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Abstract: Synthetic aperture radar automatic target recognition (SAR-ATR) has made great progress
in recent years. Most of the established recognition methods are supervised, which have strong
dependence on image labels. However, obtaining the labels of radar images is expensive and
time-consuming. In this paper, we present a semi-supervised learning method that is based on
the standard deep convolutional generative adversarial networks (DCGANs). We double the
discriminator that is used in DCGANs and utilize the two discriminators for joint training. In this
process, we introduce a noisy data learning theory to reduce the negative impact of the incorrectly
labeled samples on the performance of the networks. We replace the last layer of the classic
discriminators with the standard softmax function to output a vector of class probabilities so that we
can recognize multiple objects. We subsequently modify the loss function in order to adapt to the
revised network structure. In our model, the two discriminators share the same generator, and we
take the average value of them when computing the loss function of the generator, which can improve
the training stability of DCGANs to some extent. We also utilize images of higher quality from the
generated images for training in order to improve the performance of the networks. Our method has
achieved state-of-the-art results on the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset, and we have proved that using the generated images to train the networks can
improve the recognition accuracy with a small number of labeled samples.

Keywords: SAR target recognition; semi-supervised; DCGANs; joint training

1. Introduction

Synthetic Aperture Radar (SAR) can acquire the images of non-cooperative moving objects, such as
aircrafts, ships, and celestial objects over a long distance under all weather and all day, which is now
widely used in civil and military fields [1]. SAR images contain rich target information, but because of
different imaging mechanisms, SAR images are not as intuitive as optical images, and it is difficult for
human eyes to recognize objects in SAR images accurately. Therefore, SAR automatic target recognition
technology (SAR-ATR) has become an urgent need, which is also a hot topic in recent years.

SAR-ATR mainly contains two aspects: target feature extraction and target recognition. At present,
target features that are reported in most studies include target size, peak intensity, center distance,
and Hu moment. The methods of target recognition include template matching, model-based methods,
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and machine learning methods [2–15]. Machine learning methods have attracted increasing attention
because appropriate models can be formed while using these methods. Machine learning methods
commonly used for image recognition include support vector machines (SVM), AdaBoost, and Bayesian
neural network [16–25]. In order to obtain better recognition results, traditional machine learning
methods require preprocessing images, such as denoising and feature extraction. Fu et al. [26]
extracted Hu moments as the feature vectors of SAR images and used them to train SVM, and finally,
achieved better recognition accuracy than directly training SVM with SAR images. Huan et al. [21]
used a non-negative matrix factorization (NFM) algorithm to extract feature vectors of SAR images,
and combined SVM and Bayesian neural networks to classify feature vectors. However, in these cases,
how to select and combine features is a difficult problem, and the preprocessing scheme is rather
complex. Therefore, these methods are not practice-friendly, although they are somehow effective.

In recent years, deep learning has achieved great successes in the field of object recognition
in images. Its advantage lies in the ability of using a large amount of data to train the networks
and to learn the target features, which avoid complex preprocessing and can also achieve better
results. Numerous studies have brought deep learning into the field of SAR-ATR [27–39]. The most
popular and effective model of deep learning is convolutional neural networks (CNNs), which is based
on supervised learning, which requires a large number of labeled samples for training. However,
in practical applications, people can only obtain unlabeled samples at first, and then label them
manually. Semi-supervised learning enables the label prediction of a large number of unlabeled
samples by training with a small number of labeled samples. Traditional semi-supervised methods in
the field of machine learning include generative methods [40,41], semi-supervised SVM [42], graph
semi-supervised learning [43,44], and difference-based methods [45]. With the introduction of deep
learning, people begin to combine the classical statistical methods with deep neural networks to obtain
better recognition results and to avoid complicated preprocessing. In this paper, we will combine
traditional semi-supervised methods with deep neural networks, and propose a semi-supervised
learning method for SAR automatic target recognition.

We intend to achieve two goals: one is to predict the labels of a large amount of unlabeled samples
through training with a small amount of labeled samples and then extend the labeled set; and, the other
one is to accurately classify multiple object types. To achieve the former target, we develop training
methods of co-training [46]. In each training round, we utilize the labeled samples to train two
classifiers, then use each classifier to predict the labels of the unlabeled samples respectively, and select
those positive samples with high confidence from the newly labeled ones and add them to the labeled
set for the next round of training. We propose a stringent rule when selecting positive samples to
increase the confidence of the predicted labels. In order to reduce the negative influence of those
wrongly labeled samples, we introduce the standard noisy data learning theory [47]. With advanced
training processes, the recognition outcome of the classifier is getting better, and the number of the
positive samples selected in each round of training is also increasing. Since the training process
is supervised, we choose a CNN for the classifier due to the high performance on many other
recognition tasks.

The core of our proposed method is to extend the labeled sample set with newly labeled samples,
and to ensure that the extended labeled sample set enables the classifier to have better performance
than the previous version. We have noticed the deep convolutional generative adversarial networks
(DCGANs) [48], which is very popular in recent years in the field of deep learning. The generator can
generate fake images that are very similar to the real images by learning the features of the real images.
We expect to expand the sample set with high-quality fake images for data enhancement to better
achieve our goals. DCGANs contains a generator and a discriminator. We double the discriminator and
use the two discriminators for joint training to complete the task of semi-supervised learning. Since
the discriminator of DCGANs cannot be used to recognize multiple object types, some adjustments
to the network structure are required. Salimans et al. [49] proposed to replace the last layer of the
discriminators with the softmax function to output a vector of the class probabilities. We draw on this
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idea and modify the classic loss function to achieve the adjustments. We also take the average value
of the two classifier when computing the loss function of the generator, which have been proved to
improve the training stability to some extent. We prove that our method performs better, especially
when the number of the unlabeled samples is much greater than that of the labeled samples (which
is a common scenario). By selecting high quality’s synthetically generated images for training, the
recognition results are improved.

2. DCGANs-Based Semi-Supervised Learning

2.1. Framework

The framework of our method is shown in Figure 1. There are two complete DCGANs in the
framework, each contains one generator and two discriminators. To recognize multiple object types,
we replace the last layer of the discriminators with a softmax function, and output a vector of that class
probabilities. The last value in the vector represents the probability that the input sample is fake, while
the others represent the probabilities that the input sample is real and that it belongs to a certain class.
We modify the loss function of the discriminators to adapt to the adjustments, and take the average
value of them when computing the loss function of the generator. The process of semi-supervised
learning is accomplished through joint training of the two discriminators, and the specific steps in each
training round are as follows: we firstly utilize the labeled samples to train the two discriminators,
then use each discriminator to predict the labels of the unlabeled samples, respectively. We select those
positive samples with high confidence from the newly labeled ones, and finally add them to each
other’s labeled set for the next round of training when certain conditions are satisfied.
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The datasets used for training are constructed according to the experiments, and there are two
different cases: the first is to directly divide the original dataset into a labeled sample set and an
unlabeled sample set to verify the effectiveness of the proposed semi-supervised method; the second
is to select specific generated images of high quality as the unlabeled sample sets, select a portion from
the original dataset, and form the labeled sample set to verify the effect of using the generated false
images to train the networks.

2.2. MO-DCGANs

The generator is a deconvolution neural network, whose input is a random vector and outputs
a fake image that is very close to a real image by learning the features of the real images. While
the discriminator of DCGANs is an improved convolutional neural network, and both fake and real
images will be sent to the discriminator. The output of the discriminator is a number falling in the
range of 0 and 1, if the input data is a real image then this output number is getting closer to 1, and if
the input data is a fake image then this output number is getting closer to 0. Both the generator and
the discriminator will be strengthened during the training process.

In order to recognize multiple object types, we conduct enhancement for the discriminators.
Inspired by Salimans et al. [49], we replace the output of the discriminator with a softmax function
and make it a standard classifier for recognizing multiple object types. We name this model
multi-output-DCGANs (MO-DCGANs). Assuming that the random vector z has a uniform noise
distribution Pz(z), and G(z) maps it to the data space of the real images; the input x of the
discriminator, which is assumed to have a distribution Pdata(x, y), is a real or fake image with
label y. The discriminator outputs a k + 1 dimensional vector of logits l = {l1, l2, · · · , lk+1}, which
is finally turned into a k + 1 dimensional vector of class probabilities p = {p1, p2, · · · , pk+1} by the
softmax function:

pj =
elj

∑k+1
i=1 eli

, j ∈ {1, 2, · · · , k + 1} (1)

A real image will be discriminated as one of the former k classes, and a fake image will be
discriminated as the k + 1 class.

We formulate the loss function of MO-DCGANs as a standard minimax game:

L = −Ex,y∼Pdata(x,y){D(y|x, y < k + 1)} − Ex∼G(z){D(y|G(z), y = k + 1)} (2)

We do not take the logarithm of D(y|x) directly in Equation (2), because the output neurons of
the discriminator in our model have increased from 1 to k + 1, and D(y|x) no longer represents the
probability that the input is a real image but a loss function, corresponding to a more complicated
condition. We choose cross-entropy function as the loss function, and then D(y|x) is computed as:

D(y|x) = −∑
i

y′i log(pi) (3)

where y′ refers to the expected class, pi represents the probability that the input sample belongs to y′.
It should be noted that y and y′ are one hot vectors. According to Equation (3), D(y|x, y < k + 1) can
be further expressed as Equation (4) when the input is a real image:

D(y|x, y < k + 1) = −
k

∑
i=1

y′ log(pi) (4)

When the input is a fake image, D(y|x, y < k + 1) can be simplified as:

D(y|x, y = k + 1) = − log(pk+1) (5)
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Assume that there are m inputs both for the discriminator and the generator within each training
iterations, and the discriminator is updated by ascending its stochastic gradient:

∇θd

1
m

m

∑
i=1

[
D
(

y
∣∣∣xi, y < k + 1

)
+ D

(
y
∣∣∣G(zi), y = k + 1

)]
(6)

while the generator is updated by descending its stochastic gradient:

∇θd

1
m

m

∑
i=1

D
(

y
∣∣∣G(zi), y = k + 1

)
(7)

The discriminator and the generator are updated alternately, and their networks are optimized
during this process. Therefore, the discriminator can recognize the input sample more accurately,
and the generator can make its output images look closer to the real images.

2.3. Semi-Supervised Learning

The purpose of semi-supervised learning is to predict the labels of the unlabeled samples by
learning the features of the labeled samples, and use these newly labeled samples for training to
improve the robustness of the networks. The accuracy of the labels has a great influence on the
subsequent training results. Correctly labeled samples can be used to optimize the networks, while the
wrongly labeled samples will maliciously modify the networks and reduce the recognition accuracy.
Therefore, improving the accuracy of the labels is the key to semi-supervised learning. We conduct
semi-supervised learning by utilizing the two discriminators for joint training. During this process,
the two discriminator learns the same features synchronously. But, their network parameters are
always dynamically different because their input samples in each round of the training are randomly
selected. We use the two classifiers with dynamic differences to randomly sample and classify the same
batch of the samples, respectively, and to select a group of positive samples from the newly labeled
sample set for training each other. The two discriminators promote each other, and they become better
together. However, the samples that are labeled in this way have a certain probability of becoming
noisy samples, which deteriorates the performance of the networks. In order to eliminate the adverse
effects of this noisy sample on the network as much as possible, we here introduce a noisy data learning
theory [49]. There are two ways that are proposed to extend the labeled sample set in our model: one
is to label the unlabeled samples from the original real images; the other is to label the generated fake
images. The next two parts will describe the proposed semi-supervised learning method.

2.3.1. Joint Training

Numerous studies have shown that DCGANs training process is not stable, which fluctuates the
recognition results. By doubling the discriminator in MO-DCGANs and by taking the average value of
the two discriminators when computing the loss function, the fluctuations can be properly eliminated.
This is because the loss function of a single classifier may be subject to large deviations in the training
process, while taking the average value of the two discriminators can cancel the positive and negative
deviations when ensuring that the performance of the two classifiers is similar. Meanwhile, we can
use the two discriminators to complete semi-supervised learning tasks, which is inspired by the main
idea of co-training. The two discriminators share the same generator, each forms a MO-DCGANs with
the generator, and then we have two complete MO-DCGANs in our model. Every fake image from the
generator will go into both the two discriminators. Let D1 and D2 represent the two discriminators,
respectively, then Equation (7) becomes (8):

∇θd

1
m

m

∑
i=1

2

∑
j=1

Dj

(
y
∣∣∣G(zi), y = k + 1

)
(8)



Remote Sens. 2018, 10, 846 6 of 21

Let Lt
1 = {(x1, y1), (x2, y2), · · · , (xm, ym)} and Lt

2 = {(x1, y1), (x2, y2), · · · , (xm, ym)} represent
the labeled sample sets of Dt

1 and Dt
2, respectively, and Ut

1{x1, x2, · · · , xn} and Ut
2{x1, x2, · · · , xn} the

unlabeled sample sets in the tth training round. It should be emphasized that the samples
in Lt

1 and Lt
2 are the same but in different orders, so do Ut

1 and Ut
2. As shown in Figure 2, the specific

steps of the joint training are as follows:

(1) utilize Lt
1 (Lt

2) to train Dt
1 (Dt

2);
(2) use Dt

1 (Dt
2) to predict the labels of the samples in Ut

2
(

Ut
1
)
; and,

(3) Dt
1 (Dt

2) selects p positive samples from the newly labeled samples according to certain criteria
and adds them to Lt

2 (Lt
1) for the next round of training.
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Note that the newly labeled samples will be regarded as unlabeled samples and will be added
to U in the next round. Therefore, in each round, all the original unlabeled samples will be labeled,
and the selected positive samples are different. As the number of training increases, unlabeled samples
will be fully utilized, and the pool of positive samples is increased and diversified. D1 and D2 are
independent from each other in the first two steps. Each time, they select different samples, and they
always maintain dynamic differences throughout the process. The difference will gradually decrease
after lots of rounds of training and all of the unlabeled samples have been labeled and used to
train D1 and D2, and the unlabeled samples include the complete features of the unlabeled samples.

A standard is adopted when we select the positive samples. When considering that if the
probabilities outputs by the softmax function are very close, then it is not sensible to assign the label
with the largest probability to the unlabeled input sample. But, if the maximum probability is much
larger than the average of all the remaining probabilities, then it is reasonable to do so. Based on this,
we propose a stringent judging rule: if the largest class probability Pmax and the average of all the
remaining probabilities satisfy Equation (9), then we can determined that the sample belongs to the
class corresponding to Pmax.

Pmax ≥ α ·

K
∑

i=1
Pi − Pmax

K− 1
(9)

where K is the total number of the classes, α (α ≥ 1) is a coefficient that measures the difference
between Pmax and all of the remaining probabilities. The value α is related to the performance of the
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networks. The better the network performance is, the larger the value of α is, and the specific value
can be adjusted during the network training.

2.3.2. Noisy Data Learning

In the process of labeling the unlabeled samples, we often meet wrongly labeled samples, which
are regarded as noise and will degrade the performance of the network. We look at the application
shown in [45], which was based on the noisy data learning theory presented in [47] to reduce the
negative effect of the noisy samples. According to the theory, if the labeled sample set L has the
probably approximate correct (PAC) property, then the sample size m satisfies:

m =
2µ

ε2(1− 2η)2 ln
(

2N
δ

)
(10)

where N is the size of the newly labeled sample set, δ is the confidence, ε is the recognition error rate
of the worst hypothetic case, η is an upper bound of the recognition noise rate, and µ is a hypothetical
error that helps the equation be established.

Let Lt and Lt−1 denote the samples labeled by the discriminator in the tth and the (t− 1)th
training rounds. The size of sample sets L ∪ Lt and L ∪ Lt−1 are

∣∣L ∪ Lt
∣∣ and

∣∣L ∪ Lt−1
∣∣, respectively.

Let ηL denote the noise rate of the original labeled sample set, and et denotes the prediction error rate.
Then, the total recognition noise rate of L ∪ Lt in the tth training round is:

ηt =
ηL|L|+ et

∣∣Lt
∣∣

|L ∪ Lt| (11)

If the discriminator is refined through using Lt to train the networks in the tth training
round, then εt < εt−1. In Equation (10), all of the parameters are constant except for ε and η.
So, only when ηt < ηt−1, the equation can still be established. When considering that ηL is very
small in Equation (11), then ηt < ηt−1 is bound to be satisfied if et

∣∣Lt
∣∣ < et−1

∣∣Lt−1
∣∣. Assuming

that 0 ≤ et, et−1 < 0.5, when
∣∣Lt
∣∣ is far bigger than

∣∣Lt−1
∣∣, we randomly subsample

∣∣Lt
∣∣ whilst

guaranteeing et
∣∣Lt
∣∣ < et−1

∣∣Lt−1
∣∣. It has been proved that if Equation (12) holds, where s denotes the

size of sample set
∣∣Lt
∣∣ after subsampling, then et

∣∣Lt
∣∣ < et−1

∣∣Lt−1
∣∣ is satisfied.

s =

⌈
et−1

∣∣Lt−1
∣∣

et − 1

⌉
(12)

To ensure that
∣∣Lt
∣∣ is still bigger than

∣∣Lt−1
∣∣ after subsampling, Lt−1 should satisfy:

∣∣∣Lt−1
∣∣∣ > et

et−1 − et (13)

Since it is hard to estimate et on the unlabeled samples, we utilize the labeled samples to
compute et. Assuming that the number of the correctly labeled samples among the total labeled
sample set is n, then et can be computed as:

et = 1− n
m

(14)

The proposed semi-supervised learning algorithm is presented in Algorithm 1. It should be
emphasized that the process of the semi-supervised training is only related to the two discriminators,
so the training part of the generator is omitted here.
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Algorithm 1. Semi-supervised learning based on multi-output DCGANs.

Inputs: Original labeled training sets L1 and L2, original unlabeled training sets U2 and U2, the prediction
sample sets l1 and l2, the discriminators D1 and D2, the error rates err1 and err2, the update flags of the
classifiers update1 and update2.
Outputs: Two vectors of class probabilities h1 and h2.

1. Initialization: for i = 1, 2

updatei ← True , err′i = 0.5, l′i ← ∅

2. Joint training: Repeat until 400 epoch

for i = 1, 2

(1) If updatei = True, then Li ← Li ∪ l′i .
(2) Use Li to train Di and get hi.
(3) Allow Di to label pi positive samples in U and add them to li.
(4) Allow Di to measure erri with Li.

(5) If
∣∣l′i ∣∣ = 0, then

∣∣l′i ∣∣← ⌊
erri

err′i − erri
+ 1
⌋

.

(6) If
∣∣l′i ∣∣ < |li| and erri|li| < err′i

∣∣l′i ∣∣, then updatei ← True .

(7) If
∣∣l′i ∣∣ > ⌊ erri

err′i−erri
+ 1
⌋

, then li ← Subsample(li,
⌈

err′i l
′
i

erri
− 1
⌉

) and updatei ← True .

(8) If updatei = True, then err′i ← erri, l′i ← li .

3. Output: h1, h2.

3. Experiments and Discussions

3.1. MSTAR Dataset

We perform our experiments on the Moving and Stationary Target Acquisition and Recognition
(MSTAR) database, which is co-funded by National Defense Research Planning Bureau (ADRPA) and
the U.S. Air Force Research Laboratory (AFRL). Ten classes of vehicle objects in the MSTAR database
are chosen in our experiments, i.e., 2S1, ZSU234, BMP2, BRDM2, BTR60, BTR70, D7, ZIL131, T62,
and T72. The SAR and the corresponding optical images of each class are shown in Figure 3.
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Figure 3. Optical images and corresponding Synthetic Aperture Radar (SAR) images of ten classes of
objects in the Moving and Stationary Target Acquisition and Recognition (MSTAR) database.
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3.2. Experiments with Original Training Set under Different Unlabeled Rates

In the first experiment, we partition the original training set that contains 2747 SAR target chips
in 17◦ depression into labeled and unlabeled sample sets under different unlabeled rates, including
20%, 40%, 60%, and 80%. Then, we use the total 2425 SAR target chips in 15◦ depression for testing.
The reason why the training set and the test set take different depressions is that the object features are
different in different depressions, which can ensure the generalization ability of our model. Table 1
lists the detailed information of the target chips that are involved in this experiment, and Table 2 lists
the specific numbers of the labeled and unlabeled samples under different unlabeled rates. We use L
to denote the labeled sample set, U to unlabeled sample set, and NDLT to noisy data learning theory.
L+U represents the results obtained by using joint training alone, while L+U+NDLT represents the
results that were obtained by using joint training and the noisy data learning theory together. We firstly
utilize the labeled samples for supervised training and obtain supervised recognition accuracy (SRA).
Then, we simultaneously use the labeled and unlabeled samples for semi-supervised training and
obtain semi-supervised recognition accuracy (SSRA). Finally, we calculate the improvement of SSRA
over SRA. Both SRA and SSRA are calculated by averaging the 150th to 250th training rounds accuracy
of D1 and D2 to reduce accuracy fluctuations. In this experiment, we take α = 2.0 in Equation (9).
The experimental results are shown in Table 3.

Table 1. Detailed information of the MSRAT dataset used in our experiments.

Tops Class Serial No.
Size

(Pixels)

Training Set Testing Set

Depression No. Images Depression No. Images

Artillery 2S1 B_01 64× 64 17◦ 299 15◦ 274
ZSU234 D_08 64× 64 17◦ 299 15◦ 274

Truck

BRDM2 E_71 64× 64 17◦ 298 15◦ 274
BTR60 K10YT_7532 64× 64 17◦ 256 15◦ 195
BMP2 SN_9563 64× 64 17◦ 233 15◦ 195
BTR70 C_71 64× 64 17◦ 233 15◦ 196

D7 92V_13015 64× 64 17◦ 299 15◦ 274
ZIL131 E_12 64× 64 17◦ 299 15◦ 274

Tank
T62 A_51 64× 64 17◦ 299 15◦ 273
T72 #A64 64× 64 17◦ 232 15◦ 196

Sum —— —— —— —— 2747 —— 2425

Table 2. Specific number of the labeled and unlabeled samples under different unlabeled rates.

Unlabeled Rate L U Total

20% 2197 550 2747
40% 1648 1099 2747
60% 1099 1648 2747
80% 550 2197 2747

When comparing the results of L+U and L+U+NDLT, we can conclude that the recognition
accuracy is improved after we have introduced the noisy data learning theory. This is because the
noisy data will degrade the network performance, and the noisy data learning theory will reduce this
negative effect and therefore bring about better recognition results. While comparing the results of L
and L+U+NDLT, it can be concluded that the networks will learn more feature information after using
the unlabeled samples for training, thus the results of L+U+NDLT is higher than L. We also observe that
as the unlabeled rate increases, the average SSRA decreases, while it will obtain higher improvement.
It should be noted that the recognition results of the ten classes largely differ. Some classes can achieve
high recognition accuracy with only a small number of labeled samples, therefore, the recognition
accuracy will not be significantly improved after the unlabeled samples participate in training the
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networks, such as 2S1, T62, and ZSU234. Their accuracy improvements under different unlabeled
rates fall within 3%, but their SRAs and SSRAs are still over 98%. While some classes can obtain large
accuracy improvement by utilizing a large number of unlabeled samples for semi-supervised learning,
and the more unlabeled samples, the more improvement. Taking BTR70 as an example, its accuracy
improvement is 13.94% under an 80% unlabeled rate, but its SRA and SSRA are only 84.94% and
96.78%, respectively.

Table 3. Recognition accuracy (%) and relative improvements (%) of our semi-supervised learning
method under different unlabeled rates. The best accuracies are indicated in bold in each column.

Objects

Unlabeled Rate

20% 40%

L L+U L+U+NDLT L L+U L+U+NDLT

SRA SSRA imp SSRA imp SRA SSRA imp SSRA imp

2S1 99.74 99.76 0.02 99.56 −0.18 99.71 99.77 0.07 99.75 0.04
BMP2 97.75 96.62 −1.16 98.07 0.33 97.59 96.65 −0.97 98.36 0.79

BRDM2 96.32 96.04 −0.29 97.13 0.84 94.94 93.04 −2.00 98.61 3.87
BTR60 99.07 98.88 −0.19 98.88 −0.19 98.58 98.70 0.13 99.02 0.45
BTR70 96.31 96.45 0.13 96.40 0.08 94.28 95.27 1.05 97.05 2.93

D7 99.28 98.15 −1.14 99.38 0.10 98.88 98.48 −0.40 99.68 0.81
T62 98.90 99.46 0.57 98.79 −0.11 98.93 99.27 0.34 99.11 0.17
T72 98.53 99.06 0.54 98.93 0.41 97.95 98.40 0.45 99.28 1.35

ZIL131 98.86 97.10 −1.78 98.29 −0.57 97.62 97.20 −0.43 98.84 1.25
ZSU234 99.15 98.92 −0.23 99.45 0.30 98.60 99.49 0.90 99.70 1.11
Average 98.39 98.04 −0.35 98.49 0.10 97.71 97.63 −0.08 98.94 1.26

Objects

Unlabeled Rate

60% 80%

L L+U L+U+NDLT L L+U L+U+NDLT

SRA SSRA imp SSRA imp SRA SSRA imp SSRA imp

2S1 99.36 99.69 0.33 99.83 0.47 99.23 99.82 0.59 99.85 0.62
BMP2 95.80 96.18 0.40 97.58 1.85 92.48 95.64 3.42 97.80 5.75

BRDM2 89.01 92.54 3.97 98.40 10.55 75.02 77.26 2.98 83.09 10.76
BTR60 98.67 98.89 0.21 99.20 0.54 95.48 98.02 2.66 98.94 3.62
BTR70 91.27 87.91 −3.69 94.57 3.61 84.94 87.51 3.02 96.78 13.94

D7 97.57 99.27 1.74 99.78 0.26 90.85 90.18 −0.74 98.83 8.79
T62 98.60 99.07 0.48 99.20 0.61 98.16 99.08 0.93 99.07 0.93
T72 95.88 98.84 3.08 99.27 3.53 91.76 94.79 3.30 98.95 7.84

ZIL131 92.75 96.94 4.52 97.96 5.62 86.93 82.41 −5.21 83.78 −3.63
ZSU234 98.63 99.64 1.03 99.67 1.06 97.23 99.72 2.55 99.69 2.53
Average 95.75 96.90 1.19 98.55 2.92 91.21 92.44 1.35 95.68 4.90

To directly compare the experimental results, we plot the recognition accuracy curves of L, L+U,
and L+U+NDLT corresponding to individual unlabeled ratios, as shown in Figure 4. It is observed
that the three curves in Figure 4a look very close, L+U and L+U+NDLT are gradually higher than
L in (b,c), and L+U, L+U+NDLT is over L in (d). This indicates that the larger the unlabeled rate
is, the more the accuracy improvement can be obtained. Since semi-supervised learning may result
in incorrectly labeled samples, which makes it impossible for newly labeled samples to perform,
as well as the original labeled samples, the recognition effect will be better with a lower unlabeled
rate (simultaneously a higher labeled rate). The experimental result shows that the semi-supervised
method that is proposed in this paper is more suitable for those cases when the number of the labeled
samples is very small, which is in line with the expectation.
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3.3. Quality Evaluation of Generated Samples

One important reason why we adopt DCGANs is that we hope to use the generated unlabeled
images for network training in order to improve the performance of our model, when there are only a
small number of labeled samples. In this way, we can not only make full use of the existing labeled
samples, but also obtain better results than just using the labeled samples for training. We analyze
the quality of the generated samples before using them. We randomly select 20%, 30%, and 40%
labeled samples (respectively, including 550, 824, and 1099 images) from the original training set for
supervised training, then extract images generated in the 50th, 150th, 250th, 350th, and 450th epoch.
It should be noted that in this experiment, we want to extract as many high-quality generated images
as possible during the training process to improve the network performance. Therefore, we do not
limit the number of these high-quality images, then the unlabeled rates cannot be guaranteed to be
40%, 60%, and 80%, respectively. Figure 5a shows the original SAR images, and (b–d) show the images
generated with 1099, 824, and 550 labeled samples, respectively. In (b,c), each group of images from
left to right is generated in the 50th, 150th, 250th, 350th, and 450th epoch.

We can see that as the training epoch increases, the quality of the generated images gradually
becomes higher. In Figure 5b, objects in the generated images are already roughly outlined in the
250th epoch, and the generated images are very similar to the original images in the 350th epoch.
In Figure 5c, objects in the generated images are clear until the 450th epoch is taken. In Figure 5c,
the quality of the generated images is still poor in the 450th epoch.

In order to confirm the observations that are described above, we select 1000 images from each
group of the generated images shown in Figure 5b–d and, respectively, input them into a well-trained



Remote Sens. 2018, 10, 846 12 of 21

discriminator, then count the total number of the samples that satisfy the rule shown in Equation (9),
as presented in Section 2.3.1. We still use α = 2.0 in this formula. We believe that those samples which
satisfy the rule are of high quality and can be used to train the model. The results listed in Table 4 are
consistent with what we expect.

Table 4. The number of high-quality samples in 1000 generated samples from the 50th, 150th, 250th,
350th, and 450th epoch with different numbers of labeled samples.

Epoch
The Number of Labeled Samples

1099 824 550

50 0 0 0
150 0 0 0
250 23 0 0
350 945 44 76
450 969 874 551
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3.4. Experiments with Unlabeled Generated Samples under Different Unlabeled Rates

This experiment will verify the impact of the high-quality generated images on the performance
of our model. We have confirmed in Section 3.2 that the semi-supervised recognition method that is
proposed in this paper leads to satisfactory results in the case of a small number of labeled samples.
Therefore, this experiment will be related to this case. The labeled samples in this experiment are
selected from the original training set, and the generated images are used as the unlabeled samples.
The testing set is unchanged. According to the conclusions made in Section 3.3, we select 1099, 824,
550 labeled samples from the original training set for supervised training, then, respectively, extract
those high-quality generated samples in the 350th, 450th, and 550th epoch, and utilize them for
semi-supervised training. It should be emphasized that since the number of the selected high-quality
images is uncertain, the total amount of the labeled and unlabeled samples no longer remains at 2747.
The experimental results are shown in Table 5.
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Table 5. Recognition accuracy (%) and relative improvements (%) obtained with our semi-supervised
learning method with different number of original labeled samples. The best accuracies are indicated
in bold in each column.

Objects

The Number of Original Labeled Samples

1099 824 550

SRA SSRA imp SRA SSRA imp SRA SSRA imp

2S1 99.54 99.94 0.19 99.31 99.71 0.40 99.06 99.82 0.76
BMP2 94.60 95.14 0.58 95.36 96.78 1.49 92.57 90.35 −2.39

BRDM2 93.07 88.67 −4.72 87.67 91.17 4.00 74.66 85.51 14.52
BTR60 99.11 98.57 −0.55 98.19 98.11 −0.07 95.95 97.16 1.26
BTR70 91.95 95.84 4.23 88.57 91.25 3.02 85.48 86.67 1.39

D7 99.18 99.78 0.60 96.36 98.72 2.45 91.68 96.48 5.23
T62 98.53 99.00 0.48 99.14 99.21 0.07 98.64 98.26 −0.39
T72 97.61 98.28 0.69 95.73 95.51 −0.23 90.67 94.33 4.05

ZIL131 95.43 94.04 −1.46 91.23 93.68 2.68 87.62 85.21 −2.74
ZSU234 98.71 98.53 −0.18 98.65 98.65 0.00 97.25 98.21 0.99
Average 96.77 96.76 0.00 95.02 96.28 1.33 91.36 93.20 2.01

It can be found that the average SSRA will obtain better improvement with less labeled samples.
Different objects vary greatly in accuracy improvement. The generated samples of some types can
provide more feature information, so our model will perform better after using these samples for
training, and the recognition accuracy will also be improved significantly, such as BRDM2 and D7.
Their accuracy improvements will significantly increase as the number of the labeled samples decreases.
Note that BRDM2 performs worse with 1099 labeled samples, but much better with 550 labeled samples.
This is because the quality of the generated images is much worse than that of the real image, therefore,
the generated images will make the recognition worse when there is a large number of labeled samples.
When the number of the labeled samples is too small, using a large number of generated samples can
effectively improve the SSRA, but the SSRA cannot exceed the SRA of a little more labeled samples,
such as the SRA of 824 and 1099 labeled samples. However, the generated samples of some types
become worse as the number of the labeled samples decrease, and thus the improvement tends to be
smaller, such as BTR70. Meanwhile, some generated samples are not suitable for network training,
such as ZIL131. Its accuracy is reduced after the generated samples participate in the training, and we
believe that the overall accuracy will be improved by removing these generated images.

We have found that when the number of the labeled samples is less than 500, there is almost
no high-quality generated samples. Therefore, we will not consider using the generated samples for
training in this case.

3.5. Comparison Experiment with Other Methods

In this part, we compare the performance of our method with several other semi-supervised
learning methods, including label propagation (LP) [50], progressive semi-supervised SVM with
diversity PS3VM-D [42], Triple-GAN [51], and improved-GAN [49]. LP establishes a similar matrix
and propagates the labels of the labeled samples to the unlabeled samples, according to the degree
of similarity. PS3VM-D selects the reliable unlabeled samples to extend the original labeled training
set. Triple-GAN consists of a generator, a discriminator, and a classifier, whilst the generator and the
classifier characterize the conditional distributions between images and labels, and the discriminator
solely focuses on identifying fake images-label pairs. Improved-GAN adjusts the network structure of
GANs, which enables the discriminator to recognize multiple object types. Table 6 lists the accuracies
of each method under different unlabeled rates.
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Table 6. Recognition accuracy (%) of LP, PS3VM-D, Triple-GAN, Improved-GAN, and our method
with different unlabeled rates.

Method
Unlabeled Rate

20% 40% 60% 80%

LP 96.05 95.97 94.11 92.04
PS3VM-D 96.11 96.02 95.67 95.01

Triple-GAN 96.46 96.13 95.97 95.70
Improved-GAN 98.07 97.26 95.02 87.52

Our Method 98.14 97.97 97.22 95.72

We can conclude from Table 6 that our method performs better than the other methods. There are
mainly two reasons for this: one is that CNNs is used as the classifier in our model, which can extract
more abundant features than the traditional machine learning methods, such as LP and PS3VM-D,
also other GANs that consist of no CNNs, such as Triple-GAN and improved-GAN; the other is that we
have introduced the noisy data learning theory, and it has been proved that the negative effect of noisy
data can be reduced with this theory, and therefore bring better recognition results. It can be found that
as the unlabeled rate increases, the system performance becomes worse. Especially when the unlabeled
rate increases to 80%, the recognition accuracy of LP and Improved-GAN decreases to 73.17% and
87.52%, respectively, meaning that these two methods cannot cope with the situations where there
are few labeled samples. While PS3VM-D, Triple-GAN, and our method can achieve high recognition
accuracy with a small number of labeled samples, and our method has the best performance with
individual unlabeled rates. In practical applications, label samples are often difficult to obtain, so a
good semi-supervised method should be able to use a small number of labeled samples to obtain high
recognition accuracy. In this sense, our method is promising.

4. Discussion

4.1. Choice of Parameterα

In this section, we will further discuss the choice of parameter α. The value of α will place
restrictions on the confidence of the predicted labels of the unlabeled samples, and the larger the value
of α, the higher the confidence. When using the generated images as the unlabeled samples, we can
select those generated images of higher quality for the network training by taking a larger value for α.
Therefore, the value of α plays an important role in our method. According to the experimental results
that are shown in Section 3.2, when the unlabeled rate is small, such as 20%, unlabeled samples have
little impact on the performance of the model. So, in this section, we only analyze the impact of α on
the experimental results when the unlabeled rates are 40%, 60%, and 80%. We determine the possibly
best value of α by one-way analysis of variance (one-way ANOVA). With different unlabeled rates,
we specify the values 1.0, 1.5, 2.0, 2.5, 3.0 for α, and perform five sets of experiments, and 100 rounds
of training per set.

The ANOVA table is shown in Table 7. It should be noted that almost no unlabeled samples can be
selected for training when α = 3, so we finally give up the corresponding experimental data. Columns
2 to 6 in Table 7 refer to the source of the difference (intragroup or intergroup), sum squared deviations
(SS), degree of freedom (df), mean squared deviations (MS), F-Statistic (F), and detection probability
(Prob > F). It can be seen from Table 7 that intergroup MS is far greater than intragroup MS, indicating
that the intragroup difference is small, while the intergroup difference is large. Meanwhile, F is much
larger than 1 and Prob is much less than 0.05, which also supports that the intergroup difference is
significant. Intergroup difference is caused by different values of α. We can conclude that the value
of α has great influence on the experimental results.
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Table 7. ANOVA table under different unlabeled rates.

Unlabeled Rate Source SS df MS F Prob > F

40%
Intergroup 0.00081 3 0.00027 33.62 2.23× 10−19

Intragroup 0.00316 396 0.00001 - -
Total 0.00397 399 - - -

60%
Intergroup 0.00055 3 0.00018 11.80 2.03× 10−7

Intragroup 0.00619 396 0.00002 - -
Total 0.00674 399 - - -

80%
Intergroup 0.00149 3 0.00050 27.11 5.76× 10−16

Intragroup 0.00726 396 0.00002 - -
Total 0.00875 399 - - -

To directly compare the experimental results of different values of α, we draw boxplots of
recognition accuracy with different unlabeled rates, as shown in Figure 6. We use red, blue, yellow, and
green boxes to represent the recognition results when α is 1.0, 1.5, 2.0, and 2.5, respectively. It can be
found from Figure 6 that the yellow box’s median line is higher than the rest of the boxes at individual
unlabeled rates, showing that the average level of recognition accuracy is higher when α = 2. This is
because, when the value of α is small, the confidence of the labels is not guaranteed, and there may be
more wrongly labeled samples involved in the training; when the value is large, only a small number
of high-quality samples can be selected for the training and the unlabeled samples are not fully utilized.
In Figure 6a,b, the yellow boxes have smaller widths and heights, which indicates more concentrated
experimental data and more stable experimental process. In Figure 6c, the width and height of the
yellow box are bigger. Therefore, we chose α = 2 with different unlabeled rates to obtain satisfactory
recognition results.

Remote Sens. 2018, 10, x FOR PEER REVIEW    17 of 22 

 

To  directly  compare  the  experimental  results  of  different  values  of	ߙ, we draw  boxplots  of 

recognition accuracy with different unlabeled rates, as shown in Figure 6. We use red, blue, yellow, 

and green boxes to represent the recognition results when	ߙ	is 1.0, 1.5, 2.0, and 2.5, respectively. It 
can be found from Figure 6 that the yellow box’s median line is higher than the rest of the boxes at 

individual unlabeled rates, showing that the average level of recognition accuracy is higher when	ߙ ൌ 2. 
This  is because, when  the value of	ߙ	is  small,  the  confidence of  the  labels  is not guaranteed, and 

there may be more wrongly labeled samples involved in the training; when the value is large, only 

a small number of high‐quality samples can be selected for the training and the unlabeled samples 

are  not  fully  utilized.  In  Figure  6a,b,  the  yellow  boxes  have  smaller widths  and  heights, which 

indicates more concentrated experimental data and more stable experimental process. In Figure 6c, 

the  width  and  height  of  the  yellow  box  are  bigger.  Therefore,  we  chose ߙ	 ൌ 2	with  different 

unlabeled rates to obtain satisfactory recognition results. 

 
(a)  (b) 

 
(c) 

Figure 6. Boxplots of recognition accuracy: (a–c) correspond to unlabeled rate 40%, 60%, and 80%, 

respectively. 

4.2. Performance Evaluation 

4.2.1. ROC Curve 

We have compared the recognition results of different methods on the MSTAR database. However, 

the  comparison  results  cannot  explain  the  generalization  capability  of  our method  on  different 

datasets. In this section, we will compare the performance of different methods through the receiver 

operating characteristic (ROC) curves [52]. As shown in Section 4.1, we let	ߙ ൌ 2, and plot the ROC 
curves of these methods with the unlabeled rate 40%, 60%, 80%, as shown in Figure 7. 

It can be found that our method achieves better performance when compared with the other 

methods. In Figure 7a–c, the areas under the ROC curves of our method are close to 1, and the TPR 

Figure 6. Boxplots of recognition accuracy: (a–c) correspond to unlabeled rate 40%, 60%,
and 80%, respectively.



Remote Sens. 2018, 10, 846 17 of 21

4.2. Performance Evaluation

4.2.1. ROC Curve

We have compared the recognition results of different methods on the MSTAR database. However,
the comparison results cannot explain the generalization capability of our method on different datasets.
In this section, we will compare the performance of different methods through the receiver operating
characteristic (ROC) curves [52]. As shown in Section 4.1, we let α = 2, and plot the ROC curves of
these methods with the unlabeled rate 40%, 60%, 80%, as shown in Figure 7.
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It can be found that our method achieves better performance when compared with the other
methods. In Figure 7a–c, the areas under the ROC curves of our method are close to 1, and the
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TPR values are greater than 0.8, while keeping low FPR. The areas under the ROC curves of the
other methods are smaller than our method. We can learn from Figure 7 that, as the unlabeled rate
decreases, the area of ROC curves of these methods decreases, and the smaller the unlabeled rate,
the better performance of our method. The experimental results confirm that our method has a better
generalization capability.

4.2.2. Training Time

In our method, after each round of training, those newly labeled samples with high label
confidence will be selected for the next round. The network performance varies under different
unlabeled rates, thus the total number of the selected newly labeled samples is different. Therefore,
the time for each round of training is also different. In this section, we will analyze the training time
of the proposed method [53]. We calculate the average training time from the 200th epoch to the
400th epoch at different unlabeled rates. The main configuration of the computer is: GPU: Tesla K20c;
705 MHz; 5 GB RAM; operating system: Ubuntu 16.04; running software: Python 2.7. The calculation
results are shown in Table 8.

Table 8. Training time under different unlabeled rates.

Unlabeled Rate Training Time
(Sec/Epoch) Total Epochs

20% 40.71 200
40% 40.21 200
60% 39.79 200
80% 38.80 200

It can be found that, as the unlabeled rates increase, the training time tends to decrease. This is
because when the unlabeled rate is larger, the original labeled samples are less; however, the network
performs better with more original labeled samples, and more newly labeled samples can thus be
selected, resulting in time increment. The conclusion is consistent with the previous analysis.

5. Conclusions

In this study, we presented a DCGANs-based semi-supervised learning framework for SAR
automatic target recognition. In this framework, we doubled the discriminator of DCGANs and
utilized the two discriminators for semi-supervised joint training. The last layer of the discriminator is
replaced by a softmax function, and its loss function is also adjusted accordingly. Experiments on the
MSTAR dataset have led to the following conclusions:

• Introducing the noisy data learning theory into our method can reduce the adverse effect of the
wrongly labeled sample on the network and significantly improve the recognition accuracy.

• Our method can achieve high recognition accuracy on the MSTAR dataset, and especially performs
well when there are a small number of labeled samples and a large number of unlabeled samples.
When the unlabeled rate increases from 20% to 80%, the overall accuracy improvement increases
from 0 to 5%, and the overall recognition accuracies are over 95%.

• The experimental results have confirmed that when the number of the labeled samples is small,
our model performs better after utilizing those high-quality generated images for the network
training. The less the labeled samples, the higher the accuracy improvement. However, when the
labeled samples are less than 500, the quality of the generated samples are too few to make the
system work.
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