in terms of identifying scenes with no clouds covering the fire of interest and
avoiding scenes affected by a low sun angle and those with mismatched phenology between pre- and
post-fire conditions [6,17]. Even when careful attention to image selection has been achieved, some
images (those from Landsat ETM+ acquired after 2003) and the resulting gridded severity datasets
will have missing data due to the failure of the Scan Line Corrector [18].

Challenges in producing satellite-inferred severity datasets have likely hampered development of
regional to national fire severity products in many countries. The exception is in the United States (US),
where Landsat-derived severity metrics have been produced for all ‘large’ fires (those ≥400 ha in the
western US and ≥250 ha in the eastern US) that have occurred since 1984 [19]. This effort, undertaken by
the US government, is called the Monitoring Trends in Burn Severity (MTBS) program and has mapped
the perimeter and severity of over 20,000 fires. The MTBS program has provided data for numerous
scientific studies ranging from those involving <10 fires [20–22] to those involving >1000 fires [2,23,24] and
for topics such as fuel treatment effectiveness, climate change impacts, and time series analyses [25–28].
The fire severity datasets produced by the MTBS program have clearly advanced wildland fire research
in the US. Although some studies involving the trends, drivers, and distribution of satellite-inferred fire
severity are evident outside of the US [4,5,15,29,30], the number and breadth of such studies are relatively
scarce and restricted compared to those conducted in the US. We suggest that, if spatially and temporally
comprehensive satellite-inferred severity metrics were more widely available in other countries or regions,
opportunities for fire severity monitoring and research would increase substantially.

In this paper, we present methods to quickly and easily produce Landsat-derived fire severity
metrics (dNBR, RdNBR, and RBR). These methods are implemented within the Google Earth Engine
(GEE) platform. As opposed to the standard approach in which one pre-fire and one post-fire Landsat
scene are identified and used to produce these fire severity datasets, we use a mean compositing
approach in which all valid pixels (e.g., cloud-free) over a pre-specified date range are stacked and the
mean value for each pixel over each stack is calculated. Consequently, there is no need for a priori
scene selection, which substantially speeds up the time necessary to produce fire severity datasets.
The main caveat, however, is that a fire history GIS dataset (i.e., polygons of fire perimeters) must be
available and produced independent of this process. Where fire history datasets are currently available
or can easily be generated, our methods provide a means to produce satellite-inferred fire severity
products similar to those distributed by the MTBS program. We also validate the severity metrics
produced with our GEE methodology by evaluating the correspondence of dNBR, RdNBR, and RBR
to a field-based measure of severity and measure the classification accuracy when categorized as low,
moderate, and high severity. These validations were conducted on 18 fires in the western US [8] and
were compared to parallel validations of fire severity datasets using one pre-fire and post-fire scene.
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Code and a sample fire history GIS dataset are provided to aid users in replicating and implementing
our methods.

2. Materials and Methods

2.1. Processing in Google Earth Engine

We produced the following Landsat-based fire severity metrics for each of the 18 fires that are
described in Section 2.2; the perimeter of each fire was obtained from the MTBS program [19]. All fire
severity metrics are based on the normalized burn ratio (NBR; Equation (1)) and include the: (i) Delta
normalized burn ratio (dNBR; Equation (2)) [6]; (ii) relativized delta normalized burn ratio (RdNBR;
Equation (3)) [7]; and (iii) relativized burn ratio (RBR; Equation (4)) [8]. These are produced using
Landsat TM, ETM+, and OLI imagery.

NBR =

(
NIR− SWIR
NIR + SWIR

)
(1)

dNBR =
(

NBRpre f ire − NBRpost f ire

)
× 1000 (2)

RdNBR =


dNBR

|NBRpre f ire|0.5 ,
∣∣∣NBRpre f ire

∣∣∣ ≥ 0.001

dNBR
|0.001|0.5 ,

∣∣∣NBRpre f ire

∣∣∣ < 0.001
(3)

RBR =
dNBR

NBRpre f ire + 1.001
(4)

where NIR (Equation (1)) is the near infrared band and SWIR (Equation (1)) is the shortwave infrared
band. The NBRprefire qualifier in RdNBR (Equation (3)) is necessary because the equation fails when
NBRprefire equals zero and produces very large values when it approaches zero.

Within GEE, mean pre- and post-fire NBR values (Equation (1)) across a pre-specified date range
(termed a ‘mean composite’) were calculated per pixel across the stack of valid pixels (e.g., cloud-
and snow-free pixels). For fires that occurred in Arizona, New Mexico, and Utah, the date range is
April through June; for all other fires, the date range is June through September (Figure 1). These
date ranges are based on various factors including the fire season, expected snow cover, expected
cloud cover and latitude. We used the Landsat Surface Reflectance Tier 1 datasets, which among
the bands, includes a quality assessment mask to identify those pixels with clouds, shadow, water,
and snow. This mask is produced by implementing a multi-pass algorithm (called ‘CFMask’) based
on decision trees and is described in detail by Foga et al. [31]. As such, pixels identified as cloud,
shadow, water, and snow were excluded when producing the mean composite pre- and post-fire NBR.
The resulting pre- and post-fire NBR mean composite images are then used to calculate dNBR, RdNBR,
and RBR (Equations (2)–(4)). Our mean compositing approach renders the need for a priori scene
selection unnecessary.

We also produced alternative versions of each severity metric in which we account for potential
phenological differences between pre- and post-fire imagery, also known as the ‘dNBRoffset’ [6].
The dNBRoffset is the average dNBR of pixels outside the burn perimeter (i.e., unburned) and is
intended to account for differences between pre- and post-fire imagery that arise due to varying
conditions in phenology or precipitation between respective time periods. Incorporating the dNBRoffset
is advisable when making comparisons among fires [7,8]. For each fire, we determined the dNBRoffset
by calculating the mean dNBR value across all pixels located 180 m outside of the fire perimeter;
informal testing indicated that a 180 m distance threshold adequately quantifies dNBR differences
among unburned pixels. A simple subtraction of the fire-specific dNBRoffset from each dNBR raster
incorporates the dNBRoffset [17]. The dNBR (with the offset) is then used to produce RdNBR and RBR
(Equations (3) and (4)).
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2.2. Validation

We aimed to determine whether our GEE methodology (specifically the mean compositing
method) produced Landsat-based fire severity datasets with equivalent or higher validation statistics
than severity datasets produced using one pre-fire and one post-fire scene (i.e., the standard approach
since these metrics were introduced). This validation has three components (described below), all of
which rely on 1681 field-based severity plots covering 18 fires in the western US that burned between
2001 and 2011; these are the same plots and fires that were originally evaluated by Parks et al. [8]
(Figure 1) (Table 1). The field data represent the composite burn index (CBI) [6], which rates factors
such as surface fuel consumption, soil char, vegetation mortality, and scorching of trees. CBI is rated
on a continuous scale from zero to three, with CBI = 0 reflecting no change due to fire and CBI = 3
reflecting the highest degree of fire-induced ecological change. The fires selected by Parks et al. [8]
and used in this study (Table 1) met the following criteria: (i) They had at least 40 field-based CBI
plots; and (ii) at least 15% of the plots fell into each class representing low, moderate, and high severity.
Of the 1681 field-based CBI plots, 30% are considered low severity (CBI < 1.25), 41% are moderate
severity (CBI ≥ 1.25 and < 2.25), and 29% are high severity (CBI ≥ 2.25).

Figure 1. Location and names of the 18 fires included in the validation of the delta normalized burn
ratio (dNBR), relativized delta normalized burn ratio (RdNBR), and relativized burn ratio (RBR).
Forested areas in the western United States (US) are shown in gray shading. Inset shows the study area
in relation to North America.

The first validation evaluates the correspondence of each severity metric to the CBI data for each
fire. Exactly following Parks et al. [8], we extracted GEE-derived dNBR, RdNBR, and RBR values
using bilinear interpolation and then used nonlinear regression in the R statistical environment [32]
to evaluate the performance of each severity metric. Specifically, we quantified the correspondence
of each severity metric (the dependent variable) to CBI (the independent variable) as the coefficient
of determination, which is the R2 of a linear regression between predicted and observed severity
values. We conducted this analysis for each fire and reported the mean R2 across the 18 fires. We
then conducted a parallel analysis but used MTBS-derived severity datasets. This parallel analysis
allows for a robust comparison of severity datasets produced using one pre-fire and one post-fire
image (e.g., MTBS-derived metrics) with the mean compositing approach as achieved with GEE. This
validation was conducted on the severity metrics without and with the dNBRoffset.
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Table 1. Summary of fires analyzed in this study; this table is from originally Parks et al. 2014 [8].

Historical Fire Regime [33]

Fire Name Year Number of plots Overstory species (in order of prevalence) Surface Mixed Replace

Tripod Cx (Spur Peak) 1 2006 328 Douglas-fir, ponderosa pine, subalpine fir, Engelmann spruce 80–90% <5% 5–10%

Tripod Cx (Tripod) 1 2006 160 Douglas-fir, ponderosa pine, subalpine fir, Engelmann spruce >90% <5% <5%

Robert 2 2003 92 Subalpine fir, Engelmann spruce, lodgepole pine, Douglas-fir, grand
fir, western red cedar, western larch 5–10% 30–40% 40–50%

Falcon 3 2001 42 Subalpine fir, Engelmann spruce, lodgepole pine, whitebark pine 0% 30–40% 60–70%

Green Knoll 3 2001 54 Subalpine fir, Engelmann spruce, lodgepole pine, Douglas-fir, aspen 0% 20–30% 70–80%

Puma 4 2008 45 Douglas-fir, white fir, ponderosa pine 20–30% 70–80% 0%

Dry Lakes Cx 3 2003 49 Ponderosa pine, Arizona pine, Emory oak, alligator juniper >90% 0% 0%

Miller 5 2011 94 Ponderosa pine, Arizona pine, Emory oak, alligator juniper 80–90% 5–10% 0%

Outlet 6 2000 54 Subalpine fir, Engelmann spruce, lodgepole pine, ponderosa pine,
Douglas-fir, white fir 30–40% 5–10% 50–60%

Dragon Cx WFU 6 2005 51 Ponderosa pine, Douglas-fir, white fir, aspen, subalpine fir,
lodgepole pine 60–70% 20–30% 5–10%

Long Jim 6 2004 49 Ponderosa pine, Gambel oak >90% 0% 0%

Vista 6 2001 46 Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir 20–30% 70–80% 0%

Walhalla 6 2004 47 Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir,
lodgepole pine 60–70% 20–30% <5%

Poplar 6 2003 108 Douglas-fir, white fir, ponderosa pine, aspen, subalpine fir,
lodgepole pine 20–30% 20–30% 40–50%

Power 7 2004 88 Ponderosa/Jeffrey pine, white fir, mixed conifers, black oak >90% 0% 0%

Cone 7 2002 59 Ponderosa/Jeffrey pine, mixed conifers 80–90% <5% <5%

Straylor 7 2004 75 Ponderosa/Jeffrey pine, western juniper >90% 0% <5%

McNally 7 2002 240 Ponderosa/Jeffrey pine, mixed conifers, interior live oak, scrub oak,
black oak 70–80% 10–20% 0%

Composite burn index (CBI) data sources: 1 Susan Prichard, US Forest Service, Pacific Northwest Research Station; 2 Mike McClellan, Glacier National Park; 3 Zack Holden, US Forest
Service, Northern Region; 4 Joel Silverman, Bryce Canyon National Park; 5 Sean Parks, US Forest Service, Rocky Mountain Research Station, Aldo Leopold Wilderness Research Institute;
6 Eric Gdula, Grand Canyon National Park; 7 Jay Miller, US Forest Service, Pacific Southwest Region.
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Our second validation is nearly identical to that described in the previous paragraph but plot
data from all 18 fires was combined (n = 1681). That is, instead of evaluating on a per-fire basis, we
evaluated the plot data from all fires simultaneously. Following Parks et al. [8], this evaluation used
a five-fold cross-validation. That is, five evaluations were conducted with 80% of the plot data used to
train each nonlinear model and the remaining 20% used to test each model. The resulting coefficients
of determination (R2) and standard errors for the five testing datasets were averaged.

The third validation evaluates the classification accuracy when categorizing the satellite- and
field-derived severity datasets into three discrete classes representing low, moderate, and high severity.
To do so, we grouped the CBI plot data into severity classes using well-recognized CBI thresholds: Low
severity corresponds to CBI values ranging from 0–1.24, moderate severity from 1.25–2.24, and high
severity from 2.25–3.0 [7]. We then identified thresholds specific to each metric (with and without
incorporating the dNBRoffset) corresponding to the low, moderate, and high CBI thresholds using
nonlinear regression models as previously described. However, the nonlinear models used to produce
low, moderate, and high severity thresholds for this evaluation used all 1681 plots combined and
did not use the cross-validated versions. We measured the classification accuracy (i.e., the percent
correctly classified) with 95% confidence intervals using the ‘caret’ package [34] in the R statistical
environment [32]. We also produced confusion matrices for each severity metric and report the user’s
and producer’s accuracy for each severity class (low, moderate, and high).

Finally, it is worth noting that we did not directly use the fire severity datasets distributed by the
MTBS program. Our reasoning is that the MTBS program does not distribute the RBR. Furthermore,
the MTBS program incorporates the dNBRoffset into the RdNBR product but does not distribute RdNBR
without the dNBRoffset. The MTBS program does, however, distribute the imagery used to produce
each fire severity metric. In order to make valid comparisons to the GEE-derived datasets, we opted
to use the pre- and post-fire imagery distributed by the MTBS program to produce dNBR, RdNBR,
and RBR, with and without the dNBRoffset, for each of the 18 fires. All processing of MTBS-derived
fires was accomplished with the ‘raster’ package [35] in the R statistical environment [32].

2.3. Google Earth Engine Implementation and Code

We provide a sample code and a geospatial fire history layer to produce a total of six raster
datasets (dNBR, RdNBR, and RBR; with and without the dNBRoffset) for each of the 18 previously
described fires. This code produces severity datasets that are clipped to a bounding box representing
the outer extent of each fire. We designed the code to use imagery from one year before and one
year after each fire occurs and to use a pre-specified date range for image selection for each fire,
as previously described. These parameters can easily be modified to suit the needs of different users,
ecosystems, and fire regimes.

3. Results

Using GEE, we were able to quickly produce dNBR, RdNBR, and RBR (with and without the
dNBRoffset) for the 18 fires analyzed. The entire process was completed in approximately 1 h; fires
averaged about 15,000 hectares in size and ranged from 723–60,000 hectares. This timeframe included
a few minutes of active, hands-on time and about 60 min of GEE computational processing. This
timeframe should be considered a very rough estimate, however, because GEE processing time
varies widely among fires (larger fire sizes require more computational processing) and because
production time depends on available resources shared among users within GEE’s cloud-based
computing platform [36]; nonetheless, processing time is very fast with fairly low investment in terms
of human labor.

The mean compositing approach, in conjunction with the exclusion pixels classified as cloud,
shadow, snow, and water, resulted in a variable number of valid Landsat scenes used in producing
each pre- and post-fire NBR image. The average number of stacked pixels used to produce pre- and



Remote Sens. 2018, 10, 879 7 of 15

post-fire NBR was about 11. This varied by fire and ranged from 2–20 for pre-fire NBR and from 6–20
for post-fire NBR.

Our first validation, in which correspondence between CBI and each severity metric was computed
independently for each fire, shows that there is not a substantial improvement between the MTBS- and
GEE-derived fire severity metrics (Table 2).

Table 2. Mean R2 of the correspondence between CBI and each MTBS- and GEE-derived fire severity
metric across the 18 fires. MTBS: Monitoring Trends in Burn Severity; GEE: Google Earth Engine.
The correspondence between CBI and the severity metrics were computed for each of the 18 fires and
the mean R2 is reported here.

Mean R2 without dNBRoffset Mean R2 with dNBRoffset

MTBS-Derived GEE-Derived MTBS-Derived GEE-Derived

dNBR 0.761 0.768 0.761 0.768
RdNBR 0.736 0.764 0.751 0.759

RBR 0.784 0.791 0.784 0.790

When the correspondence between CBI and each severity metric for 1681 plots covering 18 fires
was evaluated simultaneously using a five-fold cross-validation (our second evaluation), the R2 was
consistently higher for the GEE-derived fire severity datasets as compared to the MTBS-derived
datasets (Table 3; Figure 2). Furthermore, the inclusion of the dNBRoffset increased the correspondence
to CBI for all fire severity metrics except for GEE-derived RdNBR (Table 3). All terms in the nonlinear
regressions for all severity metrics (those with and without the dNBRoffset) were statistically significant
(p < 0.05) in all five folds of the cross-validation.

Table 3. R2 of the five-fold cross-validation of the correspondence between CBI and each MTBS- and
GEE-derived fire severity metric for 1681 plots across 18 fires; standard error shown in parentheses.
The values characterize the average of five folds and represent the severity metrics excluding and
including the dNBRoffset.

R2 without dNBRoffset (Standard Error) R2 with dNBRoffset (Standard Error)

MTBS-Derived GEE-Derived MTBS-Derived GEE-Derived

dNBR 0.630 (0.026) 0.660 (0.025) 0.655 (0.026) 0.682 (0.025)
RdNBR 0.616 (0.026) 0.692 (0.025) 0.661 (0.026) 0.669 (0.026)

RBR 0.683 (0.025) 0.722 (0.024) 0.714 (0.025) 0.739 (0.024)

The GEE-derived fire severity datasets generally resulted in an improvement over the comparable
MTBS-derived datasets in terms of overall classification accuracy (Table 4); Inclusion of the dNBRoffset
provided additional improvement for the most part (Table 4). The only exception is for the GEE-derived
RdNBR, in which the classification accuracy was slightly lower when using the dNBRoffset (Table 4).
The confusion matrices for each fire severity metric (with and without the dNBRoffset) indicate that
the user’s and producer’s accuracies are usually higher with the GEE-derived metrics compared to
the MTBS-derived metrics (Tables 5 and 6). The thresholds we used to classify plots as low, moderate,
or high severity are shown in Table 7; these may be useful for others who implement our GEE
methodology and want to classify the resulting datasets.
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1 
 

 

Figure 2. Plots show each MTBS- (top row) and GEE-derived (bottom row) severity metric and the
corresponding field-based CBI. All severity metrics include the dNBRoffset. Red lines show the modeled
fit of the nonlinear regressions for all 1681 plots. The model fits and the resulting R2 shown here were
not produced using cross-validation and therefore may differ slightly from the results shown in Table 3.
Extreme RdNBR values are not shown to improve visual appearance of the RdNBR panels.

Table 4. Classification accuracy (percent correctly classified) and 95% confidence intervals (CI) for
the three fire severity metrics (with and without the dNBRoffset). Each fire severity metric is classified
into categories representing low, moderate, and high severity based on index-specific thresholds
(see Table 7) and compared to the same classes based on composite burn index thresholds.

Without dNBRoffset With dNBRoffset

Accuracy (%) 95% CI Accuracy (%) 95% CI

dNBR
MTBS-derived 69.6 67.3–71.8 70.2 68.0–72.4
GEE-derived 71.3 69.0–73.4 71.7 69.5–73.9

RdNBR
MTBS-derived 71.4 69.2–73.5 73.6 71.4–75.6
GEE-derived 73.4 71.2–75.5 73.1 71.0–75.3

RBR
MTBS-derived 72.4 71.1–74.5 73.5 71.4–75.6
GEE-derived 73.5 71.4–75.6 74.1 72.0–76.2
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Table 5. Confusion matrices for classifying as low, moderate, and high severity using the severity metrics computed without the dNBRoffset. Confusion matrices for
MTBS-derived metrics are on the left and confusion matrices for GEE-derived metrics are on the right. UA: user’s accuracy; PA: producer’s accuracy.

Reference CBI Class Reference CBI Class

Classified using MTBS-derived dNBR

Low Mod. High UA

Classified using GEE-derived dNBR

Low Mod. High UA

Low 401 159 18 69.4 Low 407 139 13 72.8

Mod. 91 412 114 66.8 Mod. 87 438 123 67.6

High 5 124 357 73.5 High 3 118 353 74.5

PA 80.7 59.3 73.0 PA 81.9 63.0 72.2

Reference CBI class Reference CBI class

Classified using MTBS-derived RdNBR

Low Mod. High UA

Classified using GEE-derived RdNBR

Low Mod. High UA

Low 366 142 7 71.1 Low 385 136 5 73.2

Mod. 119 451 99 67.4 Mod. 105 465 100 69.4

High 12 102 383 77.1 High 7 94 384 79.2

PA 73.6 64.9 78.3 PA 77.5 66.9 78.5

Reference CBI class Reference CBI class

Classified using MTBS-derived RBR

Low Mod. High UA

Classified using GEE-derived RBR

Low Mod. High UA

Low 380 127 12 73.2 Low 403 130 9 74.4

Mod. 113 462 102 68.2 Mod. 90 464 111 69.8

High 4 106 375 77.3 High 4 101 369 77.8

PA 76.5 66.5 76.7 PA 81.1 66.8 75.5
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Table 6. Confusion matrices for classifying as low, moderate, and high severity using the severity metrics computed with the dNBRoffset. Confusion matrices for
MTBS-derived metrics are on the left and confusion matrices for GEE-derived metrics are on the right. UA: user’s accuracy; PA: producer’s accuracy.

Reference CBI Class Reference CBI Class

Classified using MTBS-derived dNBR

Low Mod. High UA

Classified using GEE-derived dNBR

Low Mod. High UA

Low 397 156 13 70.1 Low 402 141 10 72.7

Mod. 98 425 118 66.3 Mod. 92 451 126 67.4

High 2 114 358 75.5 High 3 103 353 76.9

PA 79.9 61.2 73.2 PA 80.9 64.9 72.2

Reference CBI class Reference CBI class

Classified using MTBS-derived RdNBR

Low Mod. High UA

Classified using GEE-derived RdNBR

Low Mod. High UA

Low 378 133 5 73.3 Low 390 137 5 73.3

Mod. 112 467 92 69.6 Mod. 101 460 104 69.2

High 7 95 392 79.4 High 6 98 380 78.5

PA 76.1 67.2 80.2 PA 78.5 66.2 77.7

Reference CBI class Reference CBI class

Classified using MTBS-derived RBR

Low Mod. High UA

Classified using GEE-derived RBR

Low Mod. High UA

Low 390 135 6 73.4 Low 386 123 7 74.8

Mod. 105 460 97 69.5 Mod. 107 481 103 69.6

High 2 100 386 79.1 High 4 91 379 80.0

PA 78.5 66.2 78.9 PA 77.7 69.2 77.5
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Table 7. Threshold values for each fire severity metric corresponding to low (CBI = 0–1.24), moderate
(CBI = 1.25–2.25), and high severity (CBI = 2.25–3).

MTBS-Derived GEE-Derived

Low Moderate High Low Moderate High

Excludes dNBRoffset

dNBR ≤186 187–429 ≥430 ≤185 186–417 ≥418
RdNBR ≤337 338–721 ≥722 ≤338 339–726 ≥727
RBR ≤134 135–303 ≥304 ≤135 136–300 ≥301

Includes dNBRoffset

dNBR ≤165 166–440 ≥411 ≤159 160–392 ≥393
RdNBR ≤294 295–690 ≥691 ≤312 313–706 ≥707
RBR ≤118 119–289 ≥289 ≤115 116–282 ≥283

4. Discussion

The Google Earth Engine (GEE) methodology we developed to produce Landsat-based measures
of fire severity is an important contribution to wildland fire research and monitoring. For example, our
methodology will allow those who are not remote sensing experts, but have some familiarity with GEE,
to quickly produce fire severity datasets (Figure 3). This benefit is due to the efficiency and speed of the
cloud-based GEE platform [37,38] and because no a priori scene selection is necessary. Furthermore,
compared to the standard approach in which only one pre- and post-fire scene are used, the GEE mean
composite fire severity datasets exhibit higher validation statistics in terms of the correspondence
(R2) to CBI and higher classification accuracies for most severity classes. This suggests that mean
composite severity metrics more accurately represent fire-induced ecological change, likely because
the compositing method is less biased by pre- and post-fire scene mismatch and image characteristics
inherent in standard processing. The computation and incorporation of the dNBRoffset within GEE
further improves, for the most part, the validation statistics of all metrics.

The improvements in the validation statistics of the GEE-derived severity metrics over the
MTBS-derived severity metrics, when evaluated on a per-fire basis, are more or less negligible (see
Table 2). This suggests that if practitioners and researchers are interested in only one fire [20,39], it
does not matter if fire severity metrics are produced using the mean compositing approach or using
one pre-fire and one post-fire image (e.g., MTBS). It is also worth noting that the improvements in
the validation statistics of the GEE-derived severity metrics over the MTBS-derived severity metrics,
when all plots are evaluated simultaneously, are not statistically significant in most cases. That is, the
overall classification accuracy of the GEE-derived metrics overlap the 95% confidence intervals of
the MTBS-derived metrics in all comparisons except that of RdNBR without the dNBRoffset (Table 4).
Although the user’s and producer’s accuracy is oftentimes higher for the GEE-derived severity metrics
(Tables 5 and 6), this is not always the case for all severity classes. In particular, the producer’s accuracy
(but not the user’s accuracy) is generally higher for the MTBS-derived metrics when evaluating the high
severity class. Nevertheless, the modest improvement in most validation statistics of the GEE-derived
metrics, together with the framework and code we distribute in this study, will likely provide the
necessary rationale and tools for producing fire severity datasets in counties that do not have national
programs tasked with producing such datasets (e.g., MTBS in the United States).
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Figure 3. Example shows the RBR (includes the dNBRoffset) for two of the fires (Roberts and Miller) we
evaluated. See Figure 1 to reference the locations of these fires.

The Monitoring Trends in Burn Severity (MTBS) program in the US, which produces and
distributes Landsat-based fire severity datasets [19], has enabled scientists to conduct research
involving hundreds to thousands of fires [2,24,40,41]. Outside of the US, where programs similar to
MTBS do not exist, most fire severity research is limited to only a handful of fires, the exceptions being
Fang et al. [15] (n = 72 fires in China) and Whitman et al. [42] (n = 56 fires in Canada). We suggest
that the GEE methodology we developed will allow users in regions outside of the US to efficiently
produce fire severity datasets for hundreds to thousands of fires in their geographic areas of interest,
thereby providing enhanced opportunities for fire severity monitoring and research. Although fire
history datasets (i.e., georeferenced fire perimeters) are a prerequisite for implementing our GEE
methodology, such datasets have already been produced and used in scientific studies in Portugal [43],
Spain [44], Canada [45], portions of Australia [46], southern France [47], the Sky Island Mountains of
Mexico [48], and likely elsewhere. Therefore, the GEE methods developed here provide a common
platform for assessing fire-induced ecological change and can provide more opportunities for fire
severity monitoring and research across the globe.

The fires we analyzed primarily burned in conifer forests and were embedded within landscapes
comprised of similar vegetation. As such, our approach to incorporating the dNBRoffset that used
pixels in a 180 m ‘ring’ around the fire perimeter may not be appropriate everywhere and we urge
caution in landscapes in which fires burn vegetation that is not similar to that of the surrounding
lands. For example, our methods for calculating and implementing the dNBRoffset would not be
appropriate if a fire burned a forested patch that was surrounded by completely different vegetation
such as shrubland or agriculture. In such cases, we recommend that fire severity datasets exclude the
dNBRoffset as it may not improve burn assessments. Similarly, the low, moderate, and high severity
thresholds identified in this study (Table 7) are likely only applicable to forested landscapes in the
western US, and other thresholds may be more suitable to other regions of the globe and in different
vegetation types. Finally, our choice of developing post-fire imagery from the period one-year after the
fire may not be appropriate for all ecosystems. Arctic tundra ecosystems, for example, might be better
represented by imagery derived immediately after the fire or after snowmelt but prior to green-up
the year following the fire [49]. The GEE approach can be easily modified to select dates that best suit
each ecosystem.
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5. Conclusions

In this paper, we present practical and efficient methodology for producing three Landsat-based
fire severity metrics: dNBR, RdNBR, and RBR. These methods rely on Google Earth Engine and
provide expanded potential in terms of fire severity monitoring and research in regions outside of
the US that do not have a dedicated program for mapping fire severity. In validating the fire severity
metrics, our goal was not to compare and contrast individual metrics (e.g., dNBR vs. RBR) [11,12]
nor to critique products produced by the MTBS program. Instead, we aimed to evaluate differences
between the GEE-based mean compositing approach to the standard approach in which one pre-fire
and post-fire Landsat scene are used to produce severity datasets. The GEE-based severity datasets
generally achieved higher validation statistics in terms of correspondence to field data and overall
classification accuracy. The inclusion of the dNBRoffset generally provided additional improvements
in these validation statistics for most fire severity metrics regardless of whether they were MTBS- or
GEE-derived. This provides further evidence that inclusion of the dNBRoffset should be considered
when multiple fires are of interest [8,17]. Our evaluation included fires over a large spatial extent (the
western US) and with varied fire regime attributes, ranging from those that are predominantly surface
fire regimes to those that are stand-replacing regimes. Consequently, the higher validation statistics
reported here for the GEE-derived composite-based fire severity datasets should provide researchers
and practitioners with increased confidence in these products.
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