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Abstract: Up-to-date maps of a city’s urban structure types (USTs) are very important for effective
planning, as well as for different studies and applications. We present an approach for the
classification of USTs at the level of urban blocks based on high-resolution spaceborne radar imagery.
Images obtained at the satellite’s ascending and descending orbits were used for extracting line
and polygon features from each block. Most of the attributes considered in the classification
concern the geometry of these features, as well as their spatial disposition inside the blocks.
Furthermore, assuming the UST classes of neighboring blocks are probabilistically dependent,
we explored the framework of probabilistic graphical models and propose different context-based
classification models. These models differ with respect to (i) their type, i.e., Markov or conditional
random fields, (ii) their parameterization and (iii) the criterion applied for establishing pairwise
neighboring relationships between blocks. In our experiments, 1,695 blocks from the city of Munich
(Germany) and five representative UST classes were considered. A standard classification performed
with the Random Forest algorithm achieved an overall accuracy of nearly 70%. All context-based
classifications achieved overall accuracies up to 7% higher than that. The results indicate that denser
pairwise block-neighborhood structures lead to better results and that the accuracy improvement
is higher when the strength of the contextual influences is proportional to the similarity of the
neighboring blocks attributes.

Keywords: probabilistic graphical models; urban structure type; TerraSAR-X; image classification;
urban block; context

1. Introduction

Developing countries are not the only ones experiencing the expansion and densification of
urban areas. Despite their low population growth rates, developed countries, whose urban population
is already over 70%, are also facing these issues [1]. In Germany alone, each day, 73 hectares of land on
average were converted to urban areas in the period between 2010 and 2013 [2]. Climate discomfort, air
and noise pollution, traffic congestion and an increase in the rent prices are some of the consequences
that may arise from this process. These and other threats to the citizens’ quality of life may be
avoided or mitigated by means of appropriate zoning policies that regulate the spatial distribution
of the urban land use. In Germany, the generally adopted synonym for urban land use is the
concept Stadtstrukturtypen, or urban structure types (USTs). USTs serve as a common basis for
the categorization of the urban surface that guides past, current and future planning and monitoring
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tasks [3]. More specifically, the up-to-date information on the distribution of a city’s USTs supports the
management of water and energy supply, the promotion and management of public health and safety,
the preservation of historically- and culturally-significant areas, as well as the efficient allocation of
urban equipment. Furthermore, UST zoning serves to encourage economic development while at
the same time assuring residential property values by guaranteeing that incompatible uses will be
kept apart.

Although USTs are also defined based on socio-economic and functional aspects, most of them
are strongly characterized by structural attributes, such as the relative orientation and density of the
buildings, as well as by environmental factors, such as the amount, size and types of vegetated and
sealed areas. This makes it possible that the production and updating of UST maps be supported
by remote sensing image classification, which, in comparison to ground surveys and visual image
interpretation, is an automatic, objective, faster and less resource-demanding way to accomplish
this task.

Since UST classes are always defined at the level of some spatial aggregate, the vast majority
of approaches proposed for classifying USTs based on remote sensing images have considered as
elements of analysis either user-defined grid-cells [4–6] or some of the city’s administrative parcels,
like census tracts [7], urban districts [8] or, most frequently, the city’s urban blocks [9–13]. Being the
largest areas surrounded by streets, urban blocks are frequently the spatial unit based on which urban
zoning laws are defined and official land use maps are produced. Because of that, studies dedicated to
remote sensing-based UST discrimination of German cities have all considered urban blocks as the
elementary analysis units. Banzhaf et al. [9] distinguished different USTs from Leipzig based on an
object-based image analysis approach and aerial photographs. In a similar work, Voltersen et al. [12]
included the height information from a stereoscopic pair of aerial images to support the classification of
USTs from Berlin. Walde et al. [14] focused on describing urban blocks in Jena according to the spatial
disposition of their land cover features connected by a graph. The approach had been previously
tested in Rostock and Erfurt by the same authors [15]. Wurm et al. [16] performed UST classification
from the cities of Cologne and Dresden based on high-resolution optical imagery and a digital surface
model. They first performed an object-based land cover classification of the scenes and then described
the urban blocks according to the structure of their land cover features. Also based on a land cover
classification performed based on height information and hyperspectral imagery, Heiden et al. [11]
classified urban blocks from Munich according to their predominant UST.

1.1. Descriptive Attributes for Classifying Urban Structure Types

Urban features, e.g., buildings, houses, sealed and vegetated areas, and the urban blocks where
these features are located are unique with respect to their shape, size and orientation. Also unique is
the spatial disposition of the features inside each block. Thus, no two blocks are ever identical
with respect to their built-up structures and shapes. This makes the conception of expressive
attributes particularly challenging when performing block-based classification of USTs with remote
sensing images. The underlying assumptions are (i) that the blocks belonging to a given UST class
have similar built-up structures and (ii) that classes defined mainly by functional and social aspects
have typical structural patterns that enable their distinction based on image-derived attributes.

One type of attribute previously used for that aim is texture descriptors. Texture images
can be generated and their pixel values aggregated to the block level by first-order statistics
(i.e., mean, max., std. deviation, etc.) [17]. Alternatively, the metrics can be computed directly for
each block separately [4,18]. Texture metrics are to a certain extent expressive; however, a more
human-interpretable and effective approach attempts to formalize the evidence considered by a human
interpreter by means of higher-level attributes. These attributes can be of two types, namely
composition and disposition attributes.

Composition attributes describe the type, number, relative area (with respect to the block’s
area) and geometric properties of the features inside each block, whereas the more complex
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disposition attributes describe their spatial configuration. In many works, such higher-level
attributes are computed after extracting features inside the blocks through a land cover classification
procedure [12,19–21]. This approach has been adopted in order to perform block-based UST and urban
land use classification using multispectral [12,22] and hyperspectral images [11,23], as well as LiDAR
data [11,15]. These works assume that their land cover classification is accurate enough so that the
composition and disposition attributes derived from it are expressive enough for distinguishing the
USTs or land use classes. Indeed, object-based image analysis techniques, which are frequently resorted
to in these studies, have proven to be very effective for high-resolution optical image classification in
a number of different applications [24,25].

Composition attributes are able to describe the built-up structure of a block only partially.
Typical UST classes like perimeter block development, row house development and regular block
development [26] can only be properly described and accurately distinguished if disposition attributes
are also considered. Simple examples of disposition attributes previously used for parcel-based land
use classification are: average nearest distance between buildings [8], minimal distance of the building
contour to the closest block boundary [27] and number of buildings with orientation difference between
(computed for different angle intervals) [12]. More elaborated disposition attributes were proposed
by Vanderhaegen et al. [28]. They produced for each block a certain number of radial and contour
profiles and then calculated for each of them different indexes related to the building/non-building
alternations, as well as to the lengths of the building and non-building profile segments. Examples of
these indexes computed for each profile are: normalized number of building segments, average
length of building segments and standard deviation of the length of the building profile segments.
Another way of describing the disposition of objects inside a block is by creating a network connecting
neighboring features of the same or related types (e.g., same or related land cover class) and then
extracting attributes from this network, as performed by Hermosillaa et al. [29] and Walde et al. [14].
Such a network is created usually by defining one node for each feature and then establishing edges
between them based, for example, on the criteria of direct adjacency or distance thresholds. Examples of
attributes that can be computed from the network include: number of edges connecting objects of
the same type, number of edges connecting objects of different types, proportion of edges connecting
objects of the same type, mean orientation difference between connected nodes, mean distance between
connected nodes, standard deviation of the distance between connected objects of the same type and
density of the network. Possibly, one of the reasons for the fact that composition attributes are used
more frequently than disposition attributes is that most of the innumerable disposition attributes are
not available in object-based image analysis software and require therefore that the user implement
their computation.

1.2. Main Assumptions and Contributions of This Paper

The motivation for investigating whether considering each block’s context is expected to increase
the UST classification accuracy lies in the assumption that the spatial distribution of the USTs in
a particular city is not random. Indeed, urban blocks from the same UST class are frequently found
close to each other. Moreover, two UST classes may be related in a way that we expect to find one
close to the other. For example, parks may be found more frequently in residential areas than in
industrial areas. The assumption that the spatial distribution of USTs is not random can be justified
in different ways. Waldo Tobler [30] proposed the first law of geography for which “everything is
related to everything else, but near things are more related than distant things”. Indeed, it is somewhat
common sense that similar or related things tend to be close to each other, as things close to each other
tend to be similar or related. Furthermore, the existence in many cities of urban zoning laws leads to
a rational spatial distribution of the USTs aiming to preserve the citizens’ quality of life and to yield
a efficient circulation of people and goods. If these assumptions hold, then the context of each block is
informative and should be thus considered in the UST classification.
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Different from other works that used spaceborne synthetic aperture radar (SAR) and optical
imagery for detecting and roughly distinguishing urban areas at the pixel level [31–34], we attempt
to distinguish USTs at the level of urban blocks. For that, spaceborne SAR images obtained at the
satellite’s ascending and descending orbits are used. Instead of describing the blocks’ built-up structure
based on attributes computed from a previously-performed land cover classification, our block-base
UST classification approach is based on attributes related to the geometric characteristics and spatial
disposition of lines and polygon features extracted from each block. These features are extracted from
the SAR images from both orbits. Furthermore, and most importantly, we investigate to what extent
the accuracy of UST classifications can be improved if the context of each block is considered. For that,
the powerful and flexible framework of Probabilistic Graphical Models is explored. Different model
parameterizations and context definition criteria are proposed and evaluated.

2. Methods

2.1. Context-Based Classification with Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) are used for modeling systems with many variables about
which we want to reason. As it is frequently difficult to establish deterministic relations between
variables, considering uncertainty is essential in many applications. In PGMs, uncertainty is modeled
using probability theory. Probabilistic dependencies and conditional independencies between variables
can be assumed or learned from data, and thus, the factorization of a joint probability distribution with
many variables can be defined. The factorization enables reasoning on the system, since considerably
fewer parameters are needed to represent a large distribution in its factorized form than as a joint
distribution [35]. In the context of image classification, undirected PGMs are frequently used to encode
the factorization of a conditional distribution P(C|S) , where C represents the image’s classification
and S the observed image data. A simple factorization of such a distribution can be formulated as:

P(C|S) = 1
Z(S)

exp(∑
i∈I

log p(ci|si) + ∑
i∈I

∑
j∈Ni

φij(ci, cj)), (1)

where i is an image site, for example, a pixel, an image segment or, as in our case, an urban block, ci is
the unknown class label of block i and si is a vector of attributes extracted from block i. The letter
j denotes a block belonging to the set of neighbors Ni from block i. Z(S) is the partition function of
the distribution, which scales the probabilities to the interval [0,1]. The so-called association factors
log p(ci|si) represent the likelihood terms or the prior probabilities of the classes for each block i,
whereas the interaction factors φij(ci, cj) map each possible joint class assignment of ci and cj to a real
positive number. Since the goal is to maximize Equation (1), in other words, to find the joint class
assignment for all ci for which the conditional probability P(C|S) is maximum (this is commonly
referred to as the estimation of the maximum a posteriori probability, or MAP solution), we may
disregard the partition function Z(S) and reformulate Equation (1) as the following energy function:

E(C, S) = −∑
i∈I

log p(ci|si) + λ ∑
i∈I

∑
j∈Ni

φij(ci, cj). (2)

Since E(C, S) ∝ − log(P(C|S)), the classification C that maximizes Equation (1) can be inferred
by minimizing Equation (2) [35]. This minimization is however NP-hard and must be performed
computationally with an approximate inference algorithm. In this work, we used the max-sum loopy
belief propagation algorithm [36], which is available in the PGM library OpenGM [37]. The comparable
and at times superior performance of max-sum loopy belief propagation with respect to other
algorithms has been demonstrated empirically in numerous applications requiring the estimation of
the maximum a posteriori, also known as MAP, assignment [38].
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As the number of neighboring relationships between blocks (expressed by the interaction factors)
is significantly higher than the number of blocks (each of which is represented with one association
factor), the weighting term λ was inserted in order to balance the influence of each type of factor in the
energy function.

2.2. Model Parameterization and Neighborhood Definition Criteria

In this section, the models with which we performed context-based USTs classification are
presented. The models vary regarding (i) the variables that comprise the interaction factors, (ii) the
parameterization function of these factors and (iii) the criterion considered for defining pairwise
neighborhood relationships between urban blocks. All models have in common the fact that a random
forest classification model is used to compute the prior probabilities p(ci|si) in the association factors.
The Random Forest classifier consists of a large number of decision trees [39], each of which is fitted
with randomly selected subsets of variables and samples. Each decision tree casts a vote on to which
class each instance belongs. The proportion between the number of votes to each class and the total
number of trees from the forest was regarded as the prior probability of that class given the observed
block attributes. Because each tree is fitted with a different subset of samples and block attributes, the
Random Forest algorithm has the advantage that it is robust against noise and over-fitting, even when
the number of variables is high in relation to the number of samples. These advantages have led to the
superior performance of Random Forest when compared to other powerful methods for classifying
remote sensing images [40,41]. Furthermore, it can estimate the relevance of the variables during the
fitting of the model. This feature of Random Forest can be applied both for dimensionality reduction,
as well as for finding out which variables most influence the classification’s accuracy. For more details
on the Random Forest algorithm, the reader is referred to the work of [42].

The most basic model with which we performed context-based UST classification is the standard
Markov random field (MRF) model already presented in Equation (2). The interaction factors of this
MRF model are parameterized by a simple Potts function as follows:

φij(ci, cj) =

{
0 if ci = cj

1 if ci 6= cj
. (3)

Therefore, the interaction factors from this model penalize the energy function (Equation (2)) to
the extent of one in cases where two neighboring blocks are assigned to two different UST classes.
In practice, they produce a smoothing effect in the classification that does not consider the differences
in the built-up structure and geometric shape of the two neighboring blocks.

The other three models with which we experimented fall under the category of so-called
conditional random field (CRF) models. They differ from the MRF model regarding the variables
comprising the interaction factors, as well as their parameterization functions. The names given to
these models and their respective interaction factor functions are the following:

CRF 1 : φ(si, sj, ci, cj) =

0 if ci = cj

− log
(∥∥si − sj

∥∥
2

)
if ci 6= cj

. (4)

CRF 2 : φ(si, sj, ci, cj) =

0 if ci = cj

− log
(∥∥∥sw

i − sw
j

∥∥∥
1

)
if ci 6= cj

. (5)

CRF 3 : φ(Si,j
2 , ci, cj) =

0 if ci = cj

− log
(

Si,j
2

)
if ci 6= cj

. (6)

When two neighboring blocks i and j are assigned to different classes, the model CRF 1 penalizes
the energy function to the extent of the difference in the vectors of attributes from these blocks.
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This difference was computed using the Euclidean norm, also known as the L2-norm. Model CRF 2
differs from CRF 1 in that it penalizes the energy function when two neighboring blocks are assigned to
different classes to the extent of the weighted difference between their vectors of attributes. The weight
of each attribute was considered to be its normalized relevance estimated by the Random Forest
algorithm. Variable importance estimation with Random Forest was performed with the mean accuracy
decrease strategy [43]. For the computation of the difference between the vectors of attributes from
blocks i and j, the values of each attribute from all blocks were firstly normalized so that the vectors’
difference is always in the interval [0,1], therefore the same scale of the association factors. The penalty
in case of model CRF 3 is anti-proportional to the shape similarity Si,j

2 between the neighboring blocks
i and j. Therefore, the more similar their geometric shapes, the higher the penalty gets if they are
assigned to different classes. The shape similarity metric considered is the one proposed by [44].

Regarding the criterion for defining pairwise neighboring relationships between urban blocks,
four criteria were explored. These are the following:

j ∈ Ni if


Fixed radius: d(i, j) < 240 m

Adaptive radius: d(i, j) < lengthi ∗ 1, 5∧ dist.(i, j) < 300 m

Nearest-neighbors (NN): j ∈ 3-NN(i) ∧ d(i, j) < 300

Region adjacency: if blocks i and j are adjacent

, (7)

In the first three criteria above, d(i,j) denotes the Euclidean distance between the centers of mass
from blocks i and j. The first criterion considers two blocks as neighbors when their centers of mass
are not further than 240 m apart. This value was chosen because it is the rounded 80th percentile
of the length from all blocks in the study area. The second criterion sets this distance threshold
adaptively by multiplying the length of block i by 1.5 and establishing an upper limit of 300 m in
order to avoid that large blocks contain an excessive number of neighbors. The third criterion defines
neighboring relationships between each block i and its three nearest-neighbors. The upper distance
limit of 300 m is also set to this criterion. This value was set as the upper limit because it is the upwardly
rounded number of the maximum length of the blocks. The fourth criterion establishes neighboring
relationships between two blocks if they can be considered adjacent to each other. The adjacencies
between blocks were extracted according to the strategy described in [45].

Figure 1 depicts how association and interaction factors from the MRF model are created.
The neighbors of each block are detected based on one of the criteria from Equation (7). In the case
of Figure 1a, as an example, the first criterion from Equation (7) is applied. Each block’s unobserved
class label is represented by a node (Figure 1b). Pairs of neighboring blocks are represented by
an interaction factor containing the two unobserved labels (Figure 1c). Each block is also represented
by an association factor containing the observed attributes of the block and its unobserved class label
(Figure 1d).

2.3. Urban Blocks’ Attributes

The association factors represent the prior probabilities of each UST class given the blocks’
attributes. These probabilities are computed by a Random Forest classification model. The blocks
attributes considered in this process are of three types, namely (i) attributes computed from extracted
dark and bright areas (see the next paragraph), (ii) composition and disposition attributes computed
from meaningful lines and polygons extracted inside each urban block and (iii) texture attributes
computed from a digital elevation model (DEM) derived using the technique of interferometry [46].
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(b)

(d)(c)

Interaction factor

(a)

th

Association factor

ic
jc

js
is

Figure 1. Construction of a simple undirected probabilistic graphical model for the classification of
urban structure types. (a) Blocks are considered neighbors if the Euclidean distance between their
centers of mass is not larger than a threshold (th). (b) Each block’s unobserved class ci is represented in
the graph by a node. (c) An edge is created between each pair of neighboring blocks, thus forming an
interaction factor. (d) If it is defined that, besides its neighbors unobserved variable cj, ci also depends
on its observed attributes si. The number of association factors in the graph equals the number of
blocks in the study site. The number of pairwise interaction factors in the graph equals the number of
pairs of neighboring blocks.

Dark and bright areas were extracted from each block by applying threshold operations on the
intensity and coherence images. Coherence is the complex cross-correlation coefficient from two
co-registered SAR acquisitions obtained at the same satellite’s orbit. It can be computed for the
whole scene by running a moving window over the image pair and estimating the coherence for
each pixel. On coherence images, dark areas are mostly correlated with vegetation, shadow and
water bodies, whereas bright areas frequently correspond to man-made structures whose geometries
reflect a significant extent of the emitted SAR signal back to the sensor [46]. The pixel values of SAR
intensity images represent the proportion of emitted signal that is backscattered from the respective
area on the ground. On SAR intensity images, bright areas frequently appear due to the inherent
effects of corner reflection and layover, whereas dark areas are frequently caused by the shadowing
effect [46]. The shape, size and orientation of bright and dark areas in SAR intensity images from
urban areas strongly correspond to the buildings shape and orientation [47,48]. Therefore, as valuable
indicators of the built-up structure from each urban block, bright and dark areas were extracted from
the SAR intensity image of each block. Bright areas were also extracted from the coherence images
of each block. The 20th percentile of the SAR intensity images were selected as the threshold values
under which pixels were considered dark, whereas pixels with values above the 80th percentile of the
SAR intensity and coherence images were considered bright. Following this, connected components
from bright and dark areas were produced using the 8-pixel connectivity criterion. Areas with a size
smaller than 40 m2 were discarded from further analysis. This threshold value was chosen given the
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fact that the footprint of a house or building is hardly smaller than that. The remaining dark and
bright areas had their size, compactness, perimeter-area ratio and length-to-width ratio computed.
Table 1 shows which descriptive attributes were computed from the dark and bright areas and then
submitted for the classification with the Random Forest algorithm. The parameters of some of these
attributes were set empirically based on the image resolution and the typical area range and shape
of different types of buildings in the test-site, namely single-family houses, apartment buildings and
warehouses. When transferring the model to other cities, adjustments in the parameter values may be
necessary. Alternatively, additional attributes with different parameter values may be submitted to
the Random Forest algorithm, which is able to perform attribute relevance analysis and is robust to
correlated variables [42].

Table 1. Urban blocks attributes computed from the extracted bright and dark areas. Bright and dark
areas were extracted by applying threshold operations on the Synthetic Aperture Radar intensity and
coherence images.

Dark and bright areas’ attributes:
Number of bright areas
Number of dark areas
Number of bright areas larger than 200 pixels
Number of dark areas larger than 200 pixels
Number of bright areas larger than 500 pixels
Number of dark areas larger than 500 pixels
Number of bright areas larger than 1000 pixels
Number of dark areas larger than 1000 pixels
Sum of bright areas larger than 200 pixels/block’s area
Sum of dark areas larger than 200 pixels/block’s area
Sum of bright areas larger than 500 pixels/block’s area
Sum of dark areas larger than 500 pixels/block’s area
Sum of bright areas larger than 1000 pixels/block’s area
Sum of dark areas larger than 1000 pixels/block’s area
Sum of bright areas/block’s area
Sum of dark areas/block’s area
Total area of all bright areas
Total area of all dark areas
Mean area of all bright areas
Mean area of all dark areas
Maximum area among bright areas
Maximum area among dark areas
Standard deviation of the area of all bright areas
Standard deviation of the area of all dark areas
Maximum compactness among bright areas
Maximum compactness among dark areas
Compactness of the largest bright area
Compactness of the largest dark area
Maximum length-to-width ratio among bright areas
Maximum length-to-width ratio among dark areas
Minimum perimeter-area ratio among bright areas
Minimum perimeter-area ratio among dark areas
Number of bright areas with length-to-width ratio higher than 5
Number of dark areas with length-to-width ratio higher than 5
Number of bright areas with length-to-width ratio higher than 10
Number of dark areas with length-to-width ratio higher than 10

The second type of attributes considered in the classification with the Random Forest algorithm
refers to the composition and disposition attributes computed from meaningful polygon and line
features extracted inside each urban block. As mentioned, the composition attributes describe the
number, area proportion and general geometric properties of the features from each block, whereas
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the disposition attributes describe their relative spatial disposition inside the blocks. The procedures
employed for extracting meaningful lines and polygons are described in detail in [49]. Figure 2 depicts
the outcome of the main steps involved. The input of the line and polygon extraction procedures
is the intensity image of each block, which is initially kept in acquisition coordinates (Figure 2a).
The extracted lines and polygons, as well as the block boundaries are projected to the local coordinate
system, i.e., Gauss–Kruger Zone 12 (Figure 2d,e). Finally, a network is created whose nodes are
set at the center of mass of the extracted polygons. Edges of this network are established between
polygons that are considered neighbors according to the criterion of 2-nearest-neighbors (Figure 2f).
Tables 2 and 3 show respectively the block attributes computed from the extracted lines and polygons.
In Table 3, the attributes ‘Number of pairs of polygons parallel to each other’ and ‘Number of pairs
of polygons parallel to each other’ refer to polygons whose center axes have relative orientation
differences in the intervals 0◦–15◦ and 75◦–90◦, respectively. The ‘Maximum pertinence’ attribute (also
in Table 3) regards the adherence of the polygon to the size, compactness and length-to-width ratio of
an ideal building polygon. This pertinence is in the range from 0–1, and it is computed in the polygon
extraction strategy described in detail in [49]. The attributes computed from the networks created from
the extracted polygons are shown in Table 4.

Table 2. Attributes computed from the lines extracted from the Synthetic Aperture Radar intensity
images of each block. The line extraction procedure is described in detail in [49].

Line attributes:
Maximum line length
Mean angle difference between a line and its closest line
Mean angle diff. between a line and the block boundary closest to it
Mean angle diff. between a line and the block boundary most parallel to it
Mean angle diff. between a line and the line most parallel to it
Mean angle diff. between a line and the line most perpendicular to it
Mean distance between a line and its closest line
Mean distance between a line and the line most parallel to it
Mean distance between a line and the line most perpendicular to it
Mean distance between a line and the block boundary closest to it
Mean distance between a line and the block boundary most parallel to it
Mean distance between a line and the block boundary most perpendicular to it
Mean orientation of the lines
Mean length of the lines
Min. angle diff. between a line and the block boundary closest to it
Min. distance between a line and the line most parallel to it
Min. distance between a line and the line most perpendicular to it
Min. distance between a line and the block boundary most parallel to it
Min. distance between a line and the block boundary most perpendicular to it
Number of lines
Number of lines longer than 50 m
Number of lines longer than 100 m
Std. dev. of angle difference between a line and its closest line
Std. dev. of distance between a line and its closest block boundary
Std. dev. of distance between a line and its closest line
Std. dev. of distance between a line and the line most parallel to it
Std. dev. of distance between a line and the line most perpendicular to it
Std. dev. of the lines length
Std. dev. of the orientation of all lines

As texture attributes, histograms of oriented gradients (HOGs) [50] were extracted from the DEM
of each block. A single un-normalized histogram with eight bins was accumulated for each block.
The values of the eight bins were considered then as block attributes.
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Figure 2. Outcome of the main steps involved in the computation of block attributes from extracted
lines and polygons. (a) The input to the procedure is the intensity SAR image of each block. (b) Lines
extracted from the input image. (c) Polygons extracted from the input image. (d) Lines and the block’s
boundaries projected to the local coordinate system. (e) Polygons and the block’s boundaries projected
to the local coordinate system. (f) Network created from the extracted polygons.

Table 3. Attributes computed from the polygons extracted from the SAR intensity image of each
block. The polygon extraction procedure is described in detail in Novack [49]. * The pertinence of the
polygon to an ideal building polygon shape. The computation of this pertinence is demonstrated in
Novack and Stilla [45].

Polygon attributes:
Maximum pertinence *
Mean area
Mean angle difference between a polygon and its closest block boundary
Mean distance between a polygon and its closest block boundary
Mean distance between a polygon and the polygon most parallel to it
Mean distance between a polygon and the polygon most perpendicular to it
Mean, max. and std. dev. of the polygons area
Mean, max. and std. dev. of the polygons length-to-width
Mean, max. and std. dev. of the polygons compactness
Mean, max. and std. dev. of the polygons orientation
Number of pairs of polygons parallel to each other
Number of pairs of polygons perpendicular to each other
Number of polygons
Number of polygons with area > 3rd, 4th and 5th 5-quantiles of the area values
Number of polygons with pertinence > [0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5]
Number of pol. with pertinence > [3rd, 4th, 5th] of the 5-quantiles of the pertinence values
Std. dev. of the angle diff. between a polygon and its closest block boundary
Std. dev. of the distance between a polygon and its closest block boundary
Std. dev. of the distance between a polygon and the polygon most parallel to it
Std. dev. of the distance between a polygon and the polygon most perpendicular to it
Std. dev. of the polygons orientation
3rd, 4th and 5th 5-quantiles of the polygons area
3rd, 4th and 5th 5-quantiles of the pertinence values
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Table 4. Attributes computed from the network of polygons extracted inside each block.

Network structure attributes:
Density of the graph [51]
Highest mean membership of two connected nodes
Mean node pertinence
Membership value of the node with highest membership
Number of nodes
Number of edges
Number of edges/number of nodes
Number of edges connecting parallel nodes
Number of edges connecting parallel nodes/number of edges
Number of edges connecting parallel nodes/Number of edges connecting perpendicular nodes
Number of edges connecting perpendicular nodes
Number of edges connecting perpendicular nodes/number of edges
Std. dev. of the membership from the two connected nodes with highest membership mean

Network Moran’s I of attributes [52]:
Area
Distance to closest block boundary
Length to width ratio
Orientation
Orientation difference to closest block boundary
Rectangular fit

For each of the six attributes above, the following measures were computed:
Expected I based on random permutation of the values
Expected I under normality assumption
Difference between I and expected I based on random permutations
Difference between I and expected I under normality assumption
p-value of I based on random permutation of the values
p-value of I under the normality assumption (one-sided)

3. Experiments

3.1. Image and Auxiliary Data

The image data used in all experiments are a set of single look complex images acquired by
the TerraSAR-X satellite operating in High-Resolution Spotlight mode [53]. The images were kindly
provided by the German Aerospace Center (DLR) after the submission and acceptance of a research
proposal. They have a nominal spatial resolution of approximately 1.1 m, which is the lowest accepted
resolution for distinguishing buildings in urban environments [47,54,55]. The image set is comprised
of four images acquired as two interferometric pairs, of which one pair was acquired at the satellite’s
ascending orbit and the other at descending orbit. The use of images from both orbits has significantly
increased the potential for extracting meaningful attributes from the blocks, as discussed in [49].
The minimum and maximum incidence angles of all four acquisitions range from 22◦–26◦, which has
avoided that either the layover or shadowing effects become critical [48]. The only auxiliary data used
in this work are the network of streets, rivers and railroads, as well as the official UST map from the
city of Munich (Germany). Both of these datasets were kindly provided in shapefile (.shp) format
by the city hall’s Department of Health and Environment (Referat fuer Gesundheit und Umwelt).
The network of streets, rivers and railroads was used for extracting the urban blocks from the study
site. This task was accomplished by simply extracting the closed areas limited by the streets, rivers and
railroads. The official UST map was considered as ground truth data and used for collecting training
samples and assessing the classifications’ global and per-class accuracies.
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3.2. Study Area and Urban Structure Type Classes

The four TerraSAR-X acquisitions cover most of the central area of Munich (Germany).
Figure 3 shows the exact footprints of the master images from the two interferometric pairs utilized in
this work. Each footprint covers an area of approximately 10 × 5 km. The study area was defined as
the intersection of these two footprints, which is highlighted in Figure 3. Its central point is located in
the historical center of the city. In total, the study area is comprised of 1,695 urban blocks originally
assigned to 27 UST classes. However, because many of these classes have a low number of instances
in the study area, a semantic generalization of the original classes was undertaken. This procedure
grouped the initial 27 UST classes based on their structural and functional similarities into five
general ones, namely, dense block development (DBD), detached and semi-detached housing (DSDH),
large buildings and industrial areas (LBIA), regular block development (RBD) and parks, squares and
vegetated areas (PSVA). A spatial generalization was also undertaken at blocks originally assigned
to more than one UST class. These mixed blocks, corresponding to approximately 21% of the blocks
from the study area, were assigned to the UST class with the largest area inside them. The outcome
of the class and spatial generalization process is a UST ground-truth map with five structurally- and
semantically-coherent classes and in which each block is assigned to a single UST class. As mentioned,
this map was used for the training of the models and the evaluation of the classifications.

Munich was chosen as our study area due to the following advantages: (i) ample availability of
TerraSAR-X acquisitions from this city, (ii) the existence of reliable auxiliary and ground-truth data
and (iii) the fact that its morphology is similar to other medium to large European cities.

Figure 3. The image data footprints and the study area. Each footprint covers an area of approximately
10 × 5 km. Their intersection area was defined as our study area. The central point coincides with the
historical center of Munich (Germany).

3.3. Classification Experiments

All context-based classification models we presented in Section 2.2 contain association factors
that compute the prior probabilities of the classes given the attributes of each block. This computation
is performed with the Random Forest algorithm. By assigning to each block the class with the highest
prior probability, a standard (as opposed to context-based) classification is produced. This standard
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classification was performed by firstly selecting the training samples from each class out of the
1695 blocks of the study area. The number of samples collected for each class was 63, which is half
the number of instances from the UST class with the least number of instances in the study area,
namely large buildings and industrial areas. This added to a total of 315 training samples (5 × 63).
The remaining 1,380 blocks were considered in the evaluation of the classifications. The Random
Forest algorithm was set to contain one-thousand trees, each of which was firstly fitted with a random
set of samples and a random set of the block attributes presented in Section 2.3. In this step, the
relevance of all block attributes was computed, and the attributes with relevance below average were
discarded. Following the, the Random Forest classifier was fitted once again, but now considering only
the attributes that were not discarded in the first step. The new relevance values, i.e., from the second
Random Forest model fitting, were considered in the parameterization of the interaction factors from
model CRF 3, as explained in Section 2.2. As mentioned, the relevance of the attributes was computed
using the mean accuracy decrease strategy presented in [43].

The initial set of attributes, i.e., before the first fitting of the Random Forest model and the
discarding of irrelevant attributes, contained 372 attributes. These comprise (i) the attributes from
Table 1 computed from the master SAR intensity images from both orbits (36 × 2), (ii) the bright areas’
attributes from Table 1 computed from the coherence images from both orbits (18 × 2), (iii) the line
attributes from Table 2 computed from the master SAR intensity images from both orbits (29 × 2),
(iv) the polygon attributes from Table 3 computed from the master SAR intensity images from both
orbits (44 × 2), (v) the network attributes from Table 4 computed from the polygons extracted out of
the master SAR intensity images from both orbits (55 × 2) and (vi) the HOG attributes extracted from
the DEM derived from the interferometric pair of SAR intensity images from the ascending orbit (8).
After the elimination of irrelevant ones, 96 attributes were left for the second and final fitting of the
Random Forest classification model.

4. Results

4.1. Model Comparison

Each of the four models was tested in combination with the four neighborhood definition criteria
presented in Equation (7). Each of these combinations was evaluated with the λ parameter varying in
steps of 0.01 from 0.01 up to 1.0, and the obtained overall accuracies were recorded. As mentioned, λ is a
weighting term that balances the influence of each type of factor in the energy function. Figure 4 shows
for each model a plot-graph of the overall accuracy obtained with each λ value. The colors of
the lines indicate the neighborhood definition criterion. The horizontal black lines in each of the
plot-graphs indicate the overall accuracy obtained when applying the Random Forest algorithm with
the descriptive attributes presented in Section 2.3. The accuracy obtained with this classification
model is 68.91%. It can be observed that, with all four models, the highest accuracy values were
obtained when the neighborhood of each block was defined by the criterion of a fixed radius of 240 m,
followed by the criterion of region adjacency. The overall highest accuracies, when considering each
neighborhood definition criterion separately, were obtained with model CRF 1, followed by models
CRF 2 and CRF 3. Thus, when combining model CRF 1 with the neighborhood defined by the criterion
of a fixed radius of 240 m, the highest improvement in the overall accuracy in relation to the standard
classification was obtained, namely 7.05%.
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Figure 4. Plot-graphs of the overall accuracies obtained with the four different models explored in this
work and with λ parameters varying from 0.01–1.0. The colors of the lines indicate the neighborhood
definition criterion.

4.2. Accuracy Analysis

In this section, we analyze in more detail the quality of the standard classification and the
context-based classification obtained with model CRF 1 and the neighborhood definition criterion of
a fixed radius of 240 m. The reason for us focusing on this specific context-based classification model
is that it was the one that achieved the highest accuracy improvement in relation to the standard
classification, as can be seen in Figure 4. Figure 5 depicts these two classifications, as well as the
ground-truth map of the study-site. It can be observed that the spatial distribution of the UST classes in
the ground-truth map is not random. The extent to which instances of the same class are grouped into
clusters can be analyzed with the assortativity measure proposed by [56]. To the best of our knowledge,
this is the only measure available for global spatial autocorrelation of categorical data. Given a criterion
for establishing pairwise neighboring relationships between blocks, this measure is 1.0 when every
pair of neighboring blocks is assigned to the same class. The assortativity measure is −1.0 when these
blocks are assigned always to two different classes. Considering the neighborhood criterion of a fixed
radius of 240 m, the ground-truth map in Figure 5c has an assortativity of 0.45. This is evidence that the
classification accuracy can be improved if the context of each block is considered in its class assignment.
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Figure 5. Ground-truth map and the standard and context-based classifications. (a) Standard
classification performed with the Random Forest algorithm, i.e., without considering context.
(b) context-based classification performed with model CRF 1 and the neighborhood definition criterion
of a fixed radius of 240 m. (c) The official urban structure type (UST) map of Munich generalized for
five classes and considered as the ground-truth.

Indeed, a visual analysis of the standard (Figure 5a) and context-based (Figure 5b) classifications
shows that the latter is more similar to the ground-truth map than the former. In order to verify
this quantitatively, we resorted to commonly-used accuracy analysis measures derived from the
confusion matrix of a classification, namely the global Kappa index, as well as the per-class user’s and
producer’s accuracy indexes [57]. Table 5 shows the confusion matrices of the standard, as well as the
context-based classification. The overall accuracy of the standard classification is 68.91%, and its Kappa
index is 0.57. The context-based classification in its turn achieved an overall accuracy of 75.95% and
a Kappa index of 0.65. It can be observed from the confusion matrices that almost all the producer’s and
user’s accuracies of all classes increased when context was considered in the classification. The only
exception is the user’s accuracy of class ‘parks and vegetated areas’, which slightly decreased in the
context-based classification. This might be due to over-smoothing, given that instances of this class
frequently appear surrounded by residential and even commercial blocks. Indeed, most false-negative
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errors of this class that appeared in the context-based classification and were originally not to be seen
at the standard one were assigned to class ‘dense block development’. Furthermore, the number of
false-negative errors from class ‘detached and semi-detached housing’ assigned to class ‘regular block
development’ slightly increased in the context-based classification. Other than that, all numbers outside
the diagonal of the confusion matrix have decreased when context was considered in the classification.

Table 5. The confusion matrices of the standard and best context-based classifications. The best
contextual classification was obtained with model CRF 1 and the neighborhood definition criterion of a
fixed radius of 240 m. The overall accuracies achieved by the standard and contextual classifications are
68.91% and 75.95%, respectively. The respective Kappa indices are 0.57 and 0.65. The considered classes
are Parks and Vegetated Areas (PVA), Detached and Semi-Detached Housing (DSDH), Large Buildings
and Industrial Areas (LBIA), Dense Block Development (DBD) and Regular Block Development (RBD).

PVA DSDH LBIA DBD RBD Total User’s Acc. (%) Prod.’s Acc. (%)

Std. class.:
PVA 184 10 3 3 15 215 85.58 84.40
DSDH 22 144 6 12 35 219 65.75 57.60
LBIA 2 5 42 6 7 62 67.77 30.00
DBD 3 25 61 491 48 628 78.18 85.68
RBD 7 66 28 64 91 256 35.54 46.42
Total 218 250 140 573 196

Ctxt. class.:
PVA 176 8 5 12 14 215 81.86 85.85
DSDH 15 155 2 6 41 219 70.77 65.12
LBIA 4 4 45 4 5 62 72.25 41.66
DBD 5 10 33 546 34 628 82.94 88.63
RBD 5 61 23 48 119 256 46.48 55.86
Total 205 238 108 616 213

5. Discussion

The classification of USTs based on remote sensing imagery is a challenging task. There are
two main reasons for this. The first is that some classes are defined by functional and cultural
aspects more than others. These classes can be successfully classified only to the extent that they also
have typical structural characteristics. For example, it is impossible to directly ascertain based on
objective image attributes whether a block is of residential or commercial use. Luckily, residential
areas are frequently associated with a certain type of built-up structure, usually characterized by
the presence of vegetation and of small to medium-sized constructions. However, it is difficult to
establish a consistent correlation between socio-economic and functional aspects, which are subjective,
and structural aspects, which are objective. The second reason is that urban blocks from the same
class may be very heterogeneous regarding their shape, orientation and the geometric structure and
spatial disposition of the urban features inside them. In fact, no pair of blocks from the same class is
ever identical. Furthermore, characteristics that are typical of a class may be found in instances from
other classes, as well. This means it is challenging to identify expressive image-derived attributes
for block-based UST classification. Resorting to a powerful classifier and to a larger number of
training samples is an advisable measure. However, selecting a large number of training samples
may not be possible for some classes. In these cases, it is necessary to consider a smaller number
of more general classes, each of which is the result of a merging of classes with similar structural
characteristics. Despite these limitations, the automatic classification of USTs based on remote sensing
images provides a subjectivity-free and consistent categorization of urban blocks according to their
structural characteristics. Such objective grouping of blocks according to their built-up structure is
relevant for several urban studies, as well as for urban planning in general.
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Independently of the methods applied, block-based classification of USTs requires images with
adequate spatial resolution so that urban blocks can be effectively characterized regarding their UST.
Although the medium resolution of TerraSAR-X StripMap (≈3 m) and Sentinel-1 (≈5 m) images is
most likely insufficient for that task, the TerraSAR-X and COSMO-SkyMed satellites operating in
spotlight mode provide images with appropriate spatial resolution (≈1 m) for distinguishing USTs at
the block level. This is relevant regarding the mapping and monitoring of USTs in parts of the world
where airborne imagery may still be lacking or hard to obtain. The transferability of ours and any
other UST classification models is however limited by the environmental, cultural and, more generally,
geographic peculiarities of different cities. These peculiarities lead to the necessity of adjusting the
model’s parameters and eventually considering other attributes in the classification.

In this paper, we proposed an approach for classifying USTs using TerraSAR-X Spotlight
imagery acquired at the satellite’s ascending and descending orbits. Instead of considering attributes
computed from a previously performed land cover classification, as most of the related work has
done, our approach is based on attributes that describe the geometric characteristics and spatial
disposition of lines and polygons extracted inside each block. Our main contribution is however to
demonstrate that considering the context of each block in the classification is expected to improve
the classification accuracy, assuming though that the spatial distribution of the classes is not random.
This assumption holds well for large cities of the Western world that frequently have urban zoning
laws. It should be noticed that in cities where such laws are lacking or are not being respected, the
advantage of considering the context of the urban blocks in their classification might be significantly
limited. It is safe to say though that PGMs are the most sound and flexible statistical approach for
modeling contextual influences between geographical entities. The reason for this is that the constituent
parts of a PGM, namely its structure, association and interaction factors and inference algorithm, are
independent of each other, which enables easy adaption to other study sites, input image data and
attribute sets without any effect on the statistical formalities of probability laws. This leads to the fact
that different block attributes extracted from different images could be used for computing the prior
class probabilities of the blocks. The only parameter that must be tuned in all cases is the lambda
parameter, which compensates for the different number of association and interaction factors.

We conclude this paper by stressing the necessity of further work on how to tackle the problem
of mixed blocks, i.e., blocks officially assigned to more than one class. As mentioned above,
a significant percentage of blocks from our study area is officially assigned to more than one class.
Novack and Stilla [58] proposed a strategy for detecting mixed blocks based on the classification
instability of the blocks. However, the problem seems to lie more on how to segment mixed blocks
according to the different USTs inside it. To the best of our knowledge, an efficient solution to this
issue is still to appear in the specialized literature.
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