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Abstract: Maneuvers provide flexibility for high-resolution highly-squinted (HRHS) airborne
synthetic aperture radar (SAR) imaging and also mean complex signal properties in the echoes.
In this paper, considering the curved path described by the fifth-order motion parameter model,
effects of the third- and higher-order motion parameters on imaging are analyzed. The results indicate
that the spatial variations distributed in range, azimuth, and height directions, have great impacts on
imaging qualities, and they should be eliminated when designing the focusing approach. In order to
deal with this problem, the spatial variations are decomposed into three main parts: range, azimuth,
and cross-coupling terms. The cross-coupling variations are corrected by polynomial phase filter,
whereas the range and azimuth terms are removed via Stolt mapping. Different from the traditional
focusing methods, the cross-coupling variations can be removed greatly by the proposed approach.
Implementation considerations are also included. Simulation results prove the effectiveness of the
proposed approach.

Keywords: high-resolution; highly-squinted; maneuvers; fifth-order motion parameter model;
spatial variation

1. Introduction

In recent years, there have been tremendous studies on synthetic aperture radar (SAR). As an
active sensor, SAR is able to work day and night under all weather conditions [1–3]. In addition,
SAR can operate at different frequencies and view angles in different polarimetric modes. This feature
makes the SAR a flexible and effective tool for information retrieval [4–6]. With the advancement
of SAR, high resolution and highly squint angle have potential to provide more information about
the surface structure. Moreover, the SAR platform is capable of flying along a curved path to realize
different applications, to the extent that the model assumption of the rectilinear path no longer
holds. This scenario occurs in SAR systems on aircraft platforms because of various factors such
as rugged topography, atmospheric turbulence, and intended maneuvers [7–10]. Characteristics of
a curved path differ from those of a uniform linear motion. Major peculiarities exist in its motion
parameters, non-uniform spatial-intervals, and three-dimensional (3-D) spatial geometric model. Thus,
the traditional imaging algorithms based on straight trajectory and hyperbolic range model (HRM) may
be invalid. In order to guarantee the imaging qualities, both the range model and the imaging algorithm
may need to change. In addition, the maneuvers will greatly affect the spatial variations in both the
range and azimuth directions, particularly for the high-resolution highly-squinted (HRHS) SAR.

In the literature, the fourth-order Doppler range model (FORM) [11–13], modified equivalent
squint range model (MESRM) [14], advanced hyperbolic range equation (AHRE) [15], equivalent
range model (ERM) [16], and modified ERM (MERM) [17] for spaceborne or airborne SAR have been
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proposed to describe the curved path. Compared with the conventional HRM, these models introduce
acceleration into the range model, which makes the descriptions of characteristics, including Doppler
bandwidth, cross-coupling phase, and two-dimensional (2-D) spatial variations, of the raw-data more
accurate. However, they only consider the acceleration term and ignore the higher-order motion
parameters, which limit their applications for high-accuracy imaging. In reality, the maneuvers
cannot always be controlled only by constant velocity and acceleration, thus the higher-order motion
parameters are needed [18]. If this problem cannot be well solved, it may strongly impair the final
image quality in terms of geometric distortion and radiometric resolution losses for HRHS SAR [5].
Thus, profound research on the geometrical model is still necessary.

Concerning the focusing algorithm for the SAR with maneuvers, methods performed in the
frequency domain include the range-Doppler algorithm (RDA) [19], chirp scaling algorithm (CSA) [20],
omega-K algorithm (OKA) [21], and their extensions [11–13,22–25]. Eldhuset [11,12] suggests a
fourth-order processing algorithm by 2-D exact transfer function (ETF) for spaceborne SAR with curved
orbit. However, this work ignores the 2-D spatial variation of the azimuth modulation phase and results
in defocusing in the azimuth edge regions. Luo et al. [13] and Wang et al. [14] respectively propose a
modified RDA and a modified CSA, which can greatly remove the cross-coupling terms brought by the
curved path. However, the spatial variations of the acceleration have not been considered. Li et al. [23]
propose a frequency-domain algorithm (FDA) for the small-aperture highly-squinted airborne SAR
with maneuvers. With expanding the azimuth time in a small aperture, the azimuth spatial variation
of the stripmap SAR can be eliminated. However, the residual errors increase greatly with the
aperture (resolution). Moreover, the neglected range and vertical spatial variations of the azimuth
modulation phase cannot be ignored for the HRHS SAR with maneuvers. The wavenumber domain
algorithm [17] and OKA [22] for the HRHS SAR with curved path are proposed based on different
modified equivalent range models, which can avoid using the method of series reversion (MSR) to
achieve the 2-D spectrum. However, the residual spatial variations caused by approximations would
lead to deteriorations in the final image. The 2-D keystone transform algorithms (KTAs) are developed
in [26] based on the 2-D Taylor series expansion and they can greatly remove the spatial variations of the
high-resolution spaceborne SAR. The errors introduced by the 2-D Taylor expansion can be ignored for
the spaceborne SAR but not for the HRHS SAR. Generally, the 2-D spatial variations are not eliminated
entirely by [11–24] performed in frequency domain and have great impacts on the final image result.
Wu et al. [27] propose a hybrid correlation algorithm (HCA) for the curved flight path, which treats
the 2-D correlation by a combination of frequency-domain fast correlation in azimuth dimension and
time-domain convolution in the range dimension. Furthermore, back projection algorithm (BPA) and
fast factorized BPA (FFBPA) [28–31] have been suggested. However, in terms of computational burden,
the HCA and BPA are not always the best choices compared with the frequency-domain algorithms.
The polar format algorithm (PFA) [5,32] can be used for the three-dimensional (3-D) acceleration cases.
However, the depth of field is seriously affected by the wavefront curvature, and it must be extended
by subaperture technique for the quadratic phase error (QPE) compensation. Thus, further studies are
still required for the HRHS SAR with maneuvers.

In this paper, the fifth-order motion parameter model is introduced and the problems are discussed
for the HRHS SAR with maneuvers, which are the important factors that demand attention in
imaging design. Our analyses suggest that the spatial variations in arbitrary direction brought
by the third- and higher-order motion parameters cannot be ignored. Employing the Taylor series
expansions with multi-variables, we decompose the spatial variations into three parts—i.e., range,
azimuth, and cross-coupling terms—with a high accuracy. Then, according to the properties of
decomposed phases, the polynomial phase filter and Stolt mapping with interpolations are performed
to remove the cross-coupling and range/azimuth spatial variations, respectively. Unlike the traditional
focusing algorithms [11–15,23,24], the cross-coupling spatial variations, which are always ignored in
low-resolution case, are corrected for the HRHS SAR with maneuvers. Implementation considerations,
including simplified processing and constraint on scene extent are also studied.
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The rest of this paper is organized as follows. The signal model of HRHS SAR with maneuvers
is investigated and the confronting problems are presented in Section 2. In Section 3, our imaging
approach is presented. Implementation considerations are provided in Section 4. Numerical simulation
results are given to validate the proposed approach in Section 5. Conclusions are drawn in Section 6.

2. Modeling and Motivation

2.1. Modeling

Figure 1 shows the geometric model of the HRHS SAR with maneuvers. The projection of radar
location on the ground is assumed to be the origin of Cartesian coordinates O-XYZ. Assuming that
points C and A are respectively the central reference point (CRP) and an arbitrary point on the scene,
l is the flight path of the platform, point Q is the position of the platform at the aperture center moment
(ACM), and rc and rA are respectively the position vectors of platform to points C and A at ACM.

Figure 1. HRHS SAR imaging geometry with maneuvers.

According to the imaging geometry shown in Figure 1 and the kinematics equation of the platform,
the instantaneous slant range history |r(η)| corresponding to arbitrary point A can be expressed as

|r(η)| =
∣∣∣rA − vη − aη2/2− bη3/6− cη2/24− dη2/120

∣∣∣ (1)

where | · | is the symbol of absolute value, v is the velocity vector, and a is the acceleration vector, while
b, c, and d are the third-, fourth-, and fifth- order motion parameter vectors in the motion Equation (1),
respectively. It is obvious that the range history |r(η)| is an equation with higher-order terms shown
as a flat-top shape. It is difficult to derive the 2-D spectrum directly using Equation (1) based on the
principle of stationary point (POSP); therefore, the traditional SAR processing methods cannot be
applied directly. One way to treat the complex fifth-order motion parameter model (FMPM) is to
expand it into a power series in azimuth time as

|r(η)| = ∑
0

1
n!

µnηn (2)

where the first six coefficients are
µ0 =

√
〈rA, rA〉 (3)

µ1 = µ−1
0 · [−〈rA, v〉] (4)

µ2 = µ−1
0 ·

[
(−〈rA, a〉+ 〈v, v〉)− µ2

1

]
(5)

µ3 = µ−1
0 · [(−〈rA, b〉+ 3〈v, a〉)− 3µ1µ2] (6)



Remote Sens. 2018, 10, 862 4 of 20

µ4 = µ−1
0 ·

[
(−〈rA, c〉+ 4〈v, b〉+ 3〈a, a〉)− 3µ2

2 − 4µ1µ3

]
(7)

µ5 = µ−1
0 · [(−〈rA, d〉+ 5〈v, c〉+ 10〈a, b〉)− 10µ2µ3 − 5µ1µ4] (8)

In Equation (1), µ0, µ1, and µ2 are respectively the slant range, Doppler centroid, and Doppler
frequency modulation (FM) of the point A. µ3, µ4, and µ5 are the higher-order terms which have great
impact on the final image qualities and cannot be ignored.

By using the range history expressed in Equation (1), we obtain the received echo as

S0(tr, η) = ε0wr(tr)wa(η) exp(−j4π fc|r(η)|/c) exp
(

jπγ[tr − 2|r(η)|/c]2
)

(9)

where tr is the range fast time, c is the speed of light, fc and γ are the carrier frequency and FM rate of
the transmitted signal respectively, ε0 is the complex scattering coefficient, and wr(·) and wa(·) are the
range and azimuth windows in time domain.

Based on Equation (2), Equation (9) is transformed into the range frequency domain using the
POSP after range compression, i.e.,

S1( fr, η) = ε0ωr( fr)wa(η) exp
(
−j

4π( fc + fr)

c
|r(η)|

)
(10)

where fr is the range frequency and ωr(·) is the range window in frequency domain.

2.2. Motivation

(1) Error Analysis of FMPM: Traditionally, v and a are always taken into consideration for the SAR
with maneuvers. However, in the case of HRHS SAR, this second-order motion parameter equation is
insufficient and it will greatly deteriorate the final image results and limit the scene size. In this work,
the higher-order motion parameter vectors, namely, b, c, and d are exploited to improve the accuracy
of the flight path description.

Employing the parameters listed in Table 1, Figure 2a,b respectively show the phase errors and
spatially variant errors caused by the motion parameter vectors b, c, and d. The unit of the contour
maps is π. Note that spatially variant errors brought by d can be ignored, whereas both the phase
errors by b, c, and d and the spatially variant errors by b and c cannot. Figure 3a,b respectively show
the spatially variant errors with different azimuth resolutions in range and azimuth directions. Clearly,
the effects of b and c must be taken into consideration for the high-resolution cases whereas that of d
is negligible. Figure 4a,b respectively show the spatially variant errors with different squint angles
in range and azimuth directions. The maximum errors at large squint angles are far larger than π/4
introduced by b and c. The impacts brought by d are still small enough and can be ignored. According
to the above analyses, the spatial variations brought by the motion parameter vectors b and c should
be considered.

Table 1. Parameter settings.

Motion Parameter Value System Parameter Value

Radar Position at ACM (0, 0, 10) km Carrier Frequency 17 GHz
Reference Position (12.68, 26, 0) km Pulse Bandwidth 500 MHz

Velocity v (0, 170, −10) m/s Sampling Frequency 620 MHz
Acceleration a (1.2, 1.73, −1.4) m/s2 Squint Angle 60◦

Third-order Parameter b (−0.09, 0.11, −0.14) m/s3 Azimuth Resolution 0.242 m

Fourth-order Parameter c (0.005, 0.007, 0.003) m/s4 Scene Size
(Range×Azimuth) 1.6 × 1.6 km
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(2) Irregularly Spatial Variation Distributions: As analyzed in the above part, the spatial variation
should be taken into consideration for the HRHS SAR with maneuvers to achieve a high quality image
and it exists in all the targets, with different range curvatures, with respect to the reference one on the
scene. To better understand the existing spatial variations of the targets on the scene, an illustration is
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provided in Figure 5, where T0 is the reference point, T1 and T2 are the targets that respectively have
the same azimuth and range cells as those of T0, and T3 is the target that has different position as that
of T0. Basically, there are three kinds of spatial variations irregularly distributed in the ground scene:
range, azimuth, and 2-D cross-coupling spatial variations, as shown in Figure 5a. The range or azimuth
spatial variations are traditionally processed whereas the 2-D cross-coupling one, which is irregularly
distributed on the ground scene as shown in Figure 2b, is ignored. Moreover, the spatial variations
exist in both azimuth time and azimuth frequency domains, as shown in Figure 5b. The curved
non-parallel time-frequency diagrams (TFDs) indicate that spatial variations of range cell migration
(RCM) and secondary range cell (SRC) in either azimuth time or azimuth frequency domains should
be compensated when designing the focusing algorithm.Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 20 
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3. Imaging Approach

We propose an imaging approach that combines polynomial phase filter and Stolt mapping.
The first step is to eliminate the cross-coupling spatial variations in the second-, third-, and fourth-order
phases via polynomial phase filtering. The second step is to correct the spatial variations in range and
azimuth directions through the Stolt mapping.

3.1. 2-D Cross-Coupling Spatial Variation Elimination

We first construct a polynomial phase filter to eliminate the second-, third-, and fourth-order
cross-coupling spatially variant terms corresponding to the Doppler centroid µ1, which is a key
function for the whole imaging approach

H1(η) = exp
{

j
4π( fr + fc)

c

∣∣∣rre f (η)
∣∣∣} exp

{
−j

4π( fr + fc)

c

4

∑
n=2

1
n!

χnηn

}
(11)

where the coefficients χ2, χ3, and χ4 are to be determined.
∣∣∣rre f (η)

∣∣∣ is the range history of the reference
point and the subscript ‘ref ’ denotes the reference target. The first phase term is used for the bulk
compensation and it can greatly decrease the impacts brought by the high squint angle and spatially
invariant terms. The second term, i.e., polynomial phase filter, aims to eliminate the cross-coupling
spatial variation.

Multiplying Equation (11) by Equation (10) and transforming the result into 2-D frequency domain
by using POSP, we can then obtain (see Appendix A)

S2
(

fr, fη

)
≈ ε0ωr( fr)ωa

(
fη

)
exp

{
jπ

4( fr + fc)

c

(
k0 + k1 fk + k2 f 2

k + k3 f 3
k + k4 f 4

k

)}
(12)

where fk = fηc/[2( fr + fc)], with fη being the azimuth frequency, ωa(·) is the azimuth window in
frequency domain, while k0 and k1 are respectively the range and azimuth position terms and they
have no impact on the imaging results. Thus, we decompose the higher-order spatially variant phase
terms corresponding to k2, k3, and k4 into four parts: range, azimuth, and cross-coupling spatially
variant terms, as well as spatially invariant term, i.e.,

S3
(

fr, fη

)
≈ ε0ωr( fr)ωa

(
fη

)
exp

{
j
[
ϕran

(
fr, fη

)
+ ϕazi

(
fr, fη

)
+ ϕcou

(
fr, fη

)
+ ϕcon

(
fr, fη

)]}
(13)

where ϕran
(

fr, fη

)
, ϕazi

(
fr, fη

)
, and ϕcou

(
fr, fη

)
are respectively the range, azimuth, and cross-coupling

spatially variant terms, and ϕcon
(

fr, fη

)
is the spatially invariant term (see Appendix B)

ϕran
(

fr, fη

)
=

4π( fr + fc)

c

(
1 +

4

∑
i=2

pi(χ2, χ3, χ4) f i
k

)
· k0 (14)

ϕazi
(

fr, fη

)
=

4π( fr + fc)

c

(
fk +

4

∑
i=2

qi(χ2, χ3, χ4) f i
k

)
· k1 (15)

ϕcou
(

fr, fη

)
= 4π( fr+ fc)

c

{
l2(χ2, χ3, χ4)

(
µ1 − µ

re f
1

)
· f 2

k

+l3(χ2, χ3, χ4)
(

µ1 − µ
re f
1

)2
· f 2

k

+l4(χ2, χ3, χ4)
(

µ1 − µ
re f
1

)
· f 3

k

} (16)

ϕcon
(

fr, fη

)
=

4π( fr + fc)

c

4

∑
i=2

zi(χ2, χ3, χ4) f i
k (17)
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where all pi(χ2, χ3, χ4), qi(χ2, χ3, χ4), li(χ2, χ3, χ4), and zi(χ2, χ3, χ4) (i = 2, 3, 4) are spatially invariant
coefficients which are derived by phase decompositions with the use of the gradient method [33] in the
3-D geographical space. The Taylor series expansion with multi-variables employed in Appendix B
has higher accuracy than that with one variable [33,34], which avoids deterioration in the final
imaging result.

To remove the cross-coupling spatial variations brought by µ1, the coefficients li(χ2, χ3, χ4)

(i = 2, 3, 4) in Equation (16) should be set to zero. Thus, one can get the following three equations with
three unknowns, i.e., 

l2(χ2, χ3, χ4) = 0
l3(χ2, χ3, χ4) = 0
l4(χ2, χ3, χ4) = 0

(18)

The solving process of Equation (18) for χ2, χ3, and χ4 is also provided in Appendix B.
Substituting the solutions of χ2, χ3, and χ4 into pi(χ2, χ3, χ4), qi(χ2, χ3, χ4), and zi(χ2, χ3, χ4)

(i = 2, 3, 4) respectively in Equations (14), (15), and (17), accurate expressions of ϕran
(

fr, fη

)
,

ϕazi
(

fr, fη

)
, and ϕcon

(
fr, fη

)
are obtained.

Illustration of the processing scheme is provided in Figure 6 to better understand the whole
procedure. The TFDs of the cross-coupling spatial variations are shown in Figure 6a. After bulk
compensation, the cross-coupling spatial variations are greatly weakened as shown in Figure 6b.
Then, the TFD of the polynomial phase filter, presented in Figure 6c, is applied. The cross-coupling
spatial variations are corrected in the 2-D frequency domain and the result is shown in Figure 6d. It is
worth noting that the polynomial phase filter is more like a perturbation function in the traditional
azimuth nonlinear CS (ANLCS) with similar solving process [23,24,35,36]. The difference is that the
perturbation function in ANLCS only eliminates the azimuth spatially variant phase brought by
range walk correction in stripmap mode whereas the polynomial phase filter can greatly remove the
cross-coupling one which is ignored in traditional ANLCS. Moreover, the polynomial phase filter can
also process the height spatial variations due to the topography variations.
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Figure 6. Illustration of cross-coupling spatial variation elimination by TFDs of three targets with
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3.2. Range and Azimuth Spatial Variation Elimination

After polynomial phase filtering, the possible azimuth spectrum aliasing should be taken into
consideration. Noting two main aspects: (1) the azimuth bandwidth is greatly affected by the motion
parameters; (2) the Doppler FM becomes µ2 + χ2 after polynomial phase filtering, which means that
the azimuth bandwidth may have a big change, aliasing should be eliminated before the azimuth
Fourier transform (FT) of the signal. The corresponding solution has been discussed in [16] and one
can use it for efficient data preprocessing. It is worth mentioning that the expressions of the 2-D
spectrum before and after the preprocessing are similar except for azimuth frequency variable fη in
Equation (13).
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After the cross-coupling spatial variation elimination, the echo signal is expressed as

S4
(

fr, fη

)
≈ ε0ωr( fr)ωa

(
fη

)
exp

{
j
[
ϕran

(
fr, fη

)
+ ϕazi

(
fr, fη

)
+ ϕcon

(
fr, fη

)]}
(19)

In Equation (19), the spatially invariant phase term can be compensated by

H2
(

fr, fη

)
= exp

(
−jϕcon

(
fr, fη

))
(20)

The first- and second-terms in Equation (19) are respectively the range and azimuth modulation
phases, which determine the range and azimuth positions. In this case, the ideal solution is to perform
separable interpolation respectively in the range and azimuth directions to remove the corresponding
spatial variations. The formulas of the interpolation are expressed as

4π( fr + fc)

c

(
1 +

4

∑
i=2

pi(χ2, χ3, χ4) f i
k

)
→ 4π

(
f ′r + fc

)
/c (21)

4π( fr + fc)

c

(
fk +

4

∑
i=2

qi(χ2, χ3, χ4) f i
k

)
→ 2π f ′η (22)

where f ′r and f ′η are, respectively, the new range and azimuth frequencies after interpolations.

These substitutions are viewed as a Stolt mapping of
(

fr, fη

)
into

(
f ′r , f ′η

)
; thus, the echo signal becomes

S5

(
f ′r , f ′η

)
= ε0ωr

(
f ′r
)
ωa

(
f ′η
)

exp
{

j
[
4π
(

f ′r + fc
)
/c · k0 + 2π f ′η · k1

]}
(23)

Clearly, a 2-D inverse FT (IFT) can be applied with Equation (23) to obtain a focused result, i.e.,

S6(tr, η) = ε0GrGasinc{Br[tr − 2k0/c]} · sinc{∆ fa[η − k1]} (24)

where Gr and Ga denote, respectively, the range and azimuth compression gains, Br is the bandwidth
of the transmitted signal, and ∆ fa is the azimuth bandwidth.

To illustrate the proposed algorithm, we consider a simple highly squinted flight geometry
shown in Figure 1, with point target A. Figure 7 shows the results of the proposed algorithm by 2-D
spectra of a target and the impulse response after compression. The solid lines in the first two rows
represent phase contours. Figure 7a–c respectively show the support areas of 2-D cross-coupling,
range, and azimuth spatially variant spectra after phase decomposition. RCM and SRC are generally
very small, compared to the range bandwidth, but are exaggerated here to illustrate the effect of a
target away from the reference point. The slightly curved phase contours indicate that the target is not
properly focused. In Figure 7d, the phase is completely independent of range and azimuth frequencies
after the polynomial phase filtering, which means that the 2-D cross-coupling spatially variant terms
are eliminated entirely. The Stolt mappings of Figure 7b,c produce noticeable changes in phase
contours, of which the lines are equally spaced and parallel as shown in Figure 7e,f. The echo data are
well focused in range and azimuth directions respectively shown in Figure 7g,h after corresponding
spatial variations being eliminated. Figure 7i shows the 2-D contour result of target.

3.3. Flowchart of Imaging Algorithm

The flowchart of the imaging approach is shown in Figure 8. By using the proposed approach,
spatial variations including the range, azimuth, and height spatially variant phases are greatly removed
for the HRHS SAR with maneuvers. It should be noted that the range history in (1) is not a general
model. When the maximum phase error between the polynomials in (1) and the real supporting points
is less than π/4, it has no impact on the imaging results. On the other hand, if the maximum phase
error is larger than π/4, the final image would be deteriorated. One solution is to take higher-order
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motion parameters into consideration in the proposed approach to decrease the errors. The residual
phase errors can also be compensated by using the autofocus techniques which have been clearly
discussed in [37,38].
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Figure 8. Flowchart of the proposed algorithm.
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4. Implementation and Discussion

4.1. Simplified Processing

According to the mapping functions in Section 3.2, if the terms

4π( fr + fc)

(
1 +

4
∑

i=2
pi(χ2, χ3, χ4) f i

k

)
/c in Equation (21) and 4π( fr + fc)

(
fk +

4
∑

i=2
qi(χ2, χ3, χ4) f i

k

)
/c

in Equation (22) are sufficiently small, we can omit the corresponding interpolation to decrease the
computational load of the whole imaging algorithm. In this subsection, a simplified processing
method is suggested. In order to avoid the interpolation operation and to retain the image quality,
the following two conditions must be satisfied

max

{∣∣∣∣∣4π( fr + fc)

(
1 +

4

∑
i=2

pi(χ2, χ3, χ4) f i
k

)
/c

∣∣∣∣∣
}

< π/4 (25)

max

{∣∣∣∣∣4π( fr + fc)

(
fk +

4

∑
i=2

qi(χ2, χ3, χ4) f i
k

)
/c

∣∣∣∣∣
}

< π/4 (26)

and thus the impacts on the final image could be ignored. With simulation parameters in Table 1,
the maximum phase errors of Equations (25) and (26) are 0.02 π and 0.7 π, respectively. Clearly,
the azimuth interpolation is still necessary whereas the range one is not in this case. However,
the results may not be generalizable. Thus, a judgment is added in the processes to determine whether
the interpolation is necessary or not according to Equations (25) and (26). The judgment flowchart is
given in Figure 9.
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4.2. Constraint on Scene Extent

The scene extent is analyzed in this subsection. The scene size is mainly determined by the
accuracy of the proposed approach. In the focusing step, approximations only occur in the phase
decomposition. According to Equation (13), the phase error is derived as

Φres =
4π( fr + fc)

c

(
4

∑
i=2

ki f i
k − k0

4

∑
i=2

pi f i
k − k1

4

∑
i=2

qi f i
k

)
(27)

To ensure the image quality, Φres should be less than π/4. By computing the Taylor series
expansion ki(i = 0, 1, · · · , 4) with respect to s and ignore the higher-order terms, i.e., ki = kre f

i +〈
∇kre f

i , s
〉

, Φres can be rewritten as

Φres ≈
4π( fr + fc)

c

(
4

∑
i=2

〈
∇kre f

i , s
〉

f i
k −
〈
∇kre f

0 , s
〉 4

∑
i=2

pi f i
k −

〈
∇kre f

1 , s
〉 4

∑
i=2

qi f i
k

)
(28)

where kre f
i = 0. As Φres < π/4, we obtain the scene sizes, i.e., 2s, in both the horizontal and vertical

directions. According to Equation (28), the decomposed errors increase with the focus depths in range,
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azimuth, and height directions. These phase errors could have negative effects on the SAR image
formation when they are larger than π/4.

Utilizing airborne SAR simulation parameters in Table 1, Figure 10 shows the phase errors
introduced by phase decompositions in range/azimuth, range/height, and azimuth/height planes.
Clearly, the maximum phase errors in Figure 10a–c are all less than π/4, which means that the residual
spatial variations in range, azimuth, and height directions after focusing are small enough and thus
have negligible impact on the imaging qualities.
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5. Simulation Results

To prove the effectiveness of the proposed approach, simulation results are presented in
this section.

5.1. Experiment 1

In this subsection, a spotlight mode SAR is simulated with a 3 × 3 dot-matrix being arranged in
the simulation scene. The geometry of the scene is presented in Figure 11. The parameters are listed in
Table 1.
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Case 1: The motion parameters a, b, and c in this case are listed in Table 1. Simulation results
without considering b and c are respectively used for comparisons. Moreover, the results by the
FDA [16] are included. Figure 12 shows the comparative results of targets PT1, PT5, and PT9. Clearly,
considering the higher-order motion parameters b and c, the impulse responses of targets PT1, PT5,
and PT9 with different range and azimuth positions are visibly well focused by the proposed method.
However, neglecting the motion parameters b and c, the impulse responses of targets PT1, PT5, and PT9
using the proposed method have deterioration with different degrees. The neglected parameter c can
degrade the near-sidelobe levels with asymmetry distortions, which means that there are deteriorations
in the peak sidelobe ratio (PSLR) and integrated sidelobe ratio (ISLR), and the neglected parameter b
can degrade both the 3 dB width of the main lobe (i.e., the resolution) and the near-sidelobe levels,
as shown in Figure 12. The impulse responses of targets PT1 and PT9 on the scene edges using
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FDA have deteriorations. The neglected azimuth and cross-coupling spatial variations brought by
acceleration are the main causes of the problem and they increase with resolutions and scene sizes.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 
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To quantify the precision of the proposed method, IRW, PSLR, and ISLR are used as performance
measures. The results are listed in Table 2. Both the contour plots and image quality parameters
demonstrate the effectiveness of the proposed method.

Table 2. Image quality parameters.

Range Azimuth

Method Target IRW (m) PSLR (dB) ISLR (dB) IRW (m) PSLR (dB) ISLR (dB)

Proposed
PT1 0.266 −13.21 −9.99 0.247 −13.17 −9.92
PT5 0.265 −13.23 −10.01 0.243 −13.22 −10.03
PT9 0.266 −13.19 −9.98 0.241 −13.15 −9.95

FDA
PT1 0.266 −13.24 −9.96 0.893 −6.02 −4.49
PT5 0.266 −13.25 −10.09 0.242 −13.23 −10.07
PT9 0.267 −13.17 −10.01 1.302 −4.74 −3.56
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Case 2: In this case, a, b, and c are set to larger values compared with those in Case 1,
a = (3.2, 4.1,−2.7) m/s2, b = (0.32,−0.56,−0.17) m/s3, and c = (−0.032,−0.037, 0.024) m/s4.
The ideal azimuth resolution is 0.364 m, the height of target PT9 is set to 300 m with respect to
the reference target PT5, and other simulation parameters are listed in Table 1.

By performing the focusing method, simulation result of targets PT1, PT5, and PT9 is shown in
Figure 13. The wavenumber domain algorithm [17] and BPA [29] are used for comparisons. Clearly,
the results using the BPA and proposed method are visibly well focused, whereas the results on the
edges achieved by [17] are not because the spatial variations introduced by the motion parameters a, b,
and c are not considered. Moreover, the target height of PT9 leads to a greater deterioration on the
focused result compared with that of the flat one.

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 20 

 

azimuth resolution is 0.364 m, the height of target PT9 is set to 300 m with respect to the reference 
target PT5, and other simulation parameters are listed in Table 1. 

By performing the focusing method, simulation result of targets PT1, PT5, and PT9 is shown in 
Figure 13. The wavenumber domain algorithm [17] and BPA [29] are used for comparisons. Clearly, 
the results using the BPA and proposed method are visibly well focused, whereas the results on the 
edges achieved by [17] are not because the spatial variations introduced by the motion parameters 
a , b , and c  are not considered. Moreover, the target height of PT9 leads to a greater deterioration 
on the focused result compared with that of the flat one. 

(a) (b) (c) 

Figure 13. Comparative results of azimuth point impulse responses processed by proposed method, 
[17], and BPA. (a) Target PT1. (b) Target PT5. (c) Target PT9. 

The quality parameters of azimuth point impulse responses are listed in Table 3. It is worth 
noting that the quality parameters of the proposed method are close to those of the BPA. In particular, 
the computational load of the proposed approach is much lower than that of the BPA. All these 
indicate that the proposed method can be well applied to the HRHS SAR with maneuvers. 

Table 3. Image quality parameters 

Method Target IRW (m) PSLR (dB) ISLR (dB) 

Proposed 
PT1 0.367 −13.16 −9.87 
PT5 0.365 −13.21 −10.02 
PT9 0.362 −13.14 −9.94 

[17] 
PT1 1.031 −6.11 −4.56 
PT5 0.364 −13.24 −10.06 
PT9 1.135 −5.78 −4.12 

BPA 
PT1 0.365 −13.24 −10.04 
PT5 0.364 −13.27 −10.08 
PT9 0.361 −13.25 −10.05 

5.2. Experiment 2 

In the following, a comparison of the proposed approach and [17] is made. Since the highly-
squinted SAR data with maneuvers are not available, a HRHS airborne SAR raw signal simulation 
through time domain echo generation method is performed in this subsection. The data set contains 
curved flight path. The carrier frequency is 35 GHz, the bandwidth of the transmitted signal is 
400MHz, reference range is 26 km, and squint angle is 63°. The scene size in range and azimuth 
directions are respectively 1.4 km and 1 km, and the azimuth resolution is 0.428 m. The motion 
parameters—namely, the velocity v , acceleration a , and higher-order motion parameters b  and 
c  are listed in Table 4. The data are focused by using the proposed approach. Moreover, a 
comparative focusing result of [17] is provided to demonstrate the superiority of the proposed 
method. 
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The quality parameters of azimuth point impulse responses are listed in Table 3. It is worth
noting that the quality parameters of the proposed method are close to those of the BPA. In particular,
the computational load of the proposed approach is much lower than that of the BPA. All these indicate
that the proposed method can be well applied to the HRHS SAR with maneuvers.

Table 3. Image quality parameters.

Method Target IRW (m) PSLR (dB) ISLR (dB)

Proposed
PT1 0.367 −13.16 −9.87
PT5 0.365 −13.21 −10.02
PT9 0.362 −13.14 −9.94

[17]
PT1 1.031 −6.11 −4.56
PT5 0.364 −13.24 −10.06
PT9 1.135 −5.78 −4.12

BPA
PT1 0.365 −13.24 −10.04
PT5 0.364 −13.27 −10.08
PT9 0.361 −13.25 −10.05

5.2. Experiment 2

In the following, a comparison of the proposed approach and [17] is made. Since the
highly-squinted SAR data with maneuvers are not available, a HRHS airborne SAR raw signal
simulation through time domain echo generation method is performed in this subsection. The data
set contains curved flight path. The carrier frequency is 35 GHz, the bandwidth of the transmitted
signal is 400 MHz, reference range is 26 km, and squint angle is 63◦. The scene size in range and
azimuth directions are respectively 1.4 km and 1 km, and the azimuth resolution is 0.428 m. The motion
parameters—namely, the velocity v, acceleration a, and higher-order motion parameters b and c are
listed in Table 4. The data are focused by using the proposed approach. Moreover, a comparative
focusing result of [17] is provided to demonstrate the superiority of the proposed method.
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Table 4. Motion parameter settings.

Motion Parameter Value

Velocity v (0, 110, −10) m/s
Acceleration a (1.21, 1.43, −0.74) m/s2

3rd-order Paramater b (−0.1, 0.2, 0.2) m/s3

4th-order Paramater c (0.007, −0.015, 0.004) m/s4

Figure 14 shows the comparative results. Clearly, the entire scene is well focused by the proposed
approach, including the edge regions, as shown in Figure 14a. However, the imaging result in
Figure 14b has a great deterioration in the edge regions, which are noted from the zoom-in version of
the dot-line rectangle area. It is because [17] ignores the spatial variations introduced by a, b, and c.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 20 

 

Table 4. Motion parameter settings 

Motion Parameter Value 
Velocity v  (0, 110, −10) m/s 

Acceleration a  (1.21, 1.43, −0.74) m/s2 
3rd-order Paramater b  (−0.1, 0.2, 0.2) m/s3 
4th-order Paramater c  (0.007, −0.015, 0.004) m/s4 

Figure 14 shows the comparative results. Clearly, the entire scene is well focused by the 
proposed approach, including the edge regions, as shown in Figure 14a. However, the imaging result 
in Figure 14b has a great deterioration in the edge regions, which are noted from the zoom-in version 
of the dot-line rectangle area. It is because [17] ignores the spatial variations introduced by a , b , 
and c . 

 
(a) (b) 

Figure 14. Imaging results (a) by proposed approach and (b) [17]. 

Figure 15 shows the zoom-in version of TFDs of the highlighted elliptic areas in Figure 14. The 
TFDs of the proposed method have a good energy aggregation, however, the TFDs of [17] have great 
energy dispersion. Moreover, the time-frequency resolution (TFR) of the proposed approach is higher 
than that of [17], which is seen from the dot-line rectangle area. It is also observed that the TFDs of 
the proposed approach are vertical curves while that of [17] have slight slopes. The azimuth profiles 
of the point in the highlighted elliptic areas are shown in Figure 16. It is evident that serious distortion 
and smearing occur in [17], while the proposed method provides well-focused performance. 
According to the above analyses, it is concluded that the proposed approach can perform well in 
HRHS airborne SAR with maneuvers. 

 
(a) (b) 

Figure 15. TFDs of rectangular domain in Figure 14. (a) Using the proposed approach. (b) Using [17]. 

Figure 14. Imaging results (a) by proposed approach and (b) [17].

Figure 15 shows the zoom-in version of TFDs of the highlighted elliptic areas in Figure 14.
The TFDs of the proposed method have a good energy aggregation, however, the TFDs of [17] have
great energy dispersion. Moreover, the time-frequency resolution (TFR) of the proposed approach
is higher than that of [17], which is seen from the dot-line rectangle area. It is also observed that the
TFDs of the proposed approach are vertical curves while that of [17] have slight slopes. The azimuth
profiles of the point in the highlighted elliptic areas are shown in Figure 16. It is evident that serious
distortion and smearing occur in [17], while the proposed method provides well-focused performance.
According to the above analyses, it is concluded that the proposed approach can perform well in
HRHS airborne SAR with maneuvers.
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Figure 16. Comparison of azimuth pulse response.

6. Conclusions

SAR has been widely applied for remote sensing. However, the problems caused by the maneuvers
affect the performance of traditional focusing method for the HRHS cases. In this paper, a FMPM is
introduced to describe the curved path. Considering the third- and higher-order motion parameters,
our analyses indicate that the spatial variations in range, azimuth, and height directions will severely
impair the image quality if they are not properly accounted for during the processing. To solve
this problem, we have developed a polynomial phase filter to remove the cross-coupling variations
and a Stolt mapping function to the range and azimuth terms. The proposed approach is efficient,
easy to implement, and can process the HRHS SAR data with maneuvers. Moreover, implementation
considerations are provided. Validity and applicability are studied through theoretical analyses and
numerical experiments.
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Appendix A

In order to obtain the 2-D spectrum of Equation (11), we use the POSP and have

4

∑
n=1

1
(n− 1)!

(
µn − µ

re f
n

)
ηn−1 +

4

∑
n=2

1
(n− 1)!

χnηn−1 = − fk (29)

where fk= c fη/2( fc + fr). By using MSR [39–41], the stationary point η∗ is derived as

η∗ = −g1

(
fk + µ1 − µ

re f
1

)
+ g2

(
fk + µ1 − µ

re f
1

)2
− g3

(
fk + µ1 − µ

re f
1

)3
(30)

where the coefficients are
g1 =

1

µ2 − µ
re f
2 + χ2

(31)

g2 =
µ3 − µ

re f
3 + χ3

2
(

µ2 − µ
re f
2 + χ2

)3 (32)
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g3 =

(
µ3 − µ

re f
3 + χ3

)2

2
(

µ2 − µ
re f
2 + χ2

)5 −

(
µ4 − µ

re f
4 + χ4

)
6
(

µ2 − µ
re f
2 + χ2

)4 (33)

According to Equation (30), the 2-D spectrum is derived as

S2
(

fr, fη

)
≈ ε0ωr( fr)ωa

(
fη

)
exp

{
jπ

4( fr + fc)

c

(
k0 + k1 fk + k2 f 2

k + k3 f 3
k + k4 f 4

k

)}
(34)

where k0 =
4
∑

n=0
βn

(
µ1 − µ

re f
1

)n
, k1 =

4
∑

n=1
nβn

(
µ1 − µ

re f
1

)n−1
, k2 = 0.5

4
∑

n=2
n(n− 1)βn

(
µ1 − µ

re f
1

)n−2
,

k3 =
4
∑

n=3
4n−3βn

(
µ1 − µ

re f
1

)n−3
, and k4 = β4, with βn being the Doppler parameters of the range

history, all of which are spatially variant terms. They are calculated as β0 = −
(

µ0 − µ
re f
0

)
, β1 = 0,

β2 = g1/2, β3 = −g2/3, and β4 = g3/4.

Appendix B

For the second-order coefficient k2 in Equation (34), we expand β2, β3, and β4 using the
Taylor series

β2 = β
re f
2 + a1

(
µ1 − µ

re f
1

)
+ a2

(
µ1 − µ

re f
1

)2
+ a3

(
k0 − kre f

0

)
(35)

β3 = β
re f
3 + a4

(
µ1 − µ

re f
1

)
+ a5

(
ρ1 − ρ

re f
1

)
(36)

β4 = β
re f
4 (37)

where ρ1 = k1/
(

µ1 − µ
re f
1

)
, kre f

0 = 0, and ρ
re f
1 = 2β

re f
2 . ai(i = 1, · · · , 5) are the Taylor expansion

coefficients. Substituting Equations (35)–(37) into k2 leads to

k2 = p2(χ2, χ3, χ4) · k0 + q2(χ2, χ3, χ4) · k1

+ l2(χ2, χ3, χ4) ·
(

µ1 − µ
re f
1

)
+ l3(χ2, χ3, χ4) ·

(
µ1 − µ

re f
1

)2

+ z2(χ2, χ3, χ4)

(38)

where p2(χ2, χ3, χ4) = a3, q2(χ2, χ3, χ4) = 3a5, l2(χ2, χ3, χ4) = a1 + 3β
re f
3 − 6a5β

re f
2 ,

l3(χ2, χ3, χ4) =a2 + 3a4 + 6β
re f
4 , and z2(χ2, χ3, χ4) = β

re f
2 .

For the third-order coefficient k3 in Equation (34), β3 is re-expanded using Taylor series with
different variables as those of Equation (36)

β3 = β
re f
3 + b1

(
µ1 − µ

re f
1

)
+ b2

(
k0 − kre f

0

)
(39)

where bi(i = 1, 2) are the Taylor expansion coefficients. Substituting Equation (39) into k3, we obtain

k3 = p3(χ2, χ3, χ4) · k0 + q3(χ2, χ3, χ4) · k1

+l4(χ2, χ3, χ4) ·
(

µ1 − µ
re f
1

)
+ z3(χ2, χ3, χ4)

(40)

where p3(χ2, χ3, χ4) = b2, q3(χ2, χ3, χ4) = 0, l4(χ2, χ3, χ4) = b1 + 4β
re f
4 , and z3(χ2, χ3, χ4) = β

re f
3 .

For the fourth-order coefficient k4 in Equation (34), we substitute Equation (37) into k4 to yield

k4 = p4(χ2, χ3, χ4) · k0 + q4(χ2, χ3, χ4) · k1 + z4(χ2, χ3, χ4) (41)
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where p4(χ2, χ3, χ4) = 0, q4(χ2, χ3, χ4) = 0, and z4(χ2, χ3, χ4) = β
re f
4 .

Substituting Equations (38), (40), and (41) into Equation (34), we obtain the 2-D spectrum in (13).
According to phase decomposition, the equations in Equation (18) are rewritten as

a1 + 3β
re f
3 − 6a5β

re f
2 = 0

a2 + 3a4 + 6β
re f
4 = 0

b1 + 4β
re f
4 = 0

(42)

Their solutions are
χ2 = −

(
C3 + C2

1

)
/C2 (43)

χ3 = −
(

C3C1 + C3
1

)
/C2 (44)

χ4 = C2
3 − C3C2

1/C2 (45)

where C1 = ∂µ2/∂µ1|re f , C2 = ∂2µ2/∂µ2
1

∣∣
re f , and C3 = ∂µ3/∂µ1|re f .
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